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Abstract

Magnetic Resonance Imaging (MRI) is one of the leading modalities for medical imaging, 

providing excellent soft-tissue contrast without exposure to ionizing radiation. Despite continuing 

advances in MRI, long scan times remain a major limitation in clinical applications. Parallel 

imaging is a technique for scan time acceleration in MRI, which utilizes the spatial variations in 

the reception profiles of receiver coil arrays to reconstruct images from undersampled Fourier 

space, i.e. k-space. One of the most commonly used parallel imaging techniques employs 

interpolation of missing k-space information by using linear shift-invariant convolutional kernels. 

These kernels are trained on a limited amount of autocalibration signal (ACS) for each scan. We 

propose a novel method for parallel imaging, Robust Artificial-neural-networks for k-space 

Interpolation (RAKI), which uses scan-specific convolutional neural networks (CNNs) to perform 

improved k-space interpolation. Three-layer CNNs are trained using only scan-specific ACS data, 

alleviating the need for large training databases. The proposed method was tested in ultra-high 

resolution brain MRI and quantitative cardiac MRI, acquired with various acceleration rates. 

Improved noise resilience as compared to existing parallel imaging methods was observed for high 

acceleration rates or in the presence of low signal-to-noise ratio (SNR). Furthermore, RAKI 

successfully reconstructed images for quantitative cardiac MRI, even when using the same CNN 

across images with varying contrasts. These results indicate that RAKI achieves improved noise 

performance without overfitting to specific image contents, and offers great promise for improved 

acceleration in a wide range of MRI applications.

I. INTRODUCTION

Even with significant advances over the past three decades, the acquisition time in magnetic 

resonance imaging (MRI) remains long compared to other medical imaging modalities. This 

often necessitates trade-offs between image resolution and SNR in clinical MRI. Several 

methods have been proposed to reduce the scan time in MRI, including partial Fourier 

imaging [1], parallel imaging [2]–[4] and compressed sensing [5], [6]. Parallel imaging 

techniques are the current clinical standard for accelerated MRI. They utilize the variations 
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in the local reception profile of sensors (or receiver coils) to reduce scan time [2]. These 

reception profiles (or coil sensitivities) are mapped from calibration data, acquired at the 

beginning of each scan on a subject-specific basis [3], [4]. They are then used in a linear 

reconstruction framework to reconstruct undersampled MRI datasets, where the number of 

receiver coils is greater than the undersampling factor.

Following the overwhelming success of deep learning in multiple applications, e.g. [7]–[11], 

machine learning (ML) techniques have recently gathered interest in the MRI community. 

ML has been proposed as a possible means to improve reconstruction quality in MRI, by 

providing advanced regularizers for non-linear reconstruction [12]–[16]. So far, the MRI 

reconstruction community has focused on generating such regularizers by training on large 

amounts of datasets showing initial promise for improved reconstruction quality [12]–[16]. 

However, these methods require large databases of MR images for rigorous training, and do 

not exhibit any adaptation in a subject-specific manner. On the other hand, the recent push 

for precision medicine suggests that the medical community considers taking individual 

variability into account as generally favorable for diagnosis [17].

In this work, we introduce a reconstruction method, called Robust Artificial-neural-networks 

for k-space Interpolation (RAKI), where convolutional neural networks (CNNs) are trained 

on a small amount of subject-specific calibration data and utilized for reconstructing 

undersampled MRI acquisitions. The method is studied in brain and cardiac imaging 

applications in terms of improvement in reconstruction quality, noise resilience, and 

robustness to contrast variations.

II. METHODS

A. Multi-Coil MRI Acquisition and Reconstruction

MRI signal is generated from the hydrogen atoms in a tissue [18]. A strong magnetic field is 

used to create net magnetization, which is perturbed using a radio-frequency excitation to 

create a transverse magnetization component, which is measured at a receiver coil. Spatial 

information is encoded into this signal, using spatially-varying magnetic fields on top of the 

main magnetic field. With this spatial information, the measured MRI signal can be shown 

to correspond to a Fourier transform of the underlying image. The final sampled 

measurements are in the Fourier domain, referred to as the k-space, which is the Fourier 

transform of the desired MR image [18].

