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Summary

Due to incomplete reference transcriptomes, incomplete sequencing bias models, or other 

modeling defects, algorithms to infer isoform expression from RNA-seq sometimes do not 

accurately model expression. We present a computational method to detect instances where a 

quantification algorithm could not completely explain the input reads. Our approach identifies 

regions where the read coverage significantly deviates from expectation. We call these regions 

“expression anomalies”. We further present a method to attribute their cause to either the 

incompleteness of the reference transcriptome or algorithmic mistakes. We detect anomalies for 30 

GEUVADIS and 16 Human Body Map samples. By correcting anomalies when possible, we 

reduce the number of falsely predicted instances of differential expression. Anomalies that cannot 

be corrected are suspected to indicate the existence of isoforms unannotated by the reference. We 

detected 88 common anomalies of this type and find that they tend to have a lower-than-expected 

coverage towards their 3′ ends.
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Introduction

While modern RNA-seq quantification algorithms (e.g. Li et al., 2009a, Jiang and Wong, 

2009, Li and Dewey, 2011, LeGault and Dewey, 2013, Hensman et al., 2015, Bray et al., 

2016, Patro et al., 2017) often achieve high accuracy, there remain situations where they give 

erroneous quantifications. For example, most quantifiers rely on a predetermined set of 

possible transcripts; missing or incorrect transcripts may cause incorrect quantifications. 

Read mapping mistakes and unexpected sequencing artifacts also lead to misquantifications. 

Incomplete sequencing bias models can mislead the inferred probability that the reads are 

generated by each transcript. Quantification algorithms themselves could introduce errors 

since their objectives cannot typically be guaranteed to be solved optimally in a practical 

amount of time.

When interpreting an expression experiment, particularly when a few specific genes are of 

interest, the possibility of misquantification must be taken into account before inferences are 

made from quantification estimations or differential gene expression predictions derived 

from those quantifications. Expression quantification is the basis for various analyses, such 

as differential gene expression (Costa-Silva et al., 2017), co-expression inference (van Dam 

et al., 2018), disease diagnosis, and various computational prediction tasks (e.g., Hoadley et 

al., 2014, Weinstein et al., 2013, Morán et al., 2012). Statistical techniques such as 

bootstrapping (Al Seesi et al., 2014) and Gibbs sampling (Li et al., 2009a, Turro et al., 2011, 

Glaus et al., 2012) can associate confidence intervals to expression estimates, but these 

techniques provide little insight into the causes of low confidence or misquantification and 

detect only a subset of misquantifications.

We introduce a method to identify potential misquantifications by designing an anomaly 

detection approach. This approach automatically identifies regions of known transcripts 

where the observed fragment coverage pattern significantly disagrees with what the coverage 

is expected to be. These regions indicate that something has gone “wrong” with the 

quantification for the transcripts containing the anomaly: perhaps a missing transcript, 

missing features in the probabilistic model, an algorithmic failure to optimize the likelihood, 

or some other unknown problem.

One advantage of this model-based anomaly detection approach is that it does not require 

any known ground truth to discover potential errors. The expected and observed coverages 

are intermediate values in the quantifier. The expected coverage is derived from a bias 

correction model that is used by modern RNA-seq quantification algorithms to model 

fragment generation biases with varied GC content, sequence, and position in the transcript 

(Love et al., 2016, Patro et al., 2017). In order to take into account other aspects of 

sequencing (such as read mapping quality, fragment length distribution), quantifiers 

sometimes cannot assign fragment in proportion to the expected coverage. By comparing the 
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expected and observed coverages, anomaly detection identifies cases where it is not possible 

to satisfy the assumed model of fragment generation.

Another advantage of our proposed anomaly detection method is that it can provide more 

insight into what is causing the misquantification by identifying specific regions of specific 

transcripts for which the assumed theoretical model of read coverage does not match what is 

observed. These anomaly patterns can then be used to derive hypotheses about the 

underlying cause. For example, systematic lower-than-expected expression across an exon 

may indicate the existence of an unknown isoform that omits that exon. In this way, 

anomalies are more informative and suggestive of the cause of misquantifications than 

confidence intervals.

A third advantage of the approach is that the anomalies can be used to design better 

quantification algorithms. When there is a good reason to believe the transcriptome 

annotations and sequencing are of high quality, analyzing the cause of anomalies could 

reveal aspects of the sequencing experiment that may improve the quantification model, and 

may therefore be used to inspire improvements to, e.g., bias correction models or 

optimization approaches.

Anomaly detection has been applied to other areas in genomics where it has proved its 

usefulness. In genome assembly, anomaly detection has been used to detect low-confidence 

assembled sequences. Genome assembly algorithms seek a set of sequences that can 

concordantly generate the WGS reads and can be assumed to have near uniform coverage. 

The assembled sequences that do not fit this assumption can be hypothesized to contain 

errors and have low reliability (Phillippy et al., 2008). Similarly, anomaly detection in 

transcriptome assembly identifies unreliable transcript sequences (Smith-Unna et al., 2016). 

Low-confidence assembly detection has been used to analyze non-model organisms and 

incorporated into analysis workflows (Zimin et al., 2009, Cabau et al., 2017, Geniza and 

Jaiswal, 2017).

In RNA-seq expression quantification, some research has been conducted on identifying 

anomalous predictions. For example, Robert and Watson (2015) identify uncertainties in 

gene-level quantification that are due to gene sequence similarity. However, uncertainties do 

not necessarily indicate anomalous quantification. In addition, external information about 

sequence similarity provides limited insight on how to improve the quantification models. 

Soneson et al. (2019) use a compatibility score between observed and predicted junction 

coverage to indicate genes with inconsistent splicing junction supports. However, read 

coverage inconsistency does not only occur at splicing junctions. In addition, the cause of 

inconsistency is not categorized in their work.

In this work, we detect quantification anomalies using the disagreement between the 

modeled expected coverage and the observed fragment coverage distribution that is obtained 

after the quantifier has allocated fragments to transcripts. We do this by introducing an 

anomaly score to quantify regions of high disagreement. Specifically, we identify the 

contiguous regions that have the largest difference between these two distributions. This 

score has the natural biological meaning as the largest over- or under-expression (compared 
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with what is expected) of any region within the transcript. We further begin to categorize the 

anomalies by their causes: adjustable anomalies are the ones possibly caused by 

quantification algorithm mistakes, and unadjustable anomalies are those possibly caused by 

transcripts missing from the reference transcriptome. This categorization is done by 

reassigning fragments using a linear programming (LP) procedure in an attempt to reduce 

the coverage inconsistency and correct the anomalies. Those anomalies that can be corrected 

this way are candidates for having been caused by algorithmic errors. The fragment 

reassignment procedure also generates an adjusted abundance estimation for the adjustable 

anomalies.

Because it includes a rich bias model, we focus on Salmon (Patro et al., 2017) as the base 

quantifier on which to build and test anomaly detection, and we term our implementation 

Salmon Anomaly Detection (SAD). However, the idea of anomaly detection can be applied 

to any method that generates an internal model of expected sequence coverage. To show this, 

we apply anomaly detection using another quantifier with a rich bias model, RSEM (Li and 

Dewey, 2011), and compare the detected anomalies with SAD.

Applied to 30 GEUVADIS (Lappalainen et al., 2013) samples and 16 Human Body Map 

(The Illumina Body Map 2.0 data, 2011) samples, SAD identifies both adjustable and 

unadjustable anomalies. For example, in one of the GEUVADIS sample, the gene BIRC3 
has an adjustable anomaly in one of its transcripts, suggesting that a change in read 

assignment across isoforms should be made. An isoform of the gene UBE2Q1 is identified 

to be an unadjustable anomaly in the heart sample of Human Body Map dataset, and it is the 

only isoform in the gene to contain the ubiquitin-conjugating enzyme domain. Using the 

adjusted abundance estimates corresponding to the adjustable anomalies, the number of 

falsely detected differentially expressed transcripts is reduced by 2.29% – 3.84% in the 

GEUVADIS samples.

We observe a common pattern in the unadjustable anomalies that are shared among all 

GEUVADIS and Human Body Map samples: anomalous transcripts usually contain an 

under-expressed region at the 3′-most exon, suggesting an early transcription stop.

