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Innate immune responses through 
Toll-like receptor 3 require human-
antigen-R-mediated Atp6v0d2 
mRNA stabilization
Mohd Izwan Bin Zainol, Takumi Kawasaki*, Warunthorn Monwan, Motoya Murase, 
Takuya Sueyoshi & Taro Kawai*

Toll-like receptor 3 (TLR3) recognizes double-stranded RNA derived from virus and its synthetic 
analogue, polyinosinic–polycytidylic acid [poly(I:C)]. Upon poly(I:C) binding, TLR3 activates 
transcription factors to express inflammatory cytokines and type I interferon. TLR3 is located in the 
endosomes and its recognition of poly(I:C) and activation of downstream signaling is regulated by 
endosomal acidification. However, the mechanism of post-transcriptional regulation in TLR3-mediated 
innate responses remains unclear. Here, we focused on Human antigen R (HuR, also known as ELAVL1) 
that recognizes and binds to the 3′ untranslated regions (3′UTRs) of target mRNAs, thereby protecting 
them from mRNA degradation, and found that HuR-deficient murine macrophage cells showed 
significantly reduced Ifnb1 mRNA expression after poly(I:C) stimulation. HuR-deficient cells also showed 
a marked reduction in the expression of Atp6v0d2 mRNA, which encodes a subunit of vacuolar-type H+ 
ATPase (V-ATPase), and therefore reduced endosomal acidification. HuR associated with the 3′UTR 
of Atp6v0d2 mRNA and the stability of Atp6v0d2 mRNA was maintained by its association with HuR. 
Taken together, our results suggest that HuR stabilizes Atp6v0d2 mRNA, which is required for the TLR3-
mediated innate immune responses.

The role of the innate immune system is to detect the presence of infectious pathogens and initiate responses 
to protect the host from pathogen invasion. Pathogen sensing by the host is achieved by germline-encoded 
pattern-recognition receptors (PRRs), which recognize conserved microbial components known as 
‘pathogen-associated molecular patterns’ (PAMPs). Toll-like receptors (TLRs) are the first-investigated PRR fam-
ily, which includes more than 10 functional members in mice and humans, and each member detects specific 
PAMPs. The recognition of PAMPs by TLRs induces the production of proinflammatory cytokines and type I 
interferons (IFNs). Notably, TLRs, such as TLR3, TLR7, and TLR9, are primarily localized in the endosomes, 
and recognizes nucleic acids such as double stranded RNA (dsRNA), single stranded RNA and DNA, respec-
tively1. Infectious pathogens, such as viruses and bacteria, typically enter cells through endocytic or phagocytic 
pathways, and when they reach the endosomes, they are recognized by these TLRs. The endosomal localization 
of TLRs is essential for their activation by proteolysis and dimerization, which are controlled by several mecha-
nisms, including the endosomal pH and transportation by UNC93b1. TLR3, TLR7, and TLR9 are synthesized in 
the endoplasmic reticulum (ER) and transported to the endosome with the aid of UNC93b1. Their proteolytic 
cleavage by cathepsins or asparagine endopeptidase is essential for the ligand-binding efficiency of the endosomal 
TLRs. This proteolytic activation in the endosome is thought to prevent the association of endosomal TLRs with 
self nucleic acids in the extracellular fluid.

TLR3 specifically recognizes dsRNA derived from viruses, as well as polyinosinic–polycytidylic 
acid [poly(I:C)], a synthetic agonist that mimics viral dsRNA2,3. TLR3 recruits TIR-domain-containing 
adapter-inducing interferon-β (TRIF) as its downstream adaptor protein, which subsequently activates down-
stream signalling pathways via the phosphorylation and nuclear translocation of the transcription factors nuclear 
factor κB (NF-κB) and interferon regulatory factor 3 (IRF3), leading to the expression of proinflammatory 
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cytokines and type I IFNs, respectively4,5. Kinases such as IκB kinase (IKK)-related kinases, TBK1 and IKKε, are 
involved in activating IRF3 via the TRIF pathway. The primary outcomes of TLR3 activation are cytokine pro-
duction (specifically IFN-β) and dendritic cell (DC) maturation. As well as dsRNA, herpes simplex virus (HSV) is 
reported to activate TLR3. The mechanism by which HSV, a DNA virus, stimulates TLR3 is still unclear. However, 
during infection, HSV generates an intermediate dsRNA structure, which then acts as a ligand for TLR3 activa-
tion6,7. Unlike the cytoplasmic PRRs namely retinoic acid-inducible gene-I-like (RIG-I-like) receptors (RLRs) 
including RIG-I and MDA5 that mediate recognition of viral RNA in the cytoplasm, TLR3 recognizes viral RNA 
via membrane bound structures, such as the endosome. It has been suggested that exogenously added dsRNA is 
internalized before it encounters the endosomal TLR3 in the subcellular compartment of DCs, and then activates 
TLR3 to elicit an antiviral response8.