Modern MRI scanners come equipped with a number of sensors for signal reception, 

referred to as receiver coil-arrays [19]. Each of these coils see a limited part of the field-of-

view, where the image in coil i, denoted by mi is the desired image, m modulated pixel-wise 

with the diagonal entries of a coil sensitivity profile, Ci [3]. Thus, at each of the receiver 

coils, the received k-space signal is given as

si = FΩCim + n,

where FΩ is a partial Fourier sampling operator, sampling locations Ω, and n is measurement 

noise.
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Parallel imaging techniques are linear algorithms for reconstructing such datasets. The two 

most commonly used parallel imaging approaches are sensitivity encoding (SENSE) [3] and 

generalized autocalibrating partially parallel acquisition (GRAPPA) [4]. The former is 

formulated as a least-squares problem for estimating, m from si i = 1
nc , where nc is the 

number of coils. This requires estimation of coil sensitivities, Ci, which is performed using 

low-resolution images of the anatomy of interest on a subject-specific basis [3]. GRAPPA 

reconstruction essentially formulates this image-domain multiplication approach with Ci in 

the Fourier domain, i.e. k-space, as a convolution. It uses linear interpolation in k-space with 

shift-invariant convolutional kernels to estimate missing k-space data from acquired ones. 

The interpolation is performed across all coils, in essence, capturing the geometry of the 

receiver coil array. Similar to SENSE, these convolutional kernels are determined from a 

small amount of calibration data, referred to as autocalibration signal (ACS) [4].

As evident from the formulation, in theory, parallel imaging allows for acceleration rates up 

to the number of receiver coils (e.g., 16 to 32). However, in practice, due to dependencies 

between coil coverage and noise amplification, the acceleration rates are limited to ≤4.

B. Proposed Reconstruction

Our proposed reconstruction aims to utilize CNNs for non-linear estimation of missing k-

space data, in contrast to the linear convolutional estimation in existing methods. There are 

several reasons for using a non-linear estimation procedure. First, there is noise present in 

the ACS data used for calibration. In the GRAPPA reconstruction, the linear convolutional 

kernels are estimated from the ACS data using a mean square error (MSE) loss function, via 

linear least squares [4]. However, due to the noise in ACS data, both the dependent and 

independent variables are noisy, which was shown to lead to a bias in the convolutional 

kernels [20]. Furthermore, the bias was shown to induce non-linearity in the estimation of k-

space, which can be mitigated by using non-linear kernels [20]. Second, the linear 

convolutional kernels in GRAPPA have very few degrees of freedom, due to small kernel 

sizes. Thus, their ability to approximate the underlying reconstruction operator for the multi-

coil MRI acquisition is limited. Hence, use of a non-linear approximation with similarly few 

degrees of freedom may improve this approximation to the underlying reconstruction 

operator.

In the proposed RAKI method, the CNNs for estimating the missing k-space method are 

trained from the ACS data. We next describe the specifics of our method. The k-space data 

in MRI is complex-valued, thus prior to any processing these are mapped to the real-field, 

effectively increasing the total number of channels to 2nc, where nc is the number of 

physical receiver coils in the receiver coil-array for the MRI acquisition. The input to the 

CNN is the undersampled k-space, where the unacquired positions are filled with zeros. 

Note in parallel imaging, the undersampling is performed by acquiring every Rth line in the 

phase encoding (i.e., the so-called ky) direction for an acceleration rate of R.

A three-layer CNN was implemented to reconstruct the missing lines in each receiver coil, 

as depicted in Figure 1. The first and second layers of the network perform convolutions, 

followed by a rectified linear unit, defined as ReLU(x) = max(x, 0), i.e., Fi(x) = ReLU(wi * 
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x), for i = 1, 2, thus processing the acquired k-space lines non-linearly. This processing 

performs a combination of coil compression [21] and virtual channel creation [20], which 

are techniques that have been explored for improved reconstruction in MRI. The last layer 

performs only a convolution, with no non-linear operation, i.e. F3(x) = w3 * x, generating the 

final estimate. In our implementation, w1 were taken to be of size 5 × 2 × 2nc × 32, w2 had 

size 1 ×1 × 32 × 8, and w3 were of size 3 × 2 × 8× R − 1, i.e. all the missing k-space lines 

inone output coil were estimated concurrently.

