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Molecular Geometry Prediction 
using a Deep Generative Graph 
Neural Network
Elman Mansimov1, Omar Mahmood2, Seokho Kang3 & Kyunghyun Cho1,2,4,5*

A molecule’s geometry, also known as conformation, is one of a molecule’s most important properties, 
determining the reactions it participates in, the bonds it forms, and the interactions it has with other 
molecules. Conventional conformation generation methods minimize hand-designed molecular force 
field energy functions that are often not well correlated with the true energy function of a molecule 
observed in nature. They generate geometrically diverse sets of conformations, some of which are 
very similar to the lowest-energy conformations and others of which are very different. In this paper, 
we propose a conditional deep generative graph neural network that learns an energy function by 
directly learning to generate molecular conformations that are energetically favorable and more likely 
to be observed experimentally in data-driven manner. On three large-scale datasets containing small 
molecules, we show that our method generates a set of conformations that on average is far more likely 
to be close to the corresponding reference conformations than are those obtained from conventional 
force field methods. Our method maintains geometrical diversity by generating conformations that 
are not too similar to each other, and is also computationally faster. We also show that our method can 
be used to provide initial coordinates for conventional force field methods. On one of the evaluated 
datasets we show that this combination allows us to combine the best of both methods, yielding 
generated conformations that are on average close to reference conformations with some very similar 
to reference conformations.

The three-dimensional (3-D) coordinates of atoms in a molecule are commonly referred to as the molecule’s 
geometry or conformation. The task, known as conformation generation, of predicting possible valid coordinates 
of a molecule, is important for determining a molecule’s chemical and physical properties1. Conformation genera-
tion is also a vital part of applications such as generating 3-D quantitative structure-activity relationships (QSAR), 
structure-based virtual screening and pharmacophore modeling2. Conformations can be determined in a physical 
setting using instrumental techniques such as X-ray crystallography as well as using experimental techniques. 
However, these methods are typically time-consuming and costly.

A number of computational methods have been developed for conformation generation over the past few dec-
ades2. Typically this problem is approached by using a force field energy function to calculate a molecule’s energy, 
and then minimizing this energy with respect to the molecule’s coordinates. This hand-designed energy function 
yields an approximation of the molecule’s true potential energy observed in nature based on the molecule’s atoms, 
bonds and coordinates. The minimum of this energy function corresponds to the molecule’s most stable configu-
ration. Although this approach has been commonly used to generate a geometrically diverse set of conformations 
with certain conformations being similar to the lowest-energy conformations, it has been shown that molecule 
force field energy functions are often a crude approximation of actual molecular energy3.

In this paper, we propose a deep generative graph neural network that learns the energy function from data 
in an end-to-end fashion by generating molecular conformations that are energetically favorable and more likely 
to be observed experimentally4. This is done by maximizing the likelihood of the reference conformations of the 
molecules in the dataset. We evaluate and compare our method with conventional molecular force field methods 
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on three databases of small molecules by calculating the root-mean-square deviation (RMSD) between generated 
and reference conformations. We show that conformations generated by our model are on average far more likely 
to be close to the reference conformation compared to those generated by conventional force field methods i.e. the 
variance of the RMSD between generated and reference conformations is lower for our method. Despite having 
lower variance, we show that our method does not generate geometrically similar conformations. We also show 
that our approach is computationally faster than force field methods.

A disadvantage of our model is that in general for a given molecule, the best conformation generated by our 
model lies further away from the reference conformation compared to the best conformation generated by force 
field methods. We show that for the QM9 small molecule dataset, the best of both methods can be combined by 
using the conformations generated by the deep generative graph neural network as an initialization to the force 
field method.