We further validate SAD’s predictions via simulation and show that both adjustable and 

unadjustable anomalies of SAD describe the corresponding types of misquantification with 

high precision. The read reassignment procedure of SAD generates an adjusted 

quantification that is closer to the simulated expression and reduces the mean absolute 

relative distance (ARD) by about 0.05 on the adjustable anomalies. Surprisingly, in 

simulation, unadjustable anomalies reflect the existence of unannotated isoforms using 

existing splice junctions with 3% – 35% higher precision compared with applying 

transcriptome assembly.

Results

Overview of anomaly detection and categorization

SAD defines transcripts with anomalous read coverage (Supplementary Figure S1) as those 

for which the observed coverage distribution contains a significantly over-expressed or 
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under-expressed region compared to the expected coverage. Both the observed and the 

expected distribution are calculated by the Salmon (Patro et al., 2017) (or RSEM (Li and 

Dewey, 2011)) quantifier. The observed distribution is the weighted number of reads 

assigned to each position in the transcript as processed by the quantifier. The expected 

distribution estimated by the quantifier is the probability of generating a read at each 

position: Salmon’s bias model uses the surrounding GC content, the sequence k-mers, and 

the read position; RSEM models bias using the read position. The anomaly score can be 

confounded by either a low expression abundance or an estimation error of the expected 

distribution. To remove the confounding effect, we model the anomaly score 

probabilistically and use the empirical p-value to determine whether the observed difference 

is statistically significant and whether the transcript should be labeled as an anomaly.

To apply the anomaly detection and categorization approaches on other quantification 

software, the quantification software should output the assignment of each read and the 

sequencing bias model it learns. Different quantification software may output the read 

assignment and the biases in different format, and converting their output to vectorized 

observed and expected coverages that SAD can read is required. The Method section 

summarizes how to convert the output from Salmon and RSEM to the vector of observed 

coverage and expected coverage. For the other quantification software, a customized 

processing script may be needed for the format conversion.

SAD gives rise to two outputs: (1) a list of unadjustable anomalies and (2) the adjusted 

quantification for the adjustable anomalies. Assuming the expected coverage distributions 

are correct, the unadjustable anomalies are potentially caused by the incompleteness of 

reference transcriptome. Given a reference transcriptome or a reference splice junctions, we 

use “unannotated” to describe an item if it does not appear in the reference. The adjustable 

anomalies are likely caused by the error in the quantification probabilistic model or 

optimization algorithm.

Anomaly categorization is done by reassigning the reads across the isoforms using linear 

programming (LP) and checking whether the anomaly score becomes insignificant after the 

reassignment. Otherwise, it is labeled an adjustable anomaly. The LP also produces a new 

set of read assignments for the adjustable anomalies. An adjusted abundance estimation is 

constructed by combining the new read assignments of the transcripts with adjustable 

anomalies with the original read assignments of the other transcripts. This combined 

expression quantification is referred to as SAD-adjusted quantification. If the anomaly score 

remains significant after the reassignment, the anomaly is labeled an unadjustable anomaly.

Examples of detected anomalies

We provide some examples of the detected anomalies found by applying SAD to 30 

GEUVADIS (Lappalainen et al., 2013) and 16 Human Body Map datasets (The Illumina 

Body Map 2.0 data, 2011). The 30 GEUVADIS samples are ones used in the work of Patro 

et al. (2017), in which 30 lymphoblastoid cell lines from the Toscani in Italia (TSI) 

population are sequenced at two different sequencing centers. The Human Body Map project 

data consists of 16 samples each from a different tissue, including adrenal, adipose, brain, 
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breast, colon, heart, kidney, liver, lung, lymph, ovary, prostate, skeletal muscle, testes, 

thyroid, and white blood cells.

SAD identifies an adjustable anomaly in the gene TMEM134 in the kidney sample from the 

Human Body Map dataset. The TMEM134 gene encodes a trans-membrane protein that is 

associated with Parkinsons disease (Jansen et al., 2017). One isoform 

(ENST00000545682.5) of this gene has an under-expression anomaly after its first splicing 

junction (Figure 1A). See Supplementary Figure S2 for IGV visualization. This under-

expression anomaly can be adjusted by reassigning reads to this isoform from another 

isoform, ENST00000537601.5 (Figure 1B). The expression estimates are changed according 

to the adjustment: before adjustment, the isoform with the under-expression anomaly has a 

1.4 times larger expression than the other isoform, and after adjustment, the ratio of 

expression is enlarged to 9.0. The two isoforms are different from each other by two splicing 

junctions (Figure 1C). With the quantification more consistent with the read coverage of 

both isoforms, the analysis on the function and effect of the alternative splicing may benefit.

Another example of an adjustable anomaly is within the BIRC3 gene in one GEUVADIS 

sample. This gene is involved in apoptosis inhibition under certain conditions. The second 

half of the isoform ENST00000532808.5 is under-expressed under Salmon’s read 

assignment (Figure 1D). See Supplementary Figure S3 for IGV visualization. Reassigning 

the reads between this isoform and another isoform, ENST00000263464.7, removes the 

under-expression phenomenon (Figure 1E) and at the same time alters the expression level 

of both isoforms. The original expression abundances of the two isoforms were similar to 

each other, but after SAD adjustment the expression of ENST00000263464.7 is 3 times that 

of ENST00000532808.5. The two isoforms are different in their starting and ending 

positions but have the same set of internal exons. The protein domains between the two 

isoforms are the same according to Pfam (El-Gebali et al., 2018) annotations (Figure 1F) but 

the 5′ and 3′ UTR sequences are different.

SAD also reveals unadjustable anomalies in isoforms that have a different set of protein 

domains from the other isoforms of the same gene. For example, gene UBE2Q1 and gene 

LIMD1 in the heart sample of the Human Body Map dataset contain unadjustable anomalies 

(Figure 2A–B, Supplementary Figure S4). In both genes, the protein domains in the 

anomalous isoform are different from those in the other annotated isoforms: 

ENST00000292211.4 of gene UBE2Q1 is the only annotated isoform that has ubiquitin-

conjugating enzyme domain, and ENST00000273317.4 of gene LIMD1 contains three zinc-

finger domains annotated by Pfam while the other isoforms only contain two or zero. The 

over-expressed regions of both genes contain the full set of protein domains, while parts of 

3′ UTRs are barely expressed for both anomalies. The large unexpressed regions suggest 

the unadjustable anomalies are unlikely to be explained by the inaccuracy of the expected 

distribution, instead they imply the existence of unannotated isoforms. The Scallop transcript 

assembler (Shao and Kingsford, 2017) is able to assemble a unannotated sequence of 

LIMD1 without the under-expressed region, thus supporting this detected anomaly. Studies 

have shown that alternative cleavage can generate isoforms with various 3′ UTRs in some 

cells (Guvenek and Tian, 2018) and the length of the 3′ UTR is correlated with the 
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transcript degradation rate (Zheng et al., 2018). The detected unadjustable anomalies may be 

an example of such alternative cleavage or lower degradation rate.

Adjustable anomalies give an adjusted quantification that reduces false positive 
differential expression detections

The adjusted quantification of SAD reduces the number of false positive calls in detecting 

differentially expressed transcripts. Previously, Patro et al. (2017) showed that the 30 TSI 

samples from GEUVADIS dataset (Lappalainen et al., 2013) likely do not have differentially 

expressed transcripts, but quantification mistakes can lead to false positive differential 

expression (DE) predictions across sequencing center batches. They also showed that a more 

accurate quantification can reduce the number of false positive detections. We apply SAD to 

the same samples and compare the number of differentially expressed transcripts detected 

using Salmon’s original quantification and the SAD-adjusted quantification. There are 1938 

– 3385 adjustable anomalies within each sample, each of which have SAD-adjusted 

expression estimates. The estimates for the rest of the transcripts remain the same as 

Salmon. Differential expression is inferred by DESeq2 (Love et al., 2014) on the transcript 

level. With Salmon expression estimates, 6088 – 13 555 transcripts out of 198 541 are 

detected to be differentially expressed across the two sequencing centers under various FDR 

thresholds. With SAD-adjusted quantification, the relative number of DE transcripts is 

reduced by 2.29% – 3.84% (Supplementary Table S1). This provides evidence that these 

anomalies are likely real misquantifications that are correctable using a different read 

reassignment procedure.

An isoform of gene HDAC2 and an isoform of gene NDUFA13 are two examples of 

transcripts that have decreased p-value of differential expression after SAD adjustment. 