We note that the proposed CNN does not contain a bias term, which is typically used in 

other applications. The inclusion of a bias term, however, sensitizes the network to linear 

scalings of the input k-space. Such linear scalings may happen in MRI acquisitions due to 

changes in receiver gain, or due to inherent differences in signal among acquisitions that are 

acquired in the same position, but with underlying contrast changes, as utilized in 

quantitative MRI. Thus, the CNN was designed to capture dependencies among receiver 

coils due to their physical positioning and coverage for a specific scan, and not the 

underlying signal characteristics, which may be affected by changes in the acquisition 

contrast.

A CNN was trained for each of the receiver coils. In other words, all the missing lines in coil 

j were reconstructed with a 3-layer CNN, using all the acquired lines among all the coils, j = 

1, …, nc. Note this is the standard practice, in linear reconstruction approaches as GRAPPA 

[4], and was implemented in the proposed RAKI method for a fair comparison. To process 

the acquired zero-filled k-space, kernel dilation of R was was utilized in the undersampled 

ky dimension [22]. The CNNs were trained on the scan-specific ACS calibration data, using 

an MSE loss function. Gradient descent with momentum was implemented with momentum 

rate, μ = 0.9. Due to the limited nature of scan-specific ACS data, batch gradient descent was 

used. Thus one epoch corresponded to one iteration. The number of iterations was limited to 

1000. The input k-space was scaled to have a maximum value of 0.015, set arbitrarily, and 

the corresponding learning rates were η = 100 for the first layer, and η = 10 for the last two 

layers. Slower learning rates for later layers have been reported previously in image 

processing applications [10], [11]. The implementation for CNN training and the subsequent 

reconstruction was implemented in Matlab, with convolution and backpropagation operation 

implemented based on the MatConvNet toolbox [23].

C. In Vivo Imaging Experiments

Brain MRI was performed on a 3T Siemens Magnetom Prisma (Siemens Healthcare, 

Erlangen, Germany) scanner with a 32-channel receiver head coil-array. Structural, T1-

weighted images were acquired with a 3D-MPRAGE [24] sequence in a healthy subject at a 

resolution of 0.7 × 0.7 × 0.7 mm3 and a 3D array size of 320 × 320 × 256. 40 ky lines of 

ACS data were acquired and two separate acquisitions were performed with parallel imaging 

acceleration factors of R = 2 and 5. A two-dimensional slice was extracted from the three-

dimensional data set and was processed for the rest of the study. Acceleration rates of 4 and 

6 were generated by retrospectively undersampling the R = 2 data set. GRAPPA and RAKI 

reconstructions for acceleration rates of 2, 4, 5, 6 were examined to test the robustness of 
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RAKI at very high resolutions, in terms of its noise resilience for a high-resolution low-SNR 

regime, and to identify potential blurring artifacts.

To further test the robustness of the proposed method to contrast changes in the acquired 

data, cardiac imaging was performed with a 30-channel receiver body coil-array on the same 

system. Quantitative myocardial (i.e. heart muscle) T1 mapping was acquired using a 

SAPPHIRE sequence [25] in a mid-ventricular short-axis slice on four healthy volunteers. In 

quantitative myocardial T1 mapping, multiple images of the same anatomy are acquired in a 

single breath-hold with electrocardiogram triggering to minimize effects of respiratory and 

cardiac motions [26]. These multiple images are designed to have different T1 weightings, 

where T1 is a tissue-dependent parameter which reflects the rate at which the system 

recovers to thermal equilibrium. Using these images with different T1 weightings and the 

knowledge of how these weightings were varied, a parameter estimation is performed at 

every pixel to generate a pixel-wise map of the underlying quantitative T1 values [26]. Such 

quantification has advantages for robustness across imaging sites and detection of diffuse 

diseases [27]. In the SAPPHIRE sequence, 11 images with different T1 weightings were 

acquired with a balanced steady-state free precession image acquisition at a resolution of 1.1 

× 1.1 mm2, a matrix size of 272 × 272 and slice thickness of 6 mm. In-plane acceleration of 

R = 5 was used. A separate calibration scan with a single T1 weighting was acquired, 

containing 64 ACS ky lines for training purposes.