A critical feature of mRNA, which determines its cytosolic fate, is its instability under physiological con-
ditions, which can be manipulated through the formation of ribonucleoprotein (RNP) complexes. To form an 
RNP complex, RNA-binding proteins (RBPs) are required that specifically recognize either an RNA recognition 
motif (RRM), hnRNP K homology domain (KH), zinc fingers, or the DEAD-box helicase domain on the targeted 
RNA9. Human antigen R (HuR, also known as ‘ELAVL1’) is a ubiquitously expressed RBP. In mammals, there are 
four highly conserved members of this family: HuR (HuA/ELAVL1), HuB (ELAVL2), HuC (ELAVL3), and HuD 
(ELAVL4). HuR mainly localizes in the nucleus, but shuttles between the nucleus and cytoplasm, facilitated by its 
nucleocytoplasmic domains, under specific types of stimulation. The phosphorylation and methylation of HuR 
may play a role in initiating the HuR–mRNA interaction, triggering its translocation10. HuR primarily recognizes 
and binds to AU-rich elements (AREs). Most AREs consist of multiple copies of the specific pentameric sequence 
‘AUUUA’. It has been suggested that HuR initially binds its target mRNA inside the nucleus and remains in the 
RNP complex to be transported into the cytoplasm, providing the mRNA ongoing protection from the degrada-
tion machinery11.

A previous study suggested that 44% of target mRNAs screened contained an HuR-binding site in their introns 
and/or 3′UTRs, suggesting that HuR interacts with mRNA before the posttranscriptional regulatory process12. 
Its co-expression at the same tissue location as another RBP protein, ARE/poly-(U) binding degradation factor 1 
(AUF1), suggests that HuR competes with AUF1 for the same binding regions in specific mRNA targets13,14. The 
dynamic interaction between these two RBPs eventually determines the final cytoplasmic effect on the mRNA of 
interest. HuR overexpression increases the stability of ARE-containing mRNAs, possibly by inhibiting the mRNA 
decay pathway15–17. HuR, like other Hu proteins, is composed of three highly conserved RNA recognition motifs 
(RRMs). N-terminal RRM1 and RRM2 are essential for its recognition of and binding to the ARE in the target 
mRNA. The hinge region, separating RRM1 and RRM2 from RRM3 at the C-terminus, contains the HuR nucle-
ocytoplasmic shuttling (HNS) sequence, which is crucial for the trafficking of HuR between the nucleus and the 
cytoplasm18. Although earlier studies suggested that its function is negligible, RRM3 is required for the oligomer-
ization of HuR and promotes its interaction with its target mRNA by binding to its poly(A) tail19.

The innate immune response involves numerous transcriptional events, which lead to the production of 
various proinflammatory cytokines, IFNs, chemokines, and secretory proteins. Therefore, it requires a proper 
mRNA regulatory mechanism, including in the posttranscriptional phase. There have been few studies of how 
HuR post-transcriptionally regulates the innate immune response. Therefore, in this study, we investigated the 
contribution of HuR to the posttranscriptional regulation of genes involved in the innate immune system. In a 
previous study, we showed that HuR regulates the innate antiviral immune response by stabilizing the mRNA of 
polo-like kinase 2 (PLK2), which facilitates nuclear translocation of IRF3 induced by RLRs20. Here, we provide 
evidence suggesting that HuR is involved in the TLR3-mediated antiviral innate immune response by stabilizing 
the mRNA of Atp6v0d2, which encodes a subunit of vacuolar-type H+ adenosine triphosphatase (V-ATPase) 
required for the acidification of intracellular vesicles.

Results
Reduced poly(I:C)-induced Ifnb expression in HuR knockout (KO) cells.  We previously demon-
strated that an HuR KO murine macrophage cell line (RAW264.7 cells) showed reduced RLR-mediated nuclear 
translocation of IRF3 and reduced Ifnb1 expression20. Here, we examined whether HuR KO cells have impaired 
responses to the nucleic-acid-sensing TLRs such as TLR3, TLR7 and TLR9. Initially, the defective expression of 
HuR protein in two HuR KO cell lines (KO1, KO2) was confirmed with western blotting (WB) (Fig. 1a). We then 
stimulated wild-type (WT) and HuR KO1 cells with poly(I:C), R837, or ODN1668, a synthetic ligand for TLR3, 
TLR7, or TLR9, respectively, and found that Ifnb1 and Cxcl10 mRNA expression was significantly reduced after 
poly(I:C) stimulation in the HuR KO1 cells relative to that in the WT cells. However, it was not defective in the 
HuR KO1 cells after R837 or ODN1668 stimulation, as measured with reverse transcription (RT)–quantitative 
PCR (qPCR) (Fig. 1b). Then, we performed WB to examine the phosphorylation of IRF3 and IκBα, an inhibitor 
of NF-κB. The phosphorylation of both IRF3 and IκBα was lower after poly(I:C) stimulation in HuR KO1 cells 
than in WT cells (Fig. 1c). To examine the ability of exogenous HuR to restore the response of TLR3 in KO cells, 
we rescued the loss of HuR by stably expressing FLAG-tagged HuR in the HuR KO1 cells. FLAG–HuR expression 
was confirmed with WB (Fig. 1d). Exogenous FLAG–HuR restored the expression of Ifnb1 and Cxcl10 mRNA 
after poly(I:C) stimulation to a level similar to that in the WT cells (Fig. 1e). These results suggest that HuR is 
required for TLR3-mediated cytokine expression in RAW264.7 cells.

HuR knockdown reduces TLR3-mediated innate immune response.  To evaluate the effects of HuR 
protein in other cell types, we knocked down its expression in mouse embryonic fibroblasts (MEFs). MEF cells 
were treated with scrambled or HuR-directed small hairpin RNA (shRNA), and the reduced HuR expression was 
confirmed with WB using an anti-HuR antibody (Fig. 2a) and RT–qPCR (Fig. 2b). In the HuR knockdown cells, 
Ifnb1 and Cxcl10 mRNA expression after poly(I:C) stimulation was significantly reduced compared with that in 
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the control cells (Fig. 2c). We also knocked down HuR in RAW264.7 cells (Fig. 2d,e) and found that HuR knock-
down caused a significant reduction in Ifnb1 and Cxcl10 mRNA after poly(I:C) stimulation compared with that in 
cells transfected with the scrambled shRNA (Fig. 2f). These results suggest that HuR is also required for the innate 
immune response to poly(I:C) in MEF cells.