Gene HDAC2 encodes proteins to form histone deacetylases complexes and is important in 

transcriptional regulation (O’Leary et al., 2015). One of its isoforms, ENST00000519065.5, 

is differentially expressed with an adjusted p-value of 0.0008 under Salmon quantification. 

SAD adjusts its expression by redistributing its reads to the other 16 transcripts of the gene, 

increasing the p-value of differential expression to 0.075 (Supplementary Figure S5C). With 

SAD-adjusted quantification, this isoform is not differentially expressed under a p-value 

threshold of 0.05 or 0.01. The gene NDUFA13 encodes a subunit of the mitochondrial 

electron transport chain (O’Leary et al., 2015). Over-expression or under-expression of the 

gene has been associated with multiple cancer types (Máximo et al., 2008). Transcript 

ENST00000428459.6 from this gene was significantly differentially expressed. After SAD 

reassigns reads from the other transcripts to it, the transcript is no longer differentially 

expressed (Supplementary Figure S5D).

Whether a transcript is detected to be differentially expressed under SAD-adjusted 

quantification may be influenced by that only some of the samples undergo the 

quantification adjustment of the transcript. In the case where the transcript abundances are 

similar within each condition and are adjusted only in a subset of samples, the within-

condition variance may increase, the p-value of DE may increase, and the transcript is less 

likely to be detected as DE under a given FDR threshold. In this case, DE detection is more 

conservative by using SAD-adjusted quantification. When the conservation is preferred, 
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especially when trying to avoid uncertain DE calls due to the inconsistencies between the 

observed and the expected coverage distribution, using SAD-adjusted quantification is 

helpful. Nevertheless, the influence of the partial adjustment is mild because the majority of 

the DE predictions under Salmon and SAD-adjusted quantification agree with each other. 

Many transcripts do not have an increased within-condition variance as what partial 

adjustment may induce (Supplementary Figure S5E). The switch from DE to not DE after 

SAD-adjustment is not purely caused by the increase of within-condition variance, but the 

decrease of across-condition expression differences is also a contributor as well 

(Supplementary Figure S5A–B). In the case where the abundances are adjusted for all 

samples in one condition but no samples in the other, it is not predetermined whether the DE 

detection is more conservative or more aggressive. Whether the transcript is detected as DE 

depends on whether the adjustment increases or decreases the expression difference between 

the conditions. Both increase and decrease of expression differences happen with similar 

frequency empirically (Supplementary Figure S5F).

Occasionally, there are are multiple optimal solutions to the likelihood function of 

quantification models and the quantifier will output only one of the optimal solutions. The 

multiple optima scenario is called the non-identifiability problem, and the transcripts with 

multiple optimal abundances are said to have non-identifiable abundances. However, the 

majority of anomalies detected by SAD do not suffer from the non-identifiability problem 

(Supplementary Figure S6B). Accordingly, the SAD-adjusted quantification is not another 

optimal solution to Salmon’s objective, but rather an assignment under a different model. 

The quantification improvement using SAD’s adjusted anomalies lies in the model of using 

the expected coverage to explain the observed coverage. See Method Section for how non-

identifiable transcripts were detected.

Common unadjustable anomalies tend to have an under-expressed region in the 3′ exon

Applying SAD reveals 774–1288 unadjustable anomalies per sample on the 30 GEUVADIS 

samples, and 2029–8269 per sample for the 16 Human Body Map samples. Among the 

unadjustable anomalies, 88 of them are common in all samples in both datasets (see 

Supplementary Table S2 for the full list). The 88 common unadjustable anomalies span 22 

chromosomes. The genes they belong to have various numbers of annotated isoforms 

ranging from 1 to 15. The common unadjustable anomalies generally follow the transcript 

length distribution of the commonly expressing transcripts (Supplementary Figure S6A).

For most of the common anomalies, the over-expressed regions tend to mainly overlap with 

the first half of the transcripts near the 5′ end (Figure 2C). Correspondingly, the under-

expressed regions are usually located towards the second half of the transcripts near the 3′ 
end. The under-expressed anomaly regions usually only span one exon or a partial exon 

(Figure 2D). Assuming the bias model in Salmon estimates the expected distribution with 

reasonable accuracy, the unadjustable anomalies are likely to indicate the existence of 

unannotated transcripts. These unannotated transcripts will share the over-expressed region 

and exclude the under-expressed region compared to the anomalous transcripts. That is, they 

will have the same intron chain but different transcript ending locations.
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About 40%–60% of the detected unadjustable anomalies have a corresponding unannotated 

isoform assembled by transcriptome assembly algorithms, specifically StringTie (Pertea et 

al., 2015) and Scallop (Shao and Kingsford, 2017) (Supplementary Figure S7A–B). (See 

Method Section for the details of running transcriptome assembly software.) An assembled 

isoform corresponds to a predicted unadjustable anomaly if the assembled isoform contains 

all the splicing junctions within the over-expressed region and excludes at least half of the 

under-expressed region. Meanwhile, the rest 40%–60% of the unadjustable anomalies do not 

have a corresponding isoform assembled by transcriptome assemblers. Assuming the 

expected coverage distribution is modeled correctly, these unadjustable anomalies are likely 

to indicate true unannotated isoforms that are not able to be detected by transcriptome 

assemblers. The sensitivity of assembling unannotated transcripts is usually low, which 

partially explains the difference between the existence of unannotated isoforms indicated by 

unadjustable anomalies and by transcriptome assembly methods.

While we hypothesize that the unadjustable anomalies are caused by the existence of 

unannotated transcripts, we cannot rule out the possibility that some of the unadjustable 

anomalies can be an artifact of inaccurate modeling of the expected coverages or an 

unsuitable assumption of the Gaussian error of the expected coverages. Neither is it clear 

whether the unannotated transcripts are natural, well-functioning isoforms, or non-

functioning sequences due to errors in transcription, or alternative cleavage and 

polyadenylation that retain various lengths of UTR (Guvenek and Tian, 2018).

Unadjustable anomalies detected based on RSEM have 20% – 50% overlap with those 
detected based on Salmon

To show the applicability of the anomaly detection method on multiple quantification 

methods, we apply anomaly detection using the RSEM (Li and Dewey, 2011) quantifier and 

identify unadjustable and adjustable anomalies in the same 30 GEUVADIS samples and 16 

Human Body Map samples. See the Method Section for the details of obtaining the expected 

and observed coverage distributions from RSEM. With these coverages, the anomaly 

detection and categorization methods we present are able to be directly applied.

About 20%–50% of the RSEM unadjustable anomalies are shared with the ones detected 

using Salmon (Patro et al., 2017) (Supplementary Figure S7C–D). The expected distribution 

estimated by RSEM only depends on the positional bias and is computed at a coarser 

resolution than is modeled in Salmon. RSEM does not model sequence-specific or GC 

content biases. Therefore, it is not surprising that there is a large difference between 

unadjustable anomalies based on Salmon and those based on RSEM. Indeed, the percentage 

is much higher than random (hypergeometric test p-value < 10−300). These results show that 

when applied with quantifiers that coarsely estimate the expected distribution, the anomaly 

detection method can still predict many unadjustable anomalies.

There are 219 – 527 transcripts per GEUVADIS sample and 509 – 1972 per Human Body 

Map sample that are detected to be unadjustable anomalies only under RSEM quantification. 

For the ones that are detected as unadjustable anomalies only under Salmon quantification, 

the number is 258 – 714 per GEUVADIS sample and 1168 – 5657 per Human Body Map 

sample. The causes of the difference include: (1) Salmon and RSEM estimate different 
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expected coverages but assign similar observed read coverages to the transcript 

(Supplementary Figure S8A–B); (2) Salmon and RSEM assign obtain different observed 

coverages (Supplementary Figure S8C–F) and the difference remains after SAD read re-

assignment; (3) both expected coverages and observed coverages are similar for Salmon and 

RSEM, but the variances of Gaussian error in the expected distribution estimation are 

different (Supplementary Figure S8G–H); (4) a mixture of the above causes. When the cause 

of different predictions is due to the difference in Gaussian error variances, Salmon tends to 

predict the transcripts as unadjustable anomalies while RSEM may not. The expected 

coverage in RSEM is estimated only based on positional bias, which is coarser and usually 

farther away from the observed read coverage than Salmon’s expected coverage. Thus the 

variance of the Gaussian estimation error is usually larger in RSEM than in Salmon. When 

the variance of error in expected distribution estimation is larger, the likelihood of observing 

a large deviation by chance increases and the p-value also increases. The mixture and 

interplay among the possible causes may be complicated, therefore we do not assign the 

uniquely detected anomalies to the causes or estimate the weights of the causes.