In order to assess the robustness of RAKI across different contrasts, underlying the CNNs 

were estimated using ACS data from only one T1 weighted image. Correspondingly, the 

GRAPPA kernels were calibrated from one data set only as well, noting that the robustness 

of GRAPPA across different contrasts is well-established [28], [29]. All 11 images were 

reconstructed with these CNNs or linear convolutional kernels, despite the varying 

underlying T1-weighted contrast. To measure the performance of the proposed 

reconstructions, myocardial T1 times were quantified, since this is the relevant biomarker for 

evaluating numerous cardiac diseases [27]. Regions-of-interest (ROIs) were manually drawn 

in the myocardium. As the myocardial T1 value is expected to be homogenous in a healthy 

subject, the mean value in the ROI was recorded as an estimate of the underlying T1 value, 

capturing accuracy; while the standard deviation in the ROI was recorded as spatial 

variability, a surrogate for precision and noise performance [26]. This T1 analysis enables a 

quantitative comparison between the proposed RAKI method and existing methods. If the 

proposed RAKI method is invariant to contrast changes, it is expected to produce a similar 

estimated T1 value to GRAPPA reconstruction on the same dataset. Similarly, if RAKI has 

better noise performance, it should have lower spatial variability than GRAPPA.

III. RESULTS

Figure 2 shows reconstructions of the high resolution brain image at acceleration rates 2, 4, 

5 and 6, reconstructed with both conventional GRAPPA and the proposed RAKI technique. 

For lower accelerations up to rate 4, both methods provide artifact-free image 

reconstructions of visually high quality. However, at rate 5, RAKI performs noticeably better 

than GRAPPA in terms of noise resilience, without inducing detrimental reconstruction 
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artifacts or blurring. The same trend can observed at rate 6, albeit at a generally higher 

artifact level, with slight residual artifacts for both techniques.

The series of T1 weighted baseline images reconstructed with RAKI and GRAPPA using 

only a single ACS for calibration/training are shown in Figure 3. For this high-resolution 

acquisitions, RAKI yields visually improved image quality across all the baseline images, 

reducing noise artifacts, without compromising sharpness of tissue borders. Furthermore, the 

proposed RAKI method successfully maintains quantitative accuracy of the technique with 

negligible difference in the quantified T1 time (< 1.5% difference). Additionally, the spatial 

variability of myocardial T1 times, a surrogate for precision, is improved by 48% across all 

subjects, when using RAKI compared with GRAPPA.

IV. DISCUSSION

We developed and evaluated a subject-specific machine learning technique to perform noise-

resilient reconstruction of undersampled MRI data, allowing for improved image quality at 

higher acceleration rates, enabling shorter scan times. Our approach is based on training a 

CNN from limited scan-specific ACS calibration data in order to capture information about 

the receiver coil-array, which is used for non-linear estimation of unacquired k-space lines 

from acquired ones. Thus, our focus on using scan-specific ACS data deviates from the trend 

in machine learning applications in MRI that employ massive training databases [12]–[16]. 

Instead it requires a limited amount of training data, providing adaptivity for each data set. 

Brain and cardiac imaging data show increased noise performance at higher acceleration 

rates, as well as robustness to variations in the image contrast between the ACS data and the 

final image.

Machine learning is increasingly being applied to the problem of MRI reconstruction [12]–

[16], stemming from the overwhelming success of deep learning in other areas of image 

processing, e.g. [7]–[11]. However, these efforts have focused on training reconstruction 

algorithms on large amounts of datasets so far, which have been used to generate advanced 

regularization approaches for MR images [12]–[16]. In contrast, our RAKI approach 

considers the problem of estimation in k-space, instead of regularization in image domain, 

allowing the training to performed on subject-specific ACS data of a single image.