Conformation Generation
We consider a molecule as an undirected, complete graph G = (V, E), where V is a set of vertices corresponding to 
atoms, and E is a set of edges representing the interactions between pairs of atoms from V. Each atom is repre-
sented as a vector vi ∈ dv of node features, and the edge between the i-th and j-th atoms is represented as a vector 
eij ∈ de of edge features. There are M vertices and M(M − 1)/2 edges. We define a plausible conformation as one 
that may correspond to a stable configuration of a molecule. Given the graph of a molecule, the task of molecular 
geometry prediction is the generation of a set of plausible conformations Xa =  …x x( , , )a

M
a

1 , where ∈xi
a 3 is a 

vector of the 3-D coordinates of the i-th atom in the a-th conformation.
Molecules can transition between conformations and end up in different local minima based on the stability 

of the respective conformations and environmental conditions. As a result, there is more than one plausible con-
formation associated with each molecule; it is hence natural to formulate conformation generation as finding 
(local) minima of an energy function F X G( , ) defined on a pair of molecule graph and conformation:

… = .FX X X G{ , , } argmin ( , ) (1)S
X

1

Alternatively, we could sample from a Gibbs distribution:

… |~
F

X X p X G{ , , } ( ), (2)S1

where

ζ
| = −F

F
p X G

G
X G( ) 1

( )
exp{ ( , )},

(3)

where ζ is a normalizing constant. We use S to indicate the number of conformations we generate for each 
molecule.

Under this view, the problem of conformation generation is decomposed into two stages. In the first stage, a 
computationally-efficient energy function F X G( , ) is constructed. The second stage involves either performing 
optimization as in Eq. (1) or sampling as in Eq. (2) to generate a set of conformations from this energy function.

Energy function construction.  A conventional approach is to define an energy function 
semi-automatically. The functional form of an energy function is designed carefully to incorporate various chem-
ical properties, whereas detailed parameters of the energy function are either computationally or experimentally 
estimated. Two examples of widely used energy functions are the Universal Force Field (UFF)5 and the Merck 
Molecular Force Field (MMFF)6. In contrast to these methods, here we will describe how to estimate the energy 
function or probability distribution directly from data using the latest techniques from deep learning.

Energy minimization/sampling.  Once the energy function is defined, a conventional approach is to run 
the minimization many times starting from different initial conformations. Due to the non-convexity of the 
energy function, each run is likely to end up in a unique local minimum, allowing us to collect a set of many 
conformations.

A typical approach is to use distance geometry (DG)7 or its variants, such as experimental-torsion basic 
knowledge distance geometry (ETKDG)8, to randomly generate an initial conformation that satisfies various 
geometric constraints such as lower and upper bounds on the distances between atoms. Starting from the initial 
conformation, an iterative optimization algorithm, such as L-BFGS9, gradually updates the conformation until it 
finds a minimum of the energy function. In this paper, we instead propose an approach based on deep generative 
models that allow us to sample directly from a distribution over all possible conformations given a molecule 
graph.

Deep Generative Model for Molecular Geometry
We propose to “learn” an energy function F G X( , ) from a database containing many pairs of a molecule and its 
experimentally obtained conformation. Let | | = …⁎ ⁎D G X G X{( , ), , ( , )}N N1 1  be a set of examples from such a 
database, where Xn

* is “a” reference conformation, often obtained and verified empirically in a certain environ-
ment. These reference conformations may not necessarily correspond to the lowest energy configurations of the 
molecules, but are energetically favorable and more likely to be observed experimentally. Learning an energy 
function can then be expressed as the following optimization problem:
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p X G( , ) argmax 1 log ( ) ,

(4)n

N

n n
1 (a)

where 
F

p  is a Gibbs distribution defined using F as in Eq. (3). In other words, we can learn the energy function 
F by maximizing the log-likelihood of the data D. In principle, the term “energy” has a very specific meaning in 
each context (e.g., potential energy, statistical free energy and etc). In our case, “energy” refers to an objective 
function that reflects the likelihood of a conformation given a molecular graph.

Conditional variational graph autoencoders.  We use a conditional version of a variational autoen-
coder10 to model the distribution 

F
p  in Eq. (4) (a). This choice enables an underlying model to capture the com-

plicated, multi-modal nature of this distribution, while allowing us to efficiently sample from this distribution. 
This is done by introducing a set of latent variables Z = {z1, …, zM}, where ∈zm

dz and rewriting the conditional 
log-probability |

F
p X Glog ( ) as

∫| = | |p X G p X Z G p Z G Zlog ( ) log ( , ) ( )d , (5)

where we omit the subscript F for brevity.
The marginal log-probability in Eq. (5) is generally intractable to compute, and we instead maximize the 

stochastic approximation to its lower bound, as is standard practice in problems involving variational inference:
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(7)k

K
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where Zk is the k-th sample from the (approximate) posterior distribution Q above. We assume that we can com-
pute the KL divergence analytically, for instance by constructing Q and P to be normal distributions.