Atp6v0d2 mRNA is upregulated by poly(I:C) and regulated by HuR.  HuR associates with the 3′UTR 
of its target mRNAs to maintain their stability21, so HuR deficiency is expected to reduce the expression of the 
target mRNAs. We measured the expression levels of TLR3 signalling molecules, including Tlr3, Traf3 and Irf3 
(Fig. 3a) and Trif, Traf2/6 and Tbk120, but none of these was significantly reduced in the HuR KO cells, but we 
found that Atp6v0d2, which encodes one of the V-ATPase subunits, was reduced in HuR KO cells. We therefore 
measured the expression of Atp6v0d2 mRNA in WT and HuR KO RAW264.7 cells stimulated with or without 
poly(I:C), R837 (TLR7 agonist) and ODN1668 (TLR9 agonist). In WT cells, the expression of Atp6v0d2 mRNA 
increased after stimulation with poly(I:C). However, Atp6v0d2 mRNA expression in the steady state was lower in 
the HuR KO cells than in the WT cells, and its expression after poly(I:C) stimulation was markedly reduced in the 
HuR KO cells, whereas it was not increased by R837 and ODN1668 stimulation (Fig. 3b). In addition, the mRNA 
levels of other V-ATPases subunit genes, such as Atp6v1a and Atp6v1b2, showed no significant reduction in the 
HuR KO cells (Fig. 3c). The expression of Atp6v0d2 mRNA was also complemented by FLAG–HuR expression in 
HuR KO cells (Fig. 3d). Together, these results suggest that Atp6v0d2 mRNA expression is maintained by HuR.

V-ATPase maintains the acidification of the endosome by proton transport. Therefore, we evaluated the effect of 
HuR deficiency on the acidification of the endosome using acridine orange staining, a pH indicator that stains acidic 
structures with 620 nm fluorescence (red) and nucleic acids with 520 nm fluorescence (green) (Fig. 3e)22,23. Then, 
the number of red signal positive cells was counted and the percentages of red signal positive cells were plotted as 
bar graph (Fig. 3f). WT cells showed acidic endosomal organelles in red, whereas the cells treated with bafilomycin 
A1, a potent V-ATPase inhibitor, showed no acidic endosomes. HuR KO1 cells showed reduced red signal (620 nm 
fluorescence), suggesting that V-ATPase-mediated endosomal acidification was disrupted in the HuR KO cells.

Figure 1.  Defective response to TLR3 in HuR KO cells (a) Cell lysates from wild-type (WT), HuR KO1, and 
HuR KO2 cells were subjected to western blotting (WB) and probed with anti-HuR and anti-actin antibodies. 
(b) WT, HuR KO1, and HuR KO2 cells were stimulated with poly(I:C), R837, or ODN1668 for 8 h, and Ifnb1 
and Cxcl10 mRNA expression were measured with RT–qPCR. (c) WT and HuR KO1 cells were stimulated for 
the indicated times, and the cell lysates were subjected to WB and probed with an anti-pIRF3, anti-IRF3, anti-
pIkBα or anti-IkBα antibody. (d) HuR KO1 cells were stably transfected with FLAG–HuR-expressing plasmid 
with retroviral infection. Lysates from WT, HuR KO1, and HuR KO1 + FLAG–HuR cells were subjected to WB 
and probed with anti-FLAG, anti-HuR, or anti-actin antibody. (e) These cells were stimulated with poly(I:C) 
and the expression levels of Ifnb1 and Cxcl10 mRNAs were quantified with RT–qPCR. Data are the means ± SE 
of triplicate independent experiments. *p < 0.01, Student’s t test.
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ATP6V0D2 KO cells show a reduced TLR3 response.  We previously established ATP6V0D2 KO 
RAW264.7 cells and demonstrated that these cells have reduced Ifnb and Cxcl10 expression in response to ligands 
of TLR3, TLR7, and TLR9 than WT cells23. We exogenously expressed FLAG-tagged ATP6V0D2 in ATP6V0D2 
KO RAW264.7 cells and measured the gene expression in response to poly(I:C) stimulation. The expression of 
FLAG–ATP6V0D2 was confirmed with WB and RT–qPCR (Fig. 4a,b). After poly(I:C) stimulation, the Ifnb1 
and Cxcl10 mRNA levels were markedly reduced in the HuR KO cells, but were increased by FLAG–ATP6V0D2 
expression (Fig. 4c). In addition, phosphorylation of IRF3 and IκBα after poly(I:C) stimulation was reduced 
in ATP6V0D2 KO cells (Fig. 4d). These results suggest that ATP6V0D2 is required for TLR3-mediated innate 
immune response.