Simulation supports the accuracy of SAD for detecting and categorizing anomalies

On simulation data, the predictions of both unadjustable and adjustable anomalies precisely 

capture the mis-quantification due to those causes. We created 24 datasets by varying the 

number of simulated unannotated isoforms, the gene annotations, and the expression 

matrices. (See Method Section for the details of the simulation procedure.)

Unadjustable anomalies are able to predict the existence of simulated unannotated isoforms 

that do not contain unannotated splicing locations with 3%–35% higher precision than 

transcriptome assembly methods (Supplementary Figure S9A–B). Precision is computed as 

the fraction of “marked” genes that contain simulated transcripts that are unannotated in the 

reference. For SAD, a gene is marked if it contains a transcript that is detected as an 

unadjustable anomaly. For the transcript assembler, a gene is marked if it has an assembled 

transcripts with predicted RPKM ≥ a parameter θ, and that transcript either: (1) only uses 

existing splicing junctions and does not match the intron chains of any existing transcript or 

(2) matches the intron chain of an existing transcript, but has a starting position or stopping 

position more than 200 bp away from the matched existing transcript. The parameter θ is 

chosen so that the transcript assembler marks the same number of genes as SAD does.

Note in this comparison, we compute precision only considering isoforms that use existing 

splicing junctions in unannotated combinations or with alternative start or termination 

locations. These are generally the harder transcripts to detect, since for these isoforms, 

transcript assembly methods can only depend on coverage to assemble transcripts. SAD 

benefits from using the well modeled expected coverage distribution to identify unadjustable 

anomalies. On the other hand, the main advantage of SAD is precision, but not sensitivity, 

because not all unannotated isoforms will significantly alter the coverage of known ones 

(Supplementary Figure S9C).

In addition, the LP read reassignment is more accurate than the original Salmon 

quantification (Patro et al., 2017) on the adjustable anomalies in simulated data 

(Supplementary Figure S9D–E). The accuracy of quantification is measured by mean ARD 
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(absolute relative difference) (Patro et al., 2017). ARD is calculated by taking the absolute 

difference between the estimation and the true expression and normalizing it by the sum of 

the estimation and the truth. A smaller value of mean ARD indicates an estimator that is 

closer to the ground truth. The decrease of ARD on adjustable anomalies is usually more 

than 0.05. The accuracy improvement of SAD decreases as more isoforms of one gene are 

involved in the read reassignment. The decrease of improvement is possibly because small 

estimation errors in the expected distribution are magnified when the LP coefficient matrix 

used by SAD is large in size and potentially ill-conditioned. When the coefficient matrix is 

ill-conditioned in the linear system, the output can greatly change even with a small error in 

the input.

Unadjustable anomalies are supported by long read sequencing data in 1000 Genome 
samples

To further verify that in real RNA-seq the unadjustable anomalies are likely caused by the 

incompleteness of the reference transcriptome, we use long-read sequencing evidence to 

show the existence of unannotated isoforms that are suggested by unadjustable anomalies. In 

the 1000 Genome (Consortium et al., 2015) samples, 3 trios (9 samples) were sequenced 

using both short-read RNA-seq and PacBio SMRT technology to obtain expressed full-

length transcripts. We apply SAD to the short-read RNA-seq data and compare the detected 

unadjustable anomalies to sequenced PacBio reads of full-length transcripts. A isoform that 

is derived from the full transcripts sequences and not included in the reference annotation is 

considered to correspond to the unadjustable anomaly prediction if it covers 75% of the 

over-expressed region and excludes 75% of the under-expressed region of the anomaly. 

Unadjustable anomalies that have corresponding PacBio reads are considered true 

predictions of the existence of unannotated isoform and are used to calculate precision.

For all 9 samples, the precision of unadjustable anomalies of SAD is within the range of 

23% – 32% (Supplementary Figure S10). See Supplementary Table S3 for a full list of 

unadjustable anomalies and their correspondence to the long reads. The precision is within 

the range observed in the simulated RNA-seq data. The rest of the unadjustable anomalies 

are not supported by the long reads. Instead, they may correspond to true unannotated 

isoforms that are not sequenced by long reads or arise from an inaccurate estimation of the 

expected distribution of the anomalous transcripts.

Discussion

We present Salmon Anomaly Detection (SAD), an anomaly detection approach to identify 

potential misquantification of expression. SAD detects anomalies by comparing the expected 

and the observed coverage distribution and calculating the significance of the over- or under-

expression. SAD also categorizes the anomalies into adjustable anomaly and unadjustable 

anomaly categories to indicate two possible causes of misquantifications: algorithmic errors 

and reference transcriptome incompleteness. The categorization is done by reassigning reads 

across isoforms to minimize the number of significant anomaly scores. We show on 

simulation data that the detected anomalies and their categorizations are reasonable: the 

unadjustable anomalies predict the existence of unannotated isoforms (using existing splice 
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junctions) with higher precision than transcriptome assembly methods, and the read 

reassignment of adjustable anomalies leads to adjusted quantification that is closer to the 

simulated ground truth compared to the original quantification.

The explanation for LP read assignment leading to a better quantification than Salmon for 

some transcripts is that the LP focuses only on the base-to-base coverage distribution 

consistency while Salmon combines multiple aspects into its probabilistic model and also 

groups reads into equivalent classes. For example, transcript lengths and fragment lengths 

are considered in its probabilistic model. One equivalence class may include reads starting at 

various positions, which have various expected coverages. Because Salmon balances these 

multiple aspects and treats each equivalent class as a unit, it may generate a coverage 

distribution deviated from the expectation. When this deviation is very large, the 

quantification results tend to be inaccurate. In the case of a very large deviation, reassigning 

reads purely based on coverage consistency using the LP leads to a more accurate 

quantification.

Applying SAD on GEUVADIS and Human Body Map datasets, we are able to identify 

adjustable and unadjustable anomalies that affect isoforms with different protein domains 

from other isoforms and isoforms from cell type marker genes. Using the adjusted 

quantification associated with the adjustable anomalies, the number of false positive 

predictions of differentially expressed transcripts can be reduced. There are common 

unadjustable anomalies across all samples. Most of the common unadjustable anomalies 

have an under-expressed region towards the 3′ end of the transcript.

SAD is only able to detect the subset of misquantifications that have distorted the observed 

coverage from the expected one. However, some misquantifications may not alter the shape 

of the observed coverage distribution. For example, high sequence similarity between a pair 

of transcripts can also lead to severe misquantification, however, the read coverage can be 

close to the expectation for both. Alternatively, the coverage distribution of a lowly 

expressed existing isoform can be affected by a lowly expressed unannotated isoform. In this 

case, the p-value of the anomaly score may not be significant due to the large fluctuation of 

the observed coverage due to the low expression. Developing other scores, for example, 

using transcript similarity or discordant read mapping, could potentially increase the 

sensitivity and the types of possible misquantification of detection.

Some of the causes of anomalies are not covered by the current anomaly categorization 

method. For example, when an anomaly is caused by a mixture of incomplete reference 

transcriptome and mistakes of the quantification methods, SAD cannot label the cause as the 

mixture but is only able to attribute to one of the two causes based on the read reassignment 

outcome. In addition, unadjustable anomalies can be further subcategorized by whether the 

corresponding unannotated isoforms are splicing variants or gene-fusions. One contribution 

of this work is to inspire more systematic investigation of the causes of expression 

anomalies. Refining the methods to determine the causes of anomalies is a potential 

direction for future work.

Ma and Kingsford Page 12

Cell Syst. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For unannotated isoform detection, only transcript existence is predicted by SAD, not the 

sequence or exon-intron structure of the unannotated isoforms. Retrieving the exon-intron 

structure remains a problem. Simply combining the prediction of SAD with the assembled 

sequences from transcriptome assembly does not solve the problem of reconstructing 

unannotated isoform sequences. About 40%–60% of SAD’s predictions are not assembled 

by transcriptome assembly methods in the GEUVADIS and the Human Body Map datasets. 