Modeling the graph using a message passing neural network.  We use a message passing neural network 
(MPNN)11, a variant of a graph neural network12,13, which operates on a graph G directly and is invariant to graph 
isomorphism. The MPNN consists of L layers. At each layer l, we update the hidden vector ∈h v( )i

dh of each 
node and hidden matrix ∈ ×h e( )ij

d dh h of each edge using the equation

= − − −
≠ ≠h v h v J h v h v h e( ) GRU( ( ), ( ( ), ( ), ( )), (8)

l
i

l
i

l
i

l
j i i j i

1 1 1
,

where J is a linear one layer neural network that aggregates the information from neighboring nodes according to 
its hidden vectors of respective nodes and edges. GRU is a gated recurrent network that combines the new aggre-
gate information and its corresponding hidden vector from previous layer14. The weights of the message passing 
function J and GRU are shared across the L layers of the MPNN.

Prior parameterization.  We use the MPNN described above to model the prior distribution P(Z|G) in Eq. (6) 
(a). We initialize h0(vi) and h(eij) in Eq. (8) as linear transformations of the feature vectors vi and eij of the nodes 
and edges respectively:

= =h v U v h e U e( ) ; ( ) , (9)i i ij ij
0

node
prior

edge
prior

where Unode
prior and Uedge

prior are matrices representing the linear transformations for the nodes and edges respec-
tively. The final hidden vector hL(vi) of each node is passed through a two layer neural network with hidden size 
df, whose output h v( )

L
i  is transformed into the mean and variance vectors of a Normal distribution with a diagonal 

covariance matrix:

μ = +μ μ
W h v b( ) ; (10)i

L
i

prior prior

σ = +σ σ
{ }W h v bexp ( ) , (11)i

L
i

2 prior prior

where Wμ
prior and Wσ

prior are the weight matrices and bμ
prior and bσ

prior are the bias terms of the transformations. 
These are used to form the prior distribution:
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where μi,j and σi,j
2 are the j-th components of the mean and variance vectors respectively. In other words, we 

parameterize the prior distribution as a factorized Normal distribution factored over the vertices and the dimen-
sions in the 3-D coordinate.

Likelihood parameterization.  We use a similar MPNN to model the likelihood distribution, P(X|Z, G) in Eq. (6) 
(b). The only difference is that this distribution is conditioned not only on the molecular graph G = (V, E) but also 
on the latent set Z = {z1, …, zM}. We incorporate the latent set Z by adding the linear transformation of the node 
feature vector vi to its corresponding latent variable zi. This result is used to initialize the hidden vector:

= + =h v U v z h e U e( ) ; ( ) , (13)i i i ij ij
0

node
likelihood

edge
likelihood

where Unode
likelihood and Uedge

likelihood are matrices representing the linear transformations for the nodes and edges 
respectively. From there on, we run neural message passing as in Eqs. (8–11), with a new set of parameters, 
θlikelihood, Wμ

likelihood, bμ
likelihood, Wσ

likelihood and bσ
likelihood. The final mean and variance vectors are now three dimen-

sional, representing the 3-D coordinates of each atom, and we can compute the log-probability of the coordinates 
using Eq. (12).

Posterior parameterization.  As computing the exact posterior P(Z|G, X) is intractable, we resort to amortized 
inference using a parameterized, approximate posterior Q(Z|G, X) in Eq. (6) (c). We use a similar approach to 
our parameterization of the prior distribution above. However, we replace the input to the MPNN with the con-
catenation of an edge feature vector eij and the corresponding distance (proximity) matrix D(X*) of the reference 
3-D conformation X*:

=











.⁎h e U

e
D x

( )
( ) (14)

ij
ij

i
edge
posterior

With a new set of parameters, θposterior, Wμ
posterior, bμ

posterior, Wσ
posterior and bσ

posterior, the MPNN outputs a Normal 
distribution for each latent variable zi. Linear weight embeddings of nodes Unode are shared between prior, likeli-
hood and posterior.