HuR associates with and stabilizes Atp6v0d2 mRNA.  To investigate whether HuR regulates the sta-
bility of Atp6v0d2 mRNA, we used an RNA immunoprecipitation (RIP) assay. In this assay, the whole-cell lysates 
from poly(I:C)-stimulated RAW264.7 cells were immunoprecipitated with beads conjugated with a control or 
anti-HuR antibody. The Atp6v0d2 mRNA in the precipitates was quantified with RT–qPCR. The amounts of 
Atp6v0d2 mRNA in the anti-HuR antibody immunoprecipitates were significantly higher than those in control 
antibody immunoprecipitates (Fig. 5a). Next, we investigated the stability of Atp6v0d2 mRNA in the presence or 
absence of HuR. Poly(I:C)-stimulated WT and HuR KO RAW264.7 cells were treated with a transcriptional inhib-
itor, actinomycin D (2.5 µg/ml), and the time-dependent changes in mRNA after the actinomycin D treatment 
were quantified with RT–qPCR (Fig. 5b). The half-life (t1/2) of Atp6v0d2 mRNA in the WT cells was 118.47 min, 
whereas t1/2 in the HuR KO cells was 72.58 min, indicating that Atp6v0d2 mRNA was destabilized in the HuR KO 
cells. We then examined whether the exogenous expression of HuR maintained the stability of Atp6v0d2 mRNA. 
HEK293 cells were transfected with or without an HuR-expressing plasmid and treated with actinomycin D. t1/2 of 
Atp6v0d2 mRNA in the HuR-overexpressing HEK293 cells was 4.73 h, whereas t1/2 in the mock-transfected cells 
was 2.72 h. Thus, within the context of a deficiency of HuR, exogenous HuR expression enhanced the stability 
of Atp6v0d2 mRNA. These results suggest that HuR associates with Atp6v0d2 mRNA and maintains its stability.

HuR interacts with 3′UTR of Atp6v0d2 mRNA via the HuR RRM domains.  To examine the inter-
action between HuR and Atp6v0d2 mRNA, we generated a reporter plasmid in which 3′UTR of Atp6v0d2 mRNA 
(nucleotides [nt] 1123–2503 of mAtp6v0d2 mRNA) was fused with the luciferase gene. HEK293T cells were 
transfected with this plasmid, together with empty or HuR-expressing plasmid. HuR overexpression increased the 
luciferase activity in a dose-dependent manner (Fig. 6a). Because HuR contains three RRMs, we constructed dele-
tion mutants lacking each motif and expression of each HuR deletion mutant were confirmed by WB (Fig. 6b). 
Then, we evaluated their effects on the recognition of the 3′UTR Atp6v0d2 mRNA by measuring the luciferase 
activity and we found that these mutants failed to increase the luciferase activity, suggesting that all three individ-
ual RRMs are required to recognize the 3′UTR of Atp6v0d2 mRNA (Fig. 6c). HuR is reported to recognize AREs 

Figure 2.  Reduced response to TLR3 in HuR knockdown cells. MEF cells (a–c) or RAW264.7 cells (d–f) were 
infected with a retrovirus expressing scrambled or HuR-directed shRNA and were selected with puromycin. 
Expression of HuR in MEF cells was confirmed with western blotting (WB) (a) and RT–qPCR (b). (c) MEF cells 
were stimulated with poly(I:C) and the expression levels of Ifnb1 and Cxcl10 were quantified with RT–qPCR. 
Expression of HuR in RAW264.7 cells was confirmed with WB (d) and RT–qPCR (e). (f) RAW264.7 cells were 
stimulated with poly(I:C) and the expression levels of Ifnb1 and Cxcl10 were quantified with RT–qPCR. Data are 
the means ± SE of triplicate independent experiments. *p < 0.01, Student’s t test.
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in mRNAs, and the 3′UTR of Atp6v0d2 mRNA contains three AREs. Therefore, we constructed a series of ARE 
deletion mutants in the 3′UTR of the Atp6v0d2 mRNA expression plasmid, which lacked the sequence at nt 1867–
1921 (Δmt1), nt 2101–2155 (Δmt2), or nt 2206–2270 (Δmt3) (Fig. 6d). HEK293T cells were transfected individ-
ually with each of these plasmids, with or without the HuR-expressing plasmid, and the luciferase activities were 
measured. Luciferase expression was enhanced in the cells transfected with the full-length 3′UTR of Atp6v0d2 
(FL) reporter plasmid together with the HuR-expressing plasmid, whereas it was not enhanced in the Δmt1- or 
Δmt2-transfected cells (Fig. 6e). The Δmt3-transfected cells showed no effect on the luciferase activity. These 
results suggest that the PRMs in HuR associate with the sequences at nt 1867–1921 and 2101–2155 in Atp6v0d2 
mRNA and these direct interactions are both required for the HuR-mediated stabilization of Atp6v0d2 mRNA.

ATP6V0D2 expression in HuR KO cells partly restores the responses to TLR3.  We next inves-
tigated whether the reduced TLR3 responses in HuR KO cells was attributable to Atp6v0d2 mRNA instability. 
To test this, we retrovirally expressed FLAG-tagged ATP6V0D2 in HuR KO RAW264.7 cells. The expression of 
FLAG–ATP6V0D2 was confirmed with WB using an anti-FLAG antibody and with RT–qPCR (Fig. 7a,b). In 
addition, we found that reduced endosomal acidification by HuR-deficiency was partially restored by exogenous 
Atp6v0d2 expression as determined by microscopy analysis (Fig. 7c). We then stimulated WT, HuR KO, and 
FLAG–ATP6V0D2-expressing HuR KO cells with poly(I:C) and measured the mRNA levels of Ifnb1 and Cxcl10. 
Ifnb1 and Cxcl10 expression was significantly reduced in the HuR KO cells compared with that in the WT cells, 
but it was significantly upregulated in the FLAG–ATP6V0D2-expressing HuR KO cells compared with the HuR 
KO cells (Fig. 7c). Notably, the restoration of Ifnb1 and Cxcl10 expression in the FLAG–ATP6V0D2-expressing 
HuR KO cells was only partial compared with that in the WT cells (Fig. 7d). These results suggest that HuR at least 
partly regulates the TLR3-mediated innate immune responses by stabilizing the Atp6v0d2 mRNA.