Incorporating the expected coverage distribution during transcriptome assembly may be a 

direction to predict the exact exon-intron structure of the unannotated isoforms.

SAD suggests an analysis workflow that contains three steps: quantification, anomaly 

detection, followed by specialized quantification focusing on the anomalies. The middle 

step, anomaly detection, and the last step, specialized quantification, can be treated 

separately and enhancements in either step are needed to improve the accuracy of the 

adjusted expression estimates. For example, SAD’s read reassignment only shuffles the 

reads across isoforms within the same gene. A better read reassignment across genes can be 

developed.

An improvement in the accuracy of the approximation of the expected distribution may 

further increase the accuracy of unannotated isoform prediction and re-quantification by 

SAD. Currently, the expected distribution is approximated by a bias correction model that 

uses GC, sequence, and position biases. The sequence bias may also be affected by the 

secondary structure of cDNA, which is not considered in current modeling of biases.

SAD takes about 8 hours to run on each RNA-seq sample using eight threads on the 

GEUVADIS samples and about 23 hours on the Human Body Map samples. Empirically the 

running time scales linearly with the number of sequencing reads as the sequencing depths 

of Human Body Map samples are about three times those of GEUVADIS samples. The long 

running time is mainly due to the sampling procedure in the empirical p-value calculation 

for all transcripts. A derivation of a p-value approximation to avoid sampling could 

potentially decrease the computational requirements. Implementation engineering can also 

be applied to reduce the running time, however, this is out of the scope of this work.

Our formulation of anomaly detection is an example of algorithmic introspection: algorithms 

that can automatically identify where their predictions do not fit the assumptions of the 

algorithm. This type of algorithmic reasoning is likely to become even more useful as the 

sophistication of bioinformatics analysis tools increases.

STAR Method

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Carl Kingsford (carlk@cs.cmu.edu). This study did not 

generate new unique reagents.
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METHOD DETAILS

An anomaly detection score

Definition 1 (Expected coverage distribution).: Given transcript t with length l, and a 

fragment f that is sequenced from t, the starting position of f is a random variable with the 

possible positions {1, 2, 3, ⋯, l} as its domain. The expected coverage distribution of t is the 

probability distribution of the starting position of any fragment f. The expected coverage 

distribution for each transcript t sums to 1.

With a non-zero fragment length, the viable starting position excludes the last several 

positions in the transcript. Given a minimum fragment length, it is not possible for a 

fragment to start at a position within a distance of the minimum fragment length to the end 

of the transcript. The probability of such positions is set to 0. After aligning and assigning 

the sequencing reads to transcripts, the number of fragments starting at each position can be 

counted; this is referred to as the observed coverage. The observed coverage can be 

converted to distribution by normalizing the coverage to sum to 1. The normalized observed 

coverage is called the observed coverage distribution, which is comparable to the expected 

coverage distribution.

We use a slightly different definition of coverage from its classic meaning. We define the 

coverage of each transcript position to be the number of fragments starting at this position, 

while the classic definition considers the number of fragments spanning the position. We use 

the fragment start definition for calculating both the observed and the expected coverage 

distribution. The observed and the expected coverage are comparable if they are calculated 

using the same definition. Since the fragment length distribution is often assumed to be a 

Gaussian distribution with a smaller variance compared to the mean, the coverage 

distribution under the fragment start definition is approximately the same as the one under 

the classic definition plus a shift.

Definition 2 (Regional over-(under-)expression score).: Given transcript t with length l, 
denote the expected coverage distribution as exp, and the observed coverage distribution as 

obs, the over-expression score of region [a, b] (1 ≤ a < b ≤ l) is

Ot a, b = max
a ≤ i ≤ b

obs i − exp i , 0 . (1)

where index i denotes the positions in the transcript. The under-expression score of region 

[a, b] is

Ut a, b = max
a ≤ i ≤ b

exp i − obs i , 0 . (2)

The over-expression and under-expression scores are defined as the probability difference 

between the observed coverage and the expected coverage distribution within region [a, b]. 

The probability difference represents the degree of inconsistency between the two 
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distributions at the given region. The scores indicate the fraction of reads to take away (or 

add to) from the region in order for the two distributions to match each other.

Definition 3 (Transcript-level anomaly score).: For a transcript t with length l, the over-

expression anomaly of the transcript is defined as

OAt = max
1 ≤ a < b ≤ l

Ot a, b . (3)

The under-expression anomaly of the transcript is defined as

UAt = max
1 ≤ a < b ≤ l

Ut a, b . (4)

These transcript-level anomaly scores are defined by the largest over- or under-expression 

score across all continuous regions.

Probabilistic model for coverage distribution—The value of the anomaly score 

cannot be directly used to indicate an anomaly because its value can be confounded by 

transcript abundances and the estimation error of the expected distribution. When there are 

only a few reads sequenced from the transcript, randomness in read sampling can dominate 

the observed distribution. Because of this, the observed distribution will have large 

fluctuations along the transcript positions, and thus appear to have a large deviation from the 

expected distribution. In addition, when the estimation of the expected distribution is 

inaccurate, the difference between the two distributions can also be large. To address these 

two confounding factors, we model the relationship between the coverage distributions using 

a probabilistic framework and calculate the p-value of the anomaly score. With the statistical 

significance of an anomaly score, we are able to distinguish between true quantification 

anomalies and randomness from known confounding factors.

We model the value of the anomaly score probabilistically given the two confounding factors 

(Supplementary Figure S11). We use the model to indicate the distribution of the anomaly 

score under the null hypothesis that it is not a true anomaly. For the transcript abundance 

confounding factor, we assume the observed distribution is generated from the hidden 

expected distribution through a multinomial distribution parameterized by the given number 

of reads, n:

obs ∼ multinomial N, exp . (5)

For the estimation error of the expected distribution, we assume the error in the expected 

distribution is Gaussian with mean μ and covariance Σ. Let est to be estimation of the 

expected distribution and let exp be the true hidden expected distribution, the estimation 

error follows:

est − exp ∼ N μ, Σ . (6)

We further assume that the Gaussian estimation error is generally the same across all 

transcripts. In practice, transcripts have different lengths and the Gaussian error vectors 
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differ relative to the lengths. We therefore separate positions in each transcript into several 

bins and transcripts with similar lengths have the same number of bins. A shared mean shift 

parameter μ and covariance Σ is estimated for the transcripts with the same number of bins.

The variables and parameters of the model (Supplementary Figure S11) can be retrieved or 

estimated as follows. obs refers to the observed distribution and can be retrieved from the 

quantification algorithm (Section). est refers to the estimation of the expected distribution, 

which is processed from the bias correction result of the quantification (Section). exp stands 

for the expected coverage distribution that is latent. μ and Σ in the probability could be 

estimated with a Bayesian estimator or maximum a priori (MAP) estimator with a likelihood 

function. Using subscript t to represent transcripts, the likelihood function is

L μ, Σ =
t expt:expt ≥ 0, Σexpt = 1

ℙ obst |expt ℙ estt |expt, μ, Σ ℙ expt d expt

.
(7)

However, the above likelihood function does not have a closed form solution and may 

require using expectation maximization (EM) for optimization. Instead, we estimate μ and Σ 
using the following approximation: the multinomial distribution for the observed coverage 

can be approximated by a Gaussian distribution when the number of reads n is large enough:

obs ∼ Multi n, exp n ∞ N exp, f exp
n (8)

where f :ℝm ℝm × m maps the m-dimension probability vector of the multinomial 

distribution into the covariance matrix of the approximating multi-variate Gaussian 

distribution. Therefore, the difference between obs and est can be approximated by the 

following Gaussian distribution

est − obs ∼ N μ, Σ + f exp
n

n ∞ N μ, Σ . (9)

We therefore approximate μ and Σ by selecting transcripts with enough reads for each length 

group, and fit a Gaussian distribution to est – obs of the selected transcripts.

This probabilistic model serves as the null model that assumes the transcript is not an 

anomaly. That is, the model describes the distribution of the anomaly score under the case 

where the deviation between the observed and the expected distribution is only due to the 

two confounding factors: read sampling randomness of sequencing and the estimation 

inaccuracies of the expected distribution. When the deviation is so large that this null model 

cannot explain it, we attribute the deviation to an anomaly. To determine whether the 

deviation is so large that it is unlikely to be observed under the null model, a p-value is 

calculated. The details of this calculation are explained below.