Training the conditional variational graph autoencoder.  With the choice of the Gaussian latent vari-
ables zi, we can use the reparameterization trick10 to compute the gradient of the stochastic approximation to the 
lower bound in Eq. (7) with respect to all the parameters of the three distributions10. This property allows us to 
train this model on a large dataset using stochastic gradient descent (SGD). However, there are two major consid-
erations that must be made before training this model on a large molecule database.

Post-alignment likelihood.  An important property of conformation generation over a usual problem of regres-
sion is that we must take into account rotation and translation. Let R be an alignment function that takes as input 
a target conformation and a predicted conformation. The function aligns the reference conformation to the pre-
dicted conformation and returns the aligned reference conformation. X̂ = R(X, X*) is the conformation obtained 
by rotating and translating the reference conformation X* to have the smallest distance to the predicted confor-
mation X according to a predefined metric such as RMSD:

∑= − .
=

ˆ ˆ⁎ ⁎X X
M

x xRMSD( , ) 1

(15)i

M

i i
1

2

This alignment function R is selected according to the problem at hand, and we present below its use in a 
general form without exact specification.

We implement this invariance to rotation and translation by parameterizing the output of the likelihood dis-
tribution above to be aligned to the target molecule. That is,

∑ ∑
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where ˆ ⁎xi  is the coordinate of the i-th atom aligned to the mean conformation {μ1, …, μN}. That is,

μ μ… = … .ˆ ˆ⁎ ⁎ ⁎x x R X{ , , } ({ , , }, ) (17)M M1 1

In other words, we rotate and translate the reference conformation X* to be best aligned to the predicted 
conformation (or its mean) before computing the log-probability. This encourages the model to assign high prob-
ability to a conformation that is easily aligned to the reference conformation X*, which is precisely the goal of 
maximum log-likelihood.

Unconditional prior regularization.  The second term in the lower bound in Eq. (6), which is the KL divergence 
between the approximate posterior and prior, does not have a point minimum but an infinitely long valley con-
sisting of minimum values. Consider the KL divergence between two univariate Normal distributions:
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When both distributions are shifted by the same amount, the KL divergence remains unchanged. This could 
lead to a difficulty in optimization, as the means of the posterior and prior distributions could both diverge.

In order to prevent this pathological behavior, we introduce an unconditional prior distribution P(Z) which is 
a factorized Normal distribution:

∏= |
=

NP Z z I( ) ( 0, ),
(19)i

M

i
1

where N computes a Normal probability density, and I is a dz × dz identity matrix. We minimize the KL diver-
gence between the original prior distribution P(Z|G) and this unconditional prior distribution P(Z) in addition to 
maximizing the lowerbound, leading to the following final objective function for each molecule:

α= | − | | − ⋅ |L p X Z G Q Z G X P Z G P Z G P Zlog ( , ) KL( ( , ) ( )) KL( ( ) ( )), (20)1

where we assume K = 1 and introduce a coefficient α ≥ 0.

Inference: predicting molecular geometry.  Learning a conditional variational autoencoder above cor-
responds to the first stage of conformation generation, that is, the stage of energy function construction. Once the 
energy function is constructed, we need to sample multiple conformations from the Gibbs distribution defined 
using the energy function, which is logP(X|G) in Eq. (5). Our parameterization of the Gibbs distribution using a 
directed graphical model15 allows us to efficiently sample from this distribution. We first sample from the prior 
distribution, |˜ ~Z P Z G( ), and then sample from the likelihood distribution, |˜ ˜~X P X Z G( , ). In practice, we fix the 
output variance σi,j of the likelihood distribution to be 1 and take the mean set {μ1, …, μM} as a sample from the 
model.