Discussion
Several lines of evidence have suggested that the posttranscriptional regulation of mRNA plays a vital role in the 
gene expression involved in the immune responses. Shaw and Kamen demonstrated that the posttranscriptional 
degradation of granulocyte–macrophage colony-stimulating factor (Csf2) mRNA is mediated through its AU 
sequences15. Since then, the importance of AREs in the 3′UTR regions of the target mRNAs involved in innate 

Figure 3.  HuR regulates Atp6v0d2 mRNA expression and endosomal acidification. (a) Expression for Tlr3, 
Traf3 and Irf3 in WT and HuR KO1 were measured by RT-qPCR (b,c) HuR KO1 and KO2 cells were stimulated 
with poly(I:C), R837 or ODN1668 and the levels of Atp6v0d2 (b), Atp6v1a, and Atp6v1b2 (c) were quantified 
with RT–qPCR. (d) HuR KO1 cells stably expressed FLAG–HuR after retroviral infection. Wild-type (WT), 
HuR KO1, and HuR KO1 + FLAG–HuR cells were stimulated with poly(I:C) and Atp6v0d2 mRNA expression 
was measured with RT–qPCR. (e) Endosomal acidification was visualized with acridine orange staining. Red 
dots indicate acidified endosomes, highlighted with white arrowhead. Top panel: WT cells; middle panel: WT 
cells treated with bafilomycin A1; lower panel: HuR KO1 cells. Scale bar, 10 µm. (f) Number of red positive cells 
was counted and the percentage of positive cells was plotted as bar graph. Data are the means ± SE of triplicate 
independent experiments. *p < 0.01, Student’s t test.
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immune regulation has been reported16,17,24. In-depth investigations of how RBPs, such as AUF1, tristetrapro-
lin (TTP), and T-cell-restricted intracellular antigen 1 (TIA1), regulate cytokine expression and the immune 
responses have emphasized their importance in mRNA regulation14,25–30. HuR is one of the key players in this 
regulation, binding and stabilizing target mRNAs to allow persistent protein synthesis. It has been suggested that 
HuR regulates Il4 and Ifnb1 mRNAs31–33. We previously demonstrated that HuR regulates the RLR-mediated anti-
viral innate immune response by increasing the stability of Plk2 mRNA, which facilitates the nuclear translocation 
of IRF320. Here, we extended this observation by evaluating the effects of HuR deficiency on mRNA expression 
after stimulation with an TLR3 agonist, and found significant reductions in Ifnb1 and Cxcl10 mRNA expression 
and in IRF3 phosphorylation in poly(I:C)-stimulated HuR KO cells (Fig. 1). This was further supported by an 
HuR-shRNA-mediated knockdown analysis in which MEF and RAW264.7 cells showed reduced Ifnb1 and Cxcl10 
mRNA expression after poly(I:C) stimulation (Fig. 2). Therefore, HuR regulates the antiviral innate immune 
response by targeting the TLR3 signalling pathway.

Activated TLR3 is known to localize in the endosomal compartment. It is transported to the endosome from 
the ER via the Golgi apparatus in the presence of UNC93B1 protein34,35. A number of studies have demonstrated 
that TLR3-mediated responses occur under acidic conditions, which are blocked by ATPase inhibitors, such as 
bafilomycin A136,37. In general, ligand recognition by endosomal TLRs, such as TLR3, TLR7, and TLR9, and the 
subsequent activation of downstream signalling are affected by the endolysosomal pH36,38,39. We postulated that 
the downregulation of the TLR3 responses by endosomal neutralization was attributable to the impairment of 
TLR3 cleavage or its trafficking to the endosome. A study by Qi et al. (2012) demonstrated that proteolytic cleav-
age is not essential for TLR3 signalling in response to poly(I:C)35. Therefore, we reasoned that TLR3 trafficking 
from the ER to the endosome might be disturbed by endosomal neutralization. Because UNC93B1 is crucial for 
the cytosolic trafficking of TLR3, its activity in TLR3 signalling at different pHs requires further confirmation. In 
addition, we found that Atp6v0d2 mRNA expression was upregulated following TLR3 stimulation whereas it was 
unchanged following TLR7/9 stimulation (Fig. 3b). These results suggest that poly(I:C)-mediated upregulation 
of Atp6v0d2 mRNA may facilitate TLR3-mediated signaling by increasing endosomal acidification in a positive 
feedback fashion whereas this increment is not induced by TLR7 and TLR9. Thus, different expression profile of 

Figure 4.  Reduced TLR3 response in ATP6V0D2 KO cells. ATP6V0D2 KO cells exogenously expressed 
FLAG–ATP6V0D2 after retroviral infection. After puromycin selection, Atp6v0d2 expression was detected with 
western blotting (WB) (a) and RT–qPCR (b). (c) Following stimulation with poly(I:C) for 8 h, Ifnb1 and Cxcl10 
expression was quantified with RT–qPCR. (d) WT and ATP6V0D2 KO cells were stimulated for the indicated 
times, and the cell lysates were subjected to WB with an anti-pIRF3, anti-IRF3, anti-pIkBα or anti-IkBα 
antibody. Data are the means ± SE of triplicate independent experiments. *p < 0.01, Student’s t test.
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Atp6v0d2 mRNA during TLR3 and TLR7/9 signaling may contribute to different responses of HuR KO cells to 
these TLRs.