Statistical significance of the anomaly score—The statistical significance of a value 

of the anomaly score is the probability of observing an even larger anomaly value given the 
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probabilistic model. Let Ot(a, b) and Ut(a, b) be the random variables of the regional over- 

and under-expression score of region [a, b], and let ot(a, b) and ut(a, b) be the corresponding 

observed values. Similarly, let OAt and UAt be the random variable of transcript-level 

anomaly score, and oat and uat be the corresponding observed values. The p-values for a 

regional over- and under-expression score are

p−value of Ot a, b = ℙ Ot a, b > ot a, b |exp, n, μ, Σ
p−value of Ut a, b = ℙ Ut a, b > ut a, b |exp, n, μ, Σ (10)

where exp, n, μ and Σ are defined as in Supplementary Figure S11. The p-values for 

transcript-level over- and under-expression anomaly score are

p−value of OAt = ℙ OAt > oat |exp, n, μ, Σ
p−value of UAt = ℙ UAt > uat |exp, n, μ, Σ . (11)

The statistical testing of the transcript-level anomaly score is more strict to the null 

hypothesis than that of the regional one, and tends to have a larger p-value. Given transcript t 
and the largest over-expressed region [i, j], the following inequality between the two p-

values holds:

p−value of OAt = ℙ max
1 ≤ a < b ≤ l

Ot a, b > oat |exp, n, μ, Σ

= ℙ max
1 ≤ a < b ≤ l

Ot a, b > ot i, j |exp, n, μ, Σ

≥ ℙ Ot i, j > ot i, j |exp, n, μ, Σ

= p−value of Ot i, j .

(12)

Conceptually, because the whole transcript contains multiple regions that may have a large 

over- (under-) expression score, it is easier to observe a large over- (under-) expression score 

when we look at all possible regions compared to when we focus on only one specific 

region. From the perspective of statistical testing, the p-value of OAt and UAt tend to be 

larger and less significant than those of Ot(a, b) and Ut(a, b) for any region [a, b]. Taking 

advantage of the different level of strictness about the null model, we use the significance of 

Ot and Ut for the initial selection of anomalies to adjust read assignment, and use the 

significance of OAt and UAt for the final selection of anomalies within the unadjustable 

anomaly category.

The p-value of both anomaly scores can be calculated empirically. Specifically, the hidden 

expected coverage can be sampled from the estimation using multi-variate Gaussian 

distribution, and the observed coverage can be sampled from the new hidden coverage using 

multinomial distribution. The null distribution for Ot(a, b), Ut(a, b), OAt and UAt can be 

generated using the sampled observed and hidden expected coverage. The empirical p-value 

is the portion of times that the anomaly scores exceed the observed valued in the null 

distribution.
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We also derive a numerical approximation for the p-value of regional anomaly score. 

Empirical p-value calculation requires sampling distributions from a multinomial or multi-

variate Gaussian distribution multiple times, which takes a long time computationally. A 

numerical approximation without sampling can greatly reduce the calculation time. Denote 

the region as [a, b] and the current under-expression anomaly score as v. The significance of 

the over- (under-) expression score under regional null distribution is given by

p−value of Ut a, b = ℙ
i = a

b
exp i − obs i > υ |

i = a

b
est i

= ℙ
i = a

b
obs i <

i = a

b
exp i − υ |

i = a

b
est i

=
x

GaussianPDF x |
i = a

b
est i , μ, Σ ℙ

i = a

b
obs i < x − υ dx

=
x

GaussianPDF x |ν, σ BinomCDF n ∗ x − υ |n, x dx

(13)

where x =
i = a

b
exp i , ν =

i = a

b
est i − μ i , σ =

i = a
b

j = a
b Σ i, j  and n is the number of 

reads assigned to the transcript. In the numerical approximation, the function inside the 

integral is approximated by a step function with small step sizes of x and the integral is 

approximated by summing up the area under the step function. Since the regional anomaly 

score focuses on a fixed region, the multinomial distribution can be collapsed into binomial 

distribution to represent the probability of generating a read from that region. The multi-

variate Gaussian distribution can also be collapsed to a single-variate Gaussian distribution 

to present the expected estimation bias and variance of the region. With all multi-variate 

distributions collapsed into single-variate distributions, it is feasible to numerically calculate 

the integral in equation (13). In SAD, the p-value of the regional over- (under-) expression 

score is always calculated using the numerical approximation, while the p-value of the 

transcript-level anomaly is calculated empirically by sampling.

In practice, we do not calculate the p-value for transcripts with very low abundance. When 

the randomness of read sampling is very large, we simply assume that the p-value will be 

dominated by the randomness instead of anomalies. We only calculate a p-value for 

transcripts with average base pair coverage > 0.01. Using a threshold of 0.01 is equivalent to 

requiring that on average at least one read is sequenced for every 100 base pairs.

Benjamini-Hochberg correction is used to control the rate of falsely discovered transcripts 

with regional or transcript-level expression anomaly. A threshold of 0.05 is used in the 

regional anomaly score. For transcript-level anomalies, 0.01 is used as the threshold. The 

varied thresholds are set according to their separate purposes: regional anomalies are the 

initial candidates and do not need to be as precise; after read reassignment, the transcript-

level anomalies are the final predictions of unadjustable anomalies and require higher 

precision.
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Categorizing anomalies by read reassignment—We categorize the causes of 

anomalies into whether or not they are caused by read assignment mistakes of the 

quantifier’s probabilistic model. This is done by seeking an alternative read assignment for 

the transcripts with significant regional anomaly score to reduce the inconsistency with the 

expected coverage.

We use linear programming (LP) to reassign the reads in anomalies. The LP formulation 

tries to use a linear combination of the expected distributions to explain the aligned reads. 

By explicitly using the expected coverage to re-distribute the observed number of reads, the 

deviation between the observed and the expected distribution after the re-distribution is 

naturally reduced. Accordingly, the anomaly score will decrease and the p-value will 

increase. We apply LP redistribution separately for each gene since most misassignments of 

reads by the quantifier occur among isoforms of the same gene rather than across genes and 

gene-level expression estimation is more accurate than isoform-level quantification (Soneson 

et al., 2015, Dapas et al., 2016).

The formulation of the LP is

min
αt: t ∈ T t

αtexpt −
t

obst
1

+
j ∈ J t

αtδt
jexpt −

t
obst

j ⋅ P j

1

s . t . αt ≥ 0(∀t ∈ T)
(14)

where t is the index for transcript set T and j is the index of splicing junction set J. Let n be 

the length of the unique exon positions of the gene. expt ∈ ℝn is the expected coverage 

distribution (normalized) for transcript t under gene level coordinate. obst ∈ ℝn is the 

observed coverage (unnormalized) for transcript t under gene level coordinate. obst
j ∈ ℝn is 

the observed coverage of reads that are assigned to transcript t and spanning junction j. δt
j is 

an indicator that takes value 1 if transcript t has splicing junction j and 0 otherwise. Pj ∈ {0, 

1}n indicates which positions are considered close to junction j. Specifically, entries of Pj 

that represent positions 50 bp to the 5′ side of the splicing junction position are 1 and the 

rest are 0. “·” is the dot product.

In the LP objective function multiple isoforms of various lengths are included in the same 

matrix expression. A coordinate conversion is needed to adjust the coverages of multiple 

isoforms to have the same length. Because each reassignment is performed on isoforms 

within the same gene, the coverage in transcript coordinates is converted to gene 

coordinates. In the gene coordinates, each nucleotide is indexed in the sequence of the 

concatenation of unique exons (or subexons) of the gene. For a given transcript, the coverage 

is set to 0 for the exons it does not contain.

Let I1 = ∥∑tαtexpt − ∑tobst∥1 be the first term in the objective function. This is the main 

minimization goal to reassign reads to isoforms according to their expected coverage 

distribution. ∑tobst is the aggregated read coverage along the gene. Under the assumption of 
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correct gene-level read assignment but deviated transcript-level read assignment, obst may 

not represent the correct read coverage of transcript t, but ∑tobst represents the correct 

coverage of the gene. This term seeks to use a linear combination of expected coverage 

distributions to explain the observed gene coverage.

Let I2 =
j ∈ J t αtδt

jexpt − t obst
j ⋅ P j

1
 be the second term in the objective function. 