Experimental Setup
Data.  We experimentally verify the effectiveness of the proposed approach using three databases of molecules: 
QM916,17, COD18 and CSD19. These datasets are selected as they possess distinct properties from each other, which 
allows us to carefully study various aspects of the proposed approach. There is an overlap between COD and CSD 
databases, since both of these databases were based on published crystallography data. We only keep molecules 
from each database that can be processed by RDKit. We further remove disconnected compounds i.e. those 
whose Simplified Molecular-Input Line-Entry System20 (SMILES) representation contains ‘.’. See Fig. 1 for some 
other properties of these three datasets.

QM9.  The filtered QM9 dataset contains 133, 015 molecules, each of which contains up to 9 heavy atoms of 
types C, N, O and F. Each molecule is paired with a reference conformation obtained by optimizing the molecular 
geometry with density functional theory (DFT) at the B3LYP/6-31G(2df,p) level of theory, which implies that 
the reference conformations are obtained from the same environment. We hold out separate 5,000 and 5,000 
randomly selected molecules as validation and test sets, respectively.

COD.  We use the organic part of the COD dataset. We further filter out any molecule that contains more than 
50 heavy atoms of types B, C, N, O, F, Si, P, S, Cl, Ge, As, Se, Br, Te and I. This results in 66,663 molecules, out of 
which we hold out separate 3,000 and 3,000 randomly selected ones respectively for validation and test purposes. 
Reference conformations are voluntarily contributed to the dataset and are often determined either experimen-
tally or by DFT calculations21. Thus, the reference conformations are obtained from different environments.

CSD.  Similarly to COD, we remove any molecule that contains more than 50 heavy atoms, resulting in a total 
of 236, 985 molecules. We hold out separate 3,000 and 3,000 randomly selected molecules for validation and test 
purposes respectively. This dataset contains organic and metal-organic crystallographic structures which have 
been observed experimentally19. The atom types in this dataset are S, N, P, Be, Tc, Xe, Br, Rh, Os, Zr, In, As, Mo, 
Dy, Nb, La, Te, Th, Ga, Tl, Y, Cr, F, Fe, Sb, Yb, Tb, Pu, Am, Re, Eu, Hg, Mn, Lu, Nd, Ce, Ge, Sc, Gd, Ca, Ti, Sn, Ir, 
Al, K, Tm, Ni, Er, Co, Bi, Pr, Rb, Sm, O, Pt, Hf, Se, Np, Cd, Pd, Pb, Ho, Ag, Mg, Zn, Ta, V, B, Ru, W, Cl, Au, U, Si, 
Li, C and I. The reference conformations are obtained from crystal structures.

Models.  Baselines.  As a point of reference, we minimize a force field starting from a conformation created 
using ETKDG8. We test both UFF and MMFF, and respectively call the resulting approaches ETKDG + UFF and 
ETKDG + MMFF. The environment from which each conformation is obtained affects the force field calcula-
tions. To keep comparisons fair and to abstract away the effects of the environment, we use the implementations 
in RDKit22 with the default hyperparameters. The default implementations have often been used in literature 
when comparing different conformation generation methods23–25.

Conditional variational graph autoencoder.  We build one conditional variational graph autoencoder for each 
dataset. We use dh = 50 hidden units at each layer of neural message passing (Eq. 8) in each of the three MPNNs 
corresponding to the prior, likelihood and posterior distributions. We use df = 100 in the two layer neural network 
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that comes after the MPNN. As described earlier, we fix the variance of the output in the likelihood distribution 
to 1. We use L = 3 layers per network for QM9 and L = 5 layers per network for COD and CSD. We chose these 
hyperparameter values by carrying out a grid-search and choosing the values that had the best performance on 
the validation set. The grid-search procedure and the performance of models with different hyperparameters are 
shown in the Supplementary Information.

Learning.  For all models, we use dropout26 at each layer of the neural network that comes after the MPNN 
with a dropout rate of 0.2 to regularize learning. We set the coefficient α in Eq. (20) to 10−5. We train each model 
using Adam27 with a fixed learning rate of 3 × 10−4. All models were trained with a batch size of 20 molecules on 
1 Nvidia GPU with 12 GB of RAM.