Previously, we have shown that ATP6V0D2, a V-ATPase subunit, is required for proper cytokine expression 
after the stimulation of the endosomal TLRs by their ligands, including TLR3, TLR7, and TLR923. A deficiency 
of ATP6V0D2 caused the pH of the endocytic compartment of the cell to increase, thus inhibiting the activation 
of the endosomal TLRs. Our RIP assay demonstrated that Atp6v0d2 mRNA co-precipitated with an anti-HuR 
antibody (Fig. 5), suggesting that Atp6v0d2 mRNA is a target for HuR binding. Because limited data are available 
on the subunits of ATP6V0D2 and its transcriptomic processing, we hypothesized that upon poly(I:C) treatment, 
Atp6v0d2 mRNA becomes a critical target of HuR (among other transcripts) because it contains multiple AREs. 

Figure 5.  HuR associates with and stabilizes Atp6v0d2 mRNA. (a) The whole-cell lysates of RAW264.7 cells 
treated with or without poly(I:C) stimulation for 8 h were immunoprecipitated with control-IgG- or anti-HuR-
antibody-conjugated beads. The precipitated mRNA was isolated and the bead-bound Atp6v0d2 mRNA was 
quantified with RT–qPCR. (b) Wild-type (WT) and HuR KO RAW264.7 cells were stimulated with poly(I:C) 
and treated with actinomycin D (2.5 µg/ml) for the indicated times. The amount of Atp6v0d2 mRNA was 
quantified with RT–qPCR and normalized to the level of Atp6v0d2 mRNA at time zero. (c) HEK293T cells 
were transiently transfected with empty or HuR-expressing plasmid and then stimulated for 8 h with poly(I:C). 
After the medium was changed, the cells were treated with actinomycin D (5 µg/ml) for the indicated times. 
The amount of Atp6v0d2 mRNA was quantified with RT–qPCR and normalized to the amount of Atp6v0d2 
mRNA at time zero. Data are the means ± SE of triplicate independent experiments. *p < 0.01, **p < 0.05, 
Student’s t test.

Figure 6.  HuR interacts with 3′UTR of Atp6v0d2 mRNA via RRMs. (a) HEK293T cells exogenously expressing 
HuR were transfected with plasmid containing the luciferase-conjugated 3′UTR of Atp6v0d2 mRNA and the 
luciferase activity was measured. (b) Schematic structure and expression of the full-length HuR cDNA sequence 
or its domain deletion mutants (ΔRRM1, ΔRRM2, and ΔRRM3). (c) HEK293T cells were transfected with 
plasmid containing the luciferase-conjugated 3′UTR of Atp6v0d2 mRNA and each ΔRRM domain mutant 
of HuR. (d) Schematic structure of the pGL3 vector containing the full-length 3′UTR of Atp6v0d2 (FL) or its 
deletion mutants (Δmt1, Δmt2, or Δmt3). (e) HEK293T cells were transfected with plasmid containing one of 
the luciferase-conjugated mutants of the Atp6v0d2 3′UTR, with or without HuR, and the luciferase activity was 
measured. Data are the means ± SE of three independent experiments. *p < 0.01, Student’s t test.

https://doi.org/10.1038/s41598-019-56914-w


8Scientific Reports |         (2019) 9:20406  | https://doi.org/10.1038/s41598-019-56914-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

These data establish that the ARE-containing Atp6v0d2 mRNA is a candidate HuR target, whereas the exclusion 
of the other subunits warrants further investigation.

Our results suggest that HuR facilitates the TLR3-mediated innate immune response by stabilizing Atp6v0d2 
mRNA. The expression of FLAG–ATP6V0D2 in HuR KO cells resulted in the partial restoration of Ifnb and 
Cxcl10 expression after poly(I:C) stimulation, supporting the notion that the defective responses of HuR KO 
cells to poly(I:C) are attributable to the increased degradation of Atp6v0d2 mRNA. However, our previous 
study showed that HuR KO cells show reduced Plk2 mRNA expression, which plays a role in potentiating IRF3 
nuclear translocation during RLR signaling20. Because IRF3 is also involved in TLR3 signalling, it is plausible 
that TLR3-medited cytokine expression is only partially restored in FLAG–ATP6V0D2-expressing HuR KO 
because PLK2 expression is also reduced in these cells. Notably, HuR deficiency did not influence the induction 
of cytokine expression by TLR7 and TLR9 (Fig. 1b). These TLRs do not activate IRF3, but instead activate IRF7, 
which induces the expression of type I IFN in plasmacytoid DCs, which are known to produce vast amounts of 
type I IFN in response to the binding of TLR7 and TLR9. Therefore, HuR may not be essential for the activation of 
IRF7 during TLR7 and TLR9 signalling. However, unlike HuR KO cells, which show the normal induction of Ifnb 
and Cxcl10 mRNAs by TLR7 and TLR9 ligands, ATP6V0D2 KO cells show defective expression of these genes23. 
Therefore, it is possible that although ATP6V0D2 expression is reduced in HuR KO cells, the acidification of the 
intracellular vesicles is only partially affected and insufficient to impede the robust functions of TLR7 and TLR9, 
such as their trafficking to endosome or proteolytic cleavage. Thus, HuR may regulate TLR3-mediated antiviral 
innate immunity by targeting both Atp6v0d2 and Plk2 mRNAs.