The use of non-linearity in estimation using CNNs was shown to improve the noise 

performance compared to the clinically-utilized linear convolutional approach, GRAPPA 

[4]. Several other studies had proposed the use of non-linearity to improve GRAPPA. These 

include using non-linear kernel methods with pre-defined feature spaces on which linear 

estimation is performed [20], as well as use of compressed sensing to regularize the 

GRAPPA coefficients [30]. However, our approach is inherently different, as it does not 

make any assumptions about either the properties of k-space or image compressibility, and 

uses CNNs to learn a non-linear estimation function without modeling assumptions.

In contrast to many existing deep learning applications, we have chosen not to use bias terms 

in our CNNs. The main rationale for this decision was that the additive nature of the bias 

terms results in scaling dependence on the ℓ∞ norm of the k-space. For MRI applications, 
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such as T1 mapping, where the underlying contrast of the images, and thus the SNR among 

corresponding k-spaces changes significantly [26], but where the CNNs are trained on only 

one set of contrast weighting, the inclusion of bias terms becomes challenging. However, 

further work is required on the utility of biases in other MRI applications or with new pre-

processing steps to re-scale the k-space data across contrast changes.

A further design choice was to train separate CNNs to reconstruct all receiver coil channels 

independently, even though the reconstructions used the available data across all coils as 

input. This was done to provide a fair comparison to the existing linear k-space interpolation 

approach, GRAPPA [4]. However, in principle, the CNN can be trained to simultaneously 

reconstruct all the missing k-space lines in all nc coils, using the acquired data across all 

coils as input. While this may necessitate deeper networks and larger kernel sizes, it may 

improve reconstruction quality by enabling interactions across coils, which will be explored 

in future work. Furthermore, due to the limited ACS data, only a network with three layers 

was studied. Networks with deeper structure may suffer from insufficient training due to the 

size of the ACS data. However, more complex CNNs with higher amounts of scan-specific 

ACS data may facilitate advanced reconstructions, such as acquisitions with ultra-high 

channel counts, simultaneous multi-slice imaging or temporal image series.

In summary, the proposed RAKI method provides novel means to utilize the versatility of 

model-free function approximation with CNNs in parallel imaging MRI reconstruction. The 

proposed scheme is fully compatible with present clinically-used acquisition techniques. Our 

initial data indicates improved noise resilience, potentially enabling higher rates of scan time 

acceleration. These factors bear promise for clinical integration in numerous applications, 

ultimately alleviating the problem of long scan-times in MRI, for the benefit of patient 

comfort and health-care costs.
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Fig. 1. 
The three-layer CNN used in this study. The input to the CNN is the undersampled k-space 

across all the nc receiver coils, embedded over the real field, leading to 2nc input channels. 

The first two layers apply convolutions and ReLU, while the last layer only applies 

convolutions and generates the unacquired k-space lines for a given coil as output.
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Fig. 2. 
A 2D slice of a high-resolution brain scan, acquired at 0.7 × 0.7 × 0.7 mm3 resolution. The 

scans were acquired with R = 2 and R = 5, and undersampling rates R = 4 and R = 6 were 

retrospectively generated from the R = 2 acquisition. At lower rates, the clinically-utilized 

linear convolutional approach, GRAPPA [4], and the proposed CNN-based approach, RAKI 

perform similarly. At R = 5, RAKI performs visibly better than GRAPPA in terms of noise 

resilience, without reconstruction artifacts or blurring. The same trend is observed at R = 6, 

albeit at a generally higher artifact level for both reconstructions.
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Fig. 3. 
All 11 T1 weighted images acquired for quantitative myocardial T1 mapping on a healthy 

volunteer, showing visual improvement in noise performance using the proposed RAKI 

method. The acquisition resolution was 1.1 × 1.1 × 6 mm3, with undersampling rate R = 5. 

The linear convolutional kernels for GRAPPA and the CNNs for RAKI were trained using 

ACS data from one T1 weighting, in order to test the robustness to contrast variations. 

Quantitative analysis of T1 maps showed no change of accuracy between two methods, 

showing the robustness of the proposed RAKI method to contrast changes. However, the 

precision of T1 maps were improved by 48% across 4 subjects, using RAKI versus 

GRAPPA, which is in agreement with the visual improvement in noise performance.
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