Inference.  There are two modes of inference with the proposed approach. The first approach is to sample from 
a trained conditional variational graph autoencoder by first sampling from the prior distribution and taking the 
mean vectors from the likelihood distribution; we refer to this as CVGAE. We can then use these samples fur-
ther as initializations of MMFF minimization; we refer to this as CVGAE + MMFF. The latter approach can be 
thought of as a trainable approach to initializing a conformation in place of DG or ETKDG.

Evaluation.  In principle, the quality of the sampled conformations should be evaluated based on their molec-
ular energies, for instance by DFT, which is often more accurate than force field methods3. However, the computa-
tional complexity of the DFT calculation is superlinear with respect to the number of electrons in a molecule, and 
so is often impractical28. Instead, we follow prior work on conformation generation1 and evaluate the baselines 
and proposed method using the RMSD (Eq. 15) of the heavy atoms between a reference conformation and a pre-
dicted conformation which is fast and simple to calculate.

Results
When evaluating each method, we first sample 100 conformations per molecule for each method in the test set. 
We can make several observations from Table 1. First, compared to other methods, our proposed CVGAE always 
succeeds at generating the specified number of conformations for any of the molecules in the test set. UFF and 
MMFF fail to generate conformations for some molecules, as they do not support handling every element but 
the pre-defined sets of elements. Since all other evaluated approaches were unsuccessful at generating at least one 
conformation for a very small number of test molecules, we report results for the molecules for which all evalu-
ated methods generated at least one conformation. We report the median of the mean of the RMSD, the median 
of the standard deviation of the RMSD and the median of the best (lowest) RMSD among all generated conforma-
tions for each test molecule. Across all three datasets, every evaluated method achieves roughly the same median 

Figure 1.  Dataset Characteristics: information regarding the atoms, bonds, molecular mass and symmetry of 
molecules in each dataset.
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of the mean RMSD. More importantly, the standard deviation of the RMSD achieved by CVGAE is significantly 
lower than that achieved by ETKDG + Force Field. After the initial generation stage, conformations are usually 
further evaluated and optimized by running the computationally expensive DFT optimization. Reducing the 
standard deviation can lower the number of conformations on which DFT optimization has to be run in order to 
achieve a valid conformation. On the other hand, the best RMSD achieved by ETKDG + UFF/MMFF methods is 
lower than that achieved by CVGAE. Using MMFF initialized by CVGAE (CVGAE + MMFF) instead of ETKDG 
(ETKDG + MMFF) improves the mean results on the QM9 dataset for CVGAE, and yields a lower standard 
deviation and similar best RMSD compared to ETKDG + MMFF. Unfortunately, CVGAE + MMFF worsens the 
results achieved by CVGAE alone on the COD and CSD datasets. We additionally evaluate single point DFT 
energy for the subset of 1000 molecules in the QM9 test set for all 100 generated conformations. We find that 
all three methods ETKDG + MMFF, CVGAE and CVGAE + MMFF achieve similar median energy values of 
−411.52, −410.87 and −411.50 respectively. The energy was calculated using GAMESS software29 with default 
parameters.

We also report the diversity of conformations generated by all evaluated methods in Table 2. Diversity is 
measured by calculating the mean and standard deviation of the pairwise RMSD between each pair of generated 
conformations per molecule. Overall, we can see that despite having a smaller median of standard deviation of 
RMSD between generated conformations and reference conformations, CVGAE does not collapse to generat-
ing extremely similar conformations. Although, CVGAE generates relatively less diverse samples compared to 
ETKDG + MMFF baseline on all datasets. The conformations of molecules generated by CVGAE + MMFF are 
less diverse on the QM9 dataset and more diverse on COD/CSD datasets compared to ETKDG + MMFF baseline.