The posttranscriptional regulation of the TLR-mediated immune response is essential to the generation of 
a proper signalling cascade after stimulation by specific ligands. In the host body, particular caution is required 
in activating nucleic-acid-sensing TLRs, such as TLR3, TLR7, and TLR9, to avoid self-recognition and thus 
the induction of autoimmunity. This may be one of the reasons why all nucleic-acid sensors localize to an 

Figure 7.  Exogenous expression of ATP6V0D2 in HuR KO cells restored their responses to TLR3. (a,b)  
FLAG–ATP6V0D2 was expressed in HuR KO cells after retroviral infection and its expression was confirmed 
with western blotting (WB) using the indicated antibodies (a) and with RT–qPCR (b). (c) Endosomal 
acidification was visualized with acridine orange staining. Red dots indicate acidified endosomes, highlighted 
with white arrowhead. Left panel: WT cells; middle panel: WT cells treated with Bafilomycin A1; right panel: 
HuR KO1 + FLAG–ATP6V0D2 cells. Scale bar, 10 µm. Number of red positive cells was counted and the 
percentage of positive cells was plotted as bar graph. (d) After poly(I:C) stimulation for 8 h, the expression levels 
of Ifnb1 and Cxcl10 mRNAs in the wild-type (WT), HuR KO1, and HuR KO1 + FLAG–ATP6V0D2 cells were 
measured with RT–qPCR. Data are representative of three independent experiments (means ± SE). *p < 0.01, 
**p < 0.05, Student’s t test.
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endocytic compartment, such as the endolysosome, to allow their activities to be monitored. A critical aspect 
of the regulation of nucleic-acid-recognizing TLRs is their trafficking and targeting to endosomes38,40. HuR, as a 
post-transcriptional regulator of mRNAs, seems to play some role in this regulatory mechanism. Our data sug-
gest that HuR contributes to the endocytic regulatory machinery by targeting the ATPase subunit involved in the 
acidification process, which in turn governs the responsiveness of nucleic-acid-sensing TLRs, particularly TLR3. 
This alternative route of TLR3 activity demonstrates the complex regulatory mechanisms of TLR3, which can be 
manipulated to formulate new antiviral drugs for optimal effects.

Materials and Methods
Cells and reagents.  HEK293, HEK293T, RAW264.7, and MEF cells were cultured in Dulbecco’s modified 
Eagle’s medium (Nakalai Tesque) supplemented with 10% heat-inactivated foetal bovine serum in a 5% CO2 
incubator. Poly(I:C) was purchased from InvivoGen. Actinomycin D was obtained from Sigma-Aldrich. Acridine 
orange and bafilomycin A1 were purchased from Waldeck. Mouse anti-HuR monoclonal antibody (mAb; 3A2; 
Santa Cruz Biotechnology), rabbit anti-IRF3 monoclonal antibody (D83B9; Cell Signaling Technology), rab-
bit anti-phospho-IRF3 (Ser396) monoclonal antibody (4DaG; Cell Signaling Technology), rabbit anti-NF-κB 
p65 monoclonal antibody (D14E12; Cell Signaling Technology), rabbit anti-IRF3 polyclonal antibody (FL-425; 
Santa Cruz Biotechnology), rabbit anti-phospho-IκBα (Ser32) monoclonal antibody (14D4; Cell Signaling 
Technology), mouse anti-IκBα monoclonal antibody (L35A5; Cell Signaling Technology), goat anti-actin pol-
yclonal antibody (I-19; Santa Cruz Biotechnology), and mouse anti-FLAG M2 monoclonal antibody (Sigma-
Aldrich) were purchased as commercially available products.

Plasmid construction.  The full-length mouse Elavl1 (HuR) and Atp6v0d2 coding sequences (CDSs) were 
amplified with PCR from murine brain and lung cDNAs, respectively, and inserted into the pFLAG-CMV-2 
expression vector from Sigma-Aldrich. The series of expression plasmids encoding HuR mutants were gener-
ated with PCR from the original full-length HuR-expressing pFLAG-CMV-2 vector. The pGL3-Promoter vector 
(pGL3) (Promega) containing the mouse Atp6v0d2 3′UTR (pGL3–Atp6v0d2-3′UTR) was constructed with the 
PCR amplification of the mouse Atp6v0d2 3′UTR sequence from murine thymus cDNA, which was inserted into 
the Xbal-digested pGL3 vector. Plasmids containing deletion mutants of pGL3–Atp6v0d2-3′UTR were gener-
ated with site-directed mutagenesis. The reporter plasmids for IFN-β and NF-κB were constructed as described 
previously20,41.

Generation of HuR and ATP6V0D2 KO cells.  HuR and ATP6V0D2 KO cells were generated as 
described previously20,23. Briefly, single guide RNA (gRNA) targeting murine Elavl1 (HuR) exon 4 (gRNA#1: 
5′-GAAGACATGTTTTCTCGGTT-3′; gRNA#2: 5′-GACCATGACACAGAAGGATG-3′) and mouse 
Atp6v0d2 exon 1 (gRNA#1: 5′-GAAAATTCATCTCCAGACCA-3′) were inserted into pX330-U6-Chimeric_
BB-CBh-hSpCas9 (Addgene). Partial fractions of both the murine Elavl1(HuR) and Atp6v0d2 CDSs, including 
the gRNA-targeted site, were inserted into pCAG-EGxxFP (Addgene). RAW264.7 cells were transfected with the 
plasmids with electroporation, and the enhanced green fluorescent protein (EGFP)-positive cells were sorted with 
a FACSAria™ cell sorter (BD Biosciences) and seeded onto 96-well plates. The cells were allowed to grow for 2 
weeks and the DNA was isolated. The frame-shift mutations were examined with a sequence analysis and protein 
expression was confirmed with WB.