This term serves as a penalty on the coverage inconsistency around each splicing junction. 

Because the coverages store only the fragment start positions but not the junction spanning 

information, a fragment aligning onto a retained intron may have the same starting position 

of another fragment spanning a splicing junction. Thus an additional penalty is added to 

control the assignment of junction-spanning reads. The penalty imposed by I2 encourages 

that the coverage of the junction-spanning reads should be explained by a linear combination 

of the expectation from transcripts with the junction. When transcript t does not contain 

splicing junction j, we set δt
j = 0 to make sure that transcript t has no contribution to the 

junction coverage. The start positions of the junction-spanning reads are usually near the 5′ 
side of the junction. Start positions separated from the junction can contain reads both 

spanning and not spanning the junction. We specify a 50 bp window to the 5′ side of the 

junction to enforce that penalty to be restricted to the most relevant positions to each splicing 

junction.

Variables αt stand for the expected number of expressed reads from transcript t. To obtain 

the actual number of reads reassigned to transcript t at position k, we re-distribution the 

junction reads and non-junction reads in proportion to αt. Specifically, the reads starting at 

position k and spanning junction j are assigned to transcript t with weight 

Σt′obst′
j [k]

αtδt
jexpt[k]

Σt′αt′δt′
j expt′[k]

. Let nt[k] be the sum of weights assigned to t at position k. The 

actual total number of reads reassigned to transcript t is ∑knt[k].

After adjusting read assignments using the LP, some transcripts have an insignificant 

transcript-level anomaly score. These transcripts are labeled “adjustable anomalies” and are 

considered to have misquantifications due to quantification algorithm mistakes. On the other 

hand, if the transcript-level anomaly scores are still significant, the corresponding transcripts 

are labeled “unadjustable anomalies”. Assuming the expected distributions are estimated 

with reasonable accuracy, we suspect the unadjustable anomalies are affected by the 

expression of unannotated transcripts’ expression and indicate incompleteness of the 

reference transcriptome. Benjamini-Hochberg correction is used to adjust the p-value of 

transcript-level anomaly score to control for the false positive labeling of anomalies for all 

transcripts.

Reducing number of transcripts involved in reassignment—In practice, we try to 

keep the number of transcripts involved in the LP as small as possible. When the 

quantification of a transcript is good enough, reassigning the reads may lead to a decrease of 

quantification accuracy. The correctness of the LP reassignment largely depends on the 

accurate estimation of the expected distribution. However, the accuracy assumption of the 
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expected distribution may not hold for all transcripts. An inaccurate estimation at some 

positions for one transcript can perturb the reassignment result across all involved isoforms. 

The perturbation can be large when the coefficient matrix in the LP has a large condition 

number (called ill-conditioned), which tends to occur more often as the number of isoforms 

involved in the LP increases. The ill-condition will make the output very sensitive to a small 

change or error of the input distributions. To reduce this problem in the LP reassignment, we 

only apply the LP reassignment on a small number of isoforms and reset the other isoforms 

to the quantifier’s read assignments. The choice of isoforms is determined by the following 

principle: the largest number of transcripts should have insignificant regional anomaly 

scores across all regions while at the same time minimizing the number of isoforms involved 

in the LP.

To obtain the largest number of transcripts with insignificant regional anomaly scores, we 

initially run the LP using all transcripts. Then we exclude each transcript one-by-one from 

the LP. If excluding a transcript from the LP does not change the set of transcripts with 

insignificant regional anomaly scores, the transcript is excluded forever from the LP, 

otherwise, it is kept in the LP. When excluding any transcript from the LP increases the 

number of transcripts with significant regional anomaly scores, the iterative process is 

terminate and the final set of transcripts involved in LP is determined.

Retrieving the expected distribution from Salmon—We processed the auxiliary 

output from Salmon to obtain the estimated expected distribution. The expected distribution 

is estimated for each transcript using the bias model from Patro et al. (2017). In the ideal 

case of sequencing, where the read is sampled randomly without any biases, the expected 

coverage is uniform along the positions of any transcript. However, in the real sequencing 

experiments, cDNA fragmentation and PCR amplification have preferences towards certain 

positional, sequence, and GC patterns, and the coverage is not expected to be uniform. The 

expected distribution is calculated to represent the probability of sampling a read at a given 

position of a given transcript. Salmon estimates the positional, sequence, and GC biases by 

adjusting the uniform distribution based on the read mapping. There could be other biases 

affecting the expected distribution. However, other biases are not considered in the model, 

and thus the bias correction model is only an approximation for the true expected 

distribution.

Retrieving observed coverage from Salmon—The observed coverage is the actual 

read coverage for each transcript. It is calculated by counting the weighted number of reads 

at each position at a given transcript after the weights are optimized by Salmon’s algorithm 

(Patro et al., 2017). Specifically, when a read is multi-mapped to several transcripts, the 

weight represents the probability that the read is generated from the transcript.

Retrieving expected and observed coverages from RSEM—The expected 

coverage can be estimated in RSEM by using the “--estimate-rspd” option. RSPD stands for 

read start position distribution and this models the 3′ positional bias, which is the only bias 

considered by RSEM. RSEM discretizes all transcripts into 20 bins (default parameter of 

RSEM) and estimates a single probability distribution for all transcripts to describe the 

probability of sequencing a read from each bin. To recover the estimated expected 
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distributions of each transcript, we extend the single probability distribution to the length of 

each transcript by uniformly distributing the probability to all transcript positions in the 

corresponding bin. The expected distribution of each transcript will look like a step function 

with the step size equal to the transcript length divided by the number of bins.

The observed coverage is directly processed from the BAM file output by RSEM, where 

each alignment record has an additional tag to denote the weight assigned to the 

corresponding transcripts. Summing up the weight of each alignment starting positions 

generates the observed coverage of RSEM.

With the expected and observed coverage calculated from RSEM, the anomaly scores and p-

values can be calculated in the same way as with Salmon. However, because RSEM has a 

single, binned expected distribution for all transcripts, the assumption that estimation error 

of expected distributions follows a Gaussian error may not be true. The estimated error of 

the expected distributions may not be small enough for the LP read reassignment to achieve 

an accurate adjusted quantification.

Simulation procedure—To mimic the real scenario where the target transcriptome 

contains unannotated transcripts outside reference transcriptome, we simulated target and 

reference transcriptomes as follows. Using the Gencode annotation (Frankish et al., 2018), 

we randomly selected 200, 500, 1000, 1500 genes, remove one transcript per gene, and use 

the rest of the transcript sequences as reference transcripts. For the target transcriptome, we 

simulated 200, 500, 1000, 1500 fusion genes, added them to Gencode transcript sequences, 

and use the combined full Gencode transcripts and fusion sequences as the target 

transcriptome that generates RNA-seq data. Each fusion transcript is simulated by randomly 

choosing a pair of transcripts that have not been involved in other fusion events, randomly 

choosing breakpoints within the transcript that are at least 20 bp away from the endpoints, 

and finally concatenating the pair of transcripts at their breakpoints. The 20 bp threshold 

ensures there is a distinction between indels when aligning or mapping the reads to the 

reference. In this case, the target transcriptome contains both unannotated isoforms and 

fusion sequences compared to the reference. We use both the protein-coding-only annotation 

and full annotation for removal and fusion simulation, to test both polyA RNA-seq and total 

RNA-seq techniques.

Reads are simulated using the target transcriptome by Polyester (Frazee et al., 2015). A 

count matrix is used as input in Polyester to denote the theoretical number of reads to be 

simulated for each transcript in the transcriptome. The count matrix is generated by 

quantifying RNA-seq datasets (GEUDAVIS, GM12878, K562) using Salmon (Patro et al., 

2017) and the original Gencode annotation. With the simulation datasets, Salmon version 

0.9.1 is used to quantify the reads against the reference transcriptome.

Detecting transcripts with non-identifiable abundances—The software eXpress 

(version v1.5.1) (Roberts and Pachter, 2013) is used to identify transcripts with non-

identifiable abundances. eXpress is a quantification tool that depends on a probabilistic 

model involving fragment lengths, transcript lengths, and mapping positions variables. It 

outputs whether the abundance of a transcript can be uniquely maximized, which is the 
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identifiability under its objective. We use the identifiability under eXpress as a proxy for the 

identifiability under the Salmon quantifier.