Dataset

ETKDG + Force Field

CVGAE

CVGAE + Force Field

UFF MMFF MMFF

QM9

success per 
test set 96.440% 96.440% 100% 99.760%

success per 
molecule 98.725% 98.725% 100% 98.684%

mean 0.425 0.415 0.390 0.367

std. dev. 0.176 0.189 0.017 0.074

best 0.126 0.092 0.325 0.115

COD

success per 
test set 99.133% 99.133% 100% 95.367%

success per 
molecule 99.627% 99.627% 100% 99.071%

mean 1.389 1.358 1.331 1.656

std. dev. 0.407 0.415 0.099 0.425

best 0.429 0.393 1.206 0.635

CSD

success per 
test set 97.400% 97.400% 100% 99.467%

success per 
molecule 99.130% 99.130% 100% 97.967%

mean 1.537 1.488 1.506 1.833

std. dev. 0.421 0.418 0.115 0.434

best 0.508 0.478 1.343 0.784

Table 1.  Number of successfully processed molecules in the test set (success per test set 100), number of 
successfully generated conformations out of 100 (success per molecule ↑), median of mean RMSD (mean ↓), 
median of standard deviation of RMSD (std. dev. ↓) and median of best RMSD (best ↓) per molecule on QM9, 
COD and CSD datasets. ETKDG stands for Distance Geometry with experimental torsion-angle preferences. 
UFF and MMFF are force field methods and stand for Universal Force Field and Molecular Mechanics Force 
Field respectively. CVGAE stands for Conditional Variational Graph Autoencoder. CVGAE + Force Field 
represents running the MMFF force field optimization initialized by CVGAE predictions.

Dataset ETKDG + MMFF CVGAE CVGAE + MMFF

QM9
mean 0.400 0.106 0.238

std. dev. 0.254 0.061 0.209

COD
mean 1.148 0.239 1.619

std. dev. 0.699 0.181 0.537

CSD
mean 1.244 0.567 1.665

std. dev. 0.733 0.339 0.177

Table 2.  Conformation Diversity. Mean and std. dev. represents the corresponding mean and standard 
deviation of pairwise RMSD between at most 100 generated conformations per molecule.
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Figure 2.  Computational efficiency of various approaches on QM9 and COD datasets.

Figure 3.  This figure shows the means and standard deviations of the best and median RMSDs on the union 
of COD and CSD datasets as a function of number of heavy atoms. The molecules were grouped by number 
of heavy atoms, and the mean and standard deviation of the median and best RMSDs were calculated for each 
group to obtain these plots. Groups at the left hand side of the graph with less than 1% of the mean number of 
molecules per group were omitted.
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The computational efficiency of each of the evaluated approaches on the QM9 and COD datasets is shown 
in Fig. 2. For consistency, we generated one conformation for one molecule at a time using each of the evalu-
ated methods on an Intel(R) Xeon(R) E5-2650 v4 CPU. On the QM9 dataset, CVGAE is 2× more efficient than 
ETKDG + UFF/MMFF, while CVGAE + MMFF is slightly slower than ETKDG + UFF/MMFF. On the COD 
dataset, which contains a larger number of atoms per molecule, CVGAE is almost 10× as fast as ETKDG + UFF/
MMFF, while CVGAE + MMFF is about 2× as fast as ETKDG + UFF/MMFF. This shows that CVGAE scales 
much better than the baseline ETKDG + UFF/MMFF methods as the size of the molecule grows.

Figures 3 and 4 visualize the median, standard deviation and best RMSD results as a function of the number 
of heavy atoms in a molecule on the QM9 and COD/CSD datasets respectively. For all approaches, we can see that 
the best and median RMSD both increase with the number of heavy atoms. The standard deviation of the median 
RMSD for CVGAE and CVGAE + MMFF is lower than that for ETKDG + MMFF across molecules of almost 
all sizes. The standard deviation of the best RMSD is slightly higher for CVGAE and CVGAE + MMFF than for 
ETKDG + MMFF on molecules with at most 12 atoms, but is lower for larger molecules, particularly for CVGAE. 
Overall, CVGAE yields a lower or similar median RMSD compared to ETKDG + MMFF across molecules of all 

Figure 4.  This figure shows the means and standard deviations of the best and median RMSDs on the QM9 
dataset as a function of number of heavy atoms. The molecules were grouped by number of heavy atoms, and 
the mean and standard deviation of the median and best RMSDs were calculated for each group to obtain these 
plots. Groups at the left hand side of the graph with less than 1% of the mean number of molecules per group 
were omitted.
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sizes and a lower standard deviation, whereas ETKDG + MMFF provides a lower best RMSD particularly for 
larger molecules observed in the COD/CSD datasets.