Knockdown assay.  shRNAs were introduced into the BglII and HindIII sites of the retroviral vector pSU-
PER.retro.puro (OligoEngine), as previously described20. The oligonucleotide sequences used were: scrambled 
shRNA, 5′-CCTAAGGCTATGAAGAGATACTTCAAGAGAGTATCTCTTCATAGCCTTATTTTT-3′; and 
HuR shRNA, 5′-GAGAACGAATTTAATTGTCAACTTTCAAGAGAAGTTGACAATTAAATTCGTTCTC-3′. 
Platinum-E cells were transfected with the shRNA-carrying vectors with Lipofectamine 2000 (Life Technologies) 
and Opti-MEM medium (Life Technologies) in a ratio of 1:1 (μg/μl). The supernatant was filtered through a 0.22 
μm filter and incubated with RAW264.7 and MEF cell. The cells were selected with puromycin (2 μg/ml) for 48 h 
and the surviving cells were used for the subsequent experiments.

Western blotting (WB).  RAW246.7 and KO cells were seeded in six-well plates and stimulated with 50 μg/
ml poly(I:C) for 8 h. The cells were lysed with RIPA buffer (50 mM Tris-HCl [pH 8], 150 mM NaCl, 0.1% SDS, 
0.5% sodium deoxycholate, 1% Nonidet P-40). The whole-cell lysates were collected after centrifugation at 800 × g 
for 10 min at 4 °C, subjected to SDS-PAGE, and transferred to Immun Blot PVDF Membrane (Bio-Rad). The 
membrane was probed with the indicated primary antibodies, and then with horseradish-peroxidase-conjugated 
secondary antibody directed against mouse, rabbit, or goat IgG (Sigma-Aldrich). After incubation with Western 
Lightning Plus-ECL (Perkin Elmer), the membrane was exposed to ImageQuant LAS 4000 imaging system 
(Fujitsu Life Sciences). Image files were processed by ImageJ software 1.8.0_172 (NIH). All full-length wb are 
provided in Supplementary Information (Supplementary Fig. 1).

Acridine orange staining.  RAW264.7 cells were seeded in 35 mm glass-bottom culture dishes (MatTek). 
The cells were treated with 10 nM bafilomycin A1 for 1 h and then with freshly prepared 5 μg/ml acridine orange 
solution for 5 min. The cells were excited at 488 nm and emission was detected at 520 nm (green; 520 nm) as the 
internal control marker and at 620 nm to detect endosomal acidification (red; 620 nm) with confocal microscopy 
LSM 700 (Carl Zeiss). Images were collected within 1 h of the acridine orange treatment and were processed by 
Zen (Carl Zeiss) and ImageJ (NIH) software.
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RNA isolation and RT–qPCR.  Cells were seeded in 24-well plates and stimulated with 50 μg/ml poly(I:C) 
for 8 h. The cells were washed with phosphate-buffered saline (PBS) and their total RNA was extracted with 
TRIzol Reagent (Invitrogen). To assess mRNA decay, 2.5 μg/ml actinomycin D was used to terminate transcrip-
tion before RNA extraction. The total RNA was reverse transcribed to cDNA with ReverTra Ace® (Toyobo), 
according to the manufacturer’s protocol. Power SYBR Green PCR Master Mix (Applied Biosystems) was used for 
qPCR and the measurements were made with the LightCycler 96 System (Roche Diagnostics). RT-qPCR primer 
information was shown in Supplementary Table 1. Expressions for target genes were normalized by Gapdh as 
internal control.

Luciferase reporter assay.  HEK293T cells were seeded in 24-well plates and transiently transfected with 
100 ng of reporter plasmid containing the Atp6v0d2 3′UTR, or one of the constructed Atp6v0d2 3′UTR dele-
tion mutants, together with 500 ng of HuR expression plasmid or empty plasmid (mock) and 10 ng of pRL-TK 
(Promega) as the internal control. Alternatively, the cells were co-transfected with one of the HuR domain dele-
tion mutants and the full-length Atp6v0d2 3′UTR, together with the internal control plasmid. The medium 
was replaced after 6 h. At 24 h post-transfection, the luciferase activity was measured with a TriStar2 LB 942 
Multidetection Microplate Reader (Berthold) using the Dual-Glo Luciferase System (Promega). The targeted gene 
promoter activity was normalized to the Renilla luciferase signal.

RNA immunoprecipitation.  Antibody-conjugated protein A–Sepharose beads (GE Healthcare) were pre-
pared by washing them in NT2 buffer (50 mM Tris-HCl [pH 7.4], 1 mM MgCl2, 150 mM NaCl, 0.05% Nonidet 
P-40). The beads were incubated with NT2 buffer supplemented with 5% bovine serum albumin at 4 °C for 
2 h. After the bead slurry was washed with NT2 buffer, it was divided into two parts and incubated overnight 
with either the control IgG or anti-HuR antibody at 4 °C with constant agitation. RAW264.7 cells were plated in 
six-well plates and stimulated with 50 μg/ml LMW poly(I:C). After stimulation for 8 h, the cells were washed with 
PBS and suspended in polysome lysis buffer (100 mM KCl, 5 mM MgCl2, 0.5% Nonidet P-40, 10 mM HEPES [pH 
7], 1 mM DTT, RNaseOut [Invitrogen], protease inhibitor cocktail). The cells were collected and lysed with a 26 G 
syringe needle (Terumo). After centrifugation at 15,300 × g for 15 min at 4 °C, the supernatants were incubated 
with antibody-conjugated beads for 2 h at room temperature with constant agitation. The antibody-conjugated 
beads were washed five times with NT2 buffer and treated with TRIzol Reagent to extract the RNA. RT–qPCR was 
used to measure the expression of Atp6v0d2 mRNA.
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