Though the quantification model of eXpress is different from that of Salmon, we expect that 

for many transcripts their identifiability statuses are the same under both models. 

Identifiability of a probabilistic model is largely determined by the parameter space, 

objective function and the probability assumptions. Both models maximize the probability of 

observing the given set of reads and use the same parameter space, which is the abundances 

vector of all transcripts. The basic model assumption, that the probability of observing a 

read from a transcript is proportional to the abundance of the transcript, is also shared. 

Under these input and assumptions, whether the optimal parameter settings are multiple 

largely depends on the similarity among input transcripts, specifically whether a subset of 

transcripts can be linearly represented by another subset of transcripts. We therefore expect 

the identifiability statuses are similar between the two quantification models, despite the 

difference in their objective functions and their optimal solutions.

STAR version 2.6.0 (Dobin et al., 2013) is used to align RNA-seq reads to Gencode version 

26 transcriptome sequences. The alignment is the input to eXpress quantifier. The 

identifiability is indicated in the “solvable” column of eXpress output.

Running transcriptome assembly on simulated and real data—RNA-seq reads 

are aligned to GRCh38 genome (Schneider et al., 2017) using STAR version 2.6.0 (Dobin et 

al., 2013). We ran Scallop version v0.9.8 on the alignments of all simulated, GEUVADIS 

and Human Body Map samples, and set all parameters to their default. We also ran StringTie 

(Pertea et al., 2015) version 1.3.1c on all these samples, using the option “–G” for guiding 

the transcriptome assembly by the reference transcriptome. When guided by reference 

transcriptome, the precision of StringTie can be better than Scallop on some samples. We do 

not guide the Scallop assembly by reference transcriptome since it does not have the option. 

We use gffcompare (Pertea, 2018) to compare the assembled transcripts with the reference 

transcript.

QUANTIFICATION AND STATISTICAL ANALYSIS

The main statistical analysis used in this paper is the p-value calculation for determining 

whether an anomaly score is significant. This p-value calculation is described in detail in the 

Method Details section, specifically the “Statistical significance of the anomaly score” 

section. Here, we review the steps in the method where these p-values are used.

The first step that uses the p-value calculation determining the initial anomaly candidates 

using the Salmon-computed distributions. The p-value is calculated for regional anomaly 

scores. In the anomaly categorization step, read assignments are adjusted by LP iteratively. 

In each iteration, the p-value is calculated for the regional anomaly scores calculated based 

on the reassigned observed distribution. After the termination of LP read reassignment, the 

p-value calculation is performed for the transcript-level anomaly scores that are based on the 

final LP reassigned observed distribution. All p-values for regional anomaly scores are 

calculated using the numerical approximation in equation (13). All p-values for transcript-
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level anomaly scores are calculated empirically by sampling from the assumed probability 

distribution.

The p-values are adjusted by Benjamini-Hochberg method. For regional anomaly scores, a 

threshold of 0.05 for the adjusted p-value is used to determine the significance of coverage 

inconsistency of each region. Transcripts with at least one region with significant regional 

anomaly scores are considered as candidate anomalous transcripts and included in all 

iterations of LP reassignment. For transcript-level anomaly scores, a threshold of 0.01 for 

the adjusted p-value is used to label unadjustable anomalies.

DATA AND CODE AVAILABILITY

The code used during this study is available at https://github.com/Kingsford-Group/sad.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research is funded in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative 
through Grant GBMF4554 to C.K., by the US National Science Foundation (CCF-1256087, CCF-1319998) and by 
the US National Institutes of Health (R01GM122935). This work was partially funded by The Shurl and Kay Curci 
Foundation. This project is funded, in part, under a grant (#4100070287) with the Pennsylvania Department of 
Health. The Department specifically disclaims responsibility for any analyses, interpretations or conclusions. The 
authors thank Dan DeBlasio and Rob Patro for helpful comments on this manuscript.

References

Al Seesi S, Tiagueu YT, Zelikovsky A and Măndoiu II, 2014 Bootstrap-based differential gene 
expression analysis for RNA-Seq data with and without replicates, BMC Genomics 15(8): S2.

Bray NL, Pimentel H, Melsted P and Pachter L, 2016 Near-optimal probabilistic RNA-seq 
quantification, Nature Biotechnology 34(5): 525–527.

Cabau C, Escudié F, Djari A, Guiguen Y, Bobe J and Klopp C, 2017 Compacting and correcting 
Trinity and Oases RNA-Seq de novo assemblies, PeerJ 5: e2988. [PubMed: 28224052] 

Consortium GP et al., 2015 A global reference for human genetic variation, Nature 526(7571): 68. 
[PubMed: 26432245] 

Costa-Silva J, Domingues D and Lopes FM, 2017 RNA-Seq differential expression analysis: An 
extended review and a software tool, PLoS ONE 12(12): e0190152. [PubMed: 29267363] 

Dapas M, Kandpal M, Bi Y and Davuluri RV, 2016 Comparative evaluation of isoform-level gene 
expression estimation algorithms for RNA-seq and exon-array platforms, Briefings in 
Bioinformatics 18(2): 260–269.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras 
TR, 2013 STAR: ultrafast universal RNA-seq aligner, Bioinformatics 29(1): 15–21. [PubMed: 
23104886] 

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar 
GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE and Finn RD, 2018 
The Pfam protein families database in 2019, Nucleic Acids Research 47(D1): D427–D432. URL: 
10.1093/nar/gky995

Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright 
J, Armstrong J et al., 2018 GENCODE reference annotation for the human and mouse genomes, 
Nucleic Acids Research 47(D1): D766–D773.

Ma and Kingsford Page 24

Cell Syst. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Kingsford-Group/sad


Frazee AC, Jaffe AE, Langmead B and Leek JT, 2015 Polyester: simulating RNA-seq datasets with 
differential transcript expression, Bioinformatics 31(17): 2778–2784. [PubMed: 25926345] 

Geniza M and Jaiswal P, 2017 Tools for building de novo transcriptome assembly, Current Plant 
Biology 11:41–45.

Glaus P, Honkela A and Rattray M, 2012 Identifying differentially expressed transcripts from RNA-seq 
data with biological variation, Bioinformatics 28(13): 1721–1728. [PubMed: 22563066] 

Guvenek A and Tian B, 2018 Analysis of alternative cleavage and polyadenylation in mature and 
differentiating neurons using RNA-seq data, Quantitative Biology 6(3): 253–266. [PubMed: 
31380142] 

Hensman J, Papastamoulis P, Glaus P, Honkela A and Rattray M, 2015 Fast and accurate approximate 
inference of transcript expression from RNA-seq data, Bioinformatics 31(24): 3881–3889. 
[PubMed: 26315907] 

Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MD, Niu B, McLellan 
MD, Uzunangelov V et al., 2014 Multiplatform analysis of 12 cancer types reveals molecular 
classification within and across tissues of origin, Cell 158(4): 929–944. [PubMed: 25109877] 

Jansen IE, Ye H, Heetveld S, Lechler MC, Michels H, Seinstra RI, Lubbe SJ, Drouet V, Lesage S, 
Majounie E et al., 2017 Discovery and functional prioritization of Parkinsons disease candidate 
genes from large-scale whole exome sequencing, Genome Biology 18(1): 22. [PubMed: 
28137300] 

Jiang H and Wong WH, 2009 Statistical inferences for isoform expression in RNA-Seq, 
Bioinformatics 25(8): 1026–1032. [PubMed: 19244387] 

Lappalainen T, Sammeth M, Friedlander MR, ACt Hoen P, Monlong J, Rivas MA, Gonzalez-Porta M, 
Kurbatova N, Griebel T, Ferreira PG et al., 2013 Transcriptome and genome sequencing uncovers 
functional variation in humans, Nature 501(7468): 506–511. [PubMed: 24037378] 

LeGault LH and Dewey CN, 2013 Inference of alternative splicing from RNA-Seq data with 
probabilistic splice graphs, Bioinformatics 29(18): 2300–2310. [PubMed: 23846746] 

Li B and Dewey CN, 2011 RSEM: accurate transcript quantification from RNA-Seq data with or 
without a reference genome, BMC Bioinformatics 12(1): 323. [PubMed: 21816040] 

Li B, Ruotti V, Stewart RM, Thomson JA and Dewey CN, 2009a RNA-Seq gene expression estimation 
with read mapping uncertainty