Figures 5 and 6 qualitatively compare the results of CVGAE against MMFF and CVGAE + MMFF against 
CVGAE respectively. For each dataset, each figure shows the three molecules for which the first method in each 
figure outperforms the second method by the greatest amount, and the three molecules for which the second 
method outperforms the first by the greatest amount. The reference molecules are shown alongside the confor-
mations resulting from each of the methods for comparison.

Figure 5.  This figure shows the three molecules in each dataset for which the differences between the RMSDs 
of the neural network predictions and the baseline ETKDG + MMFF predictions were greatest in favour of the 
neural network predictions (max(RMSDCVGAE − RMSDETKDG + MMFF)), and the three for which this difference was 
greatest in favour of the ETKDG + MMFF predictions (max(RMSDETKDG + MMFF − RMSDCVGAE)). The top row of 
each subfigure contains the reference molecules, the middle row contains the neural network predictions and 
the bottom row contains the conformations generated by applying MMFF to the reference conformations.
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We can see some general trends from both these figures. The conformations produced by the neural net-
work are qualitatively much more similar to the reference in the case of the QM9 dataset than in the cases of 
the COD and CSD datasets. In the case of the COD and CSD datasets, the CVGAE predictions appear to be 
squashed or compressed in comparison to the reference molecules. For example, in almost every case we can see 
the absence of visible rings and the absence of bonds protruding from the lengthwise dimension of the molecule. 
At the same time we can see that on COD and CSD, CVGAE does better than ETKDG + MMFF in cases where 
ETKDG + MMFF creates loops and protrusions in the wrong places.

Figure 6.  This figure shows the three molecules in each dataset whose RMSD decreased the most and the three 
whose RMSD increased the most on applying MMFF to the conformations predicted by the neural network. The top 
row of each subfigure contains the reference molecules, the middle row contains the neural network predictions and 
the bottom row contains the conformations generated by applying MMFF to the neural network predictions.
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Analysis and Future Work
Overall we observe that CVGAE performs better than ETKDG + MMFF on QM9 than on COD and CSD. One 
possible reason that could explain this phenomenon is that COD and CSD contain much larger number of heavy 
atoms per molecule than QM9. In the absence of adequate number of neural message passing steps and adequate 
number of hidden units, the network may converge to outputting a conformation that contains atoms largely 
along a single non-linear dimension in order to minimize outliers, which would be heavily penalized by the sum 
of squared distances term in the loss function. A neural network architecture with a larger number of neural 
message passing steps and larger number of hidden units may be needed to generate less conservative conforma-
tions and achieve comparable results to those for QM9. This is a recommended direction of future work that will 
require more computational resources, including distributed training on multiple GPUs with sufficient memory.

Another concern for COD and CSD is the inconsistency in the environments from which the reference 
conformations are obtained. The inconsistency would not be a serious concern for small molecules, but it can 
result in performance degradation with larger molecules. Further investigation should be performed with the 
dataset of larger molecules and their reference conformations whose corresponding environments are identical. 
Additionally, conditioning deep generative graph neural networks on the environment could be explored in the 
future.

We also observe that our CVGAE method has a lower variance than the baseline methods, so a relatively small 
number of samples needs to be taken before getting a conformation with a good RMSD. In addition, CVGAE is 
faster than force field methods and uses less computational resources once trained. Using conformations gen-
erated by CVGAE as an initialization to force field method showed promising results on the QM9 dataset that 
allowed to combine the best of two distinct methods. However, applying a force field method on the conforma-
tions generated by CVGAE leads to an increase in RMSD on the COD and CSD datasets - future work could 
explore why this is the case. Another avenue of future inquiry could be the joint training of CVGAE and a force 
field method, which would involve implementing force field minimization using a deep learning framework, 
connecting this to CVGAE and backpropagating through this aggregate model. This joint training could further 
yield better results than either method alone.

Data availability
The source code and preprocessed datasets are available at https://github.com/nyu-dl/dl4chem-geometry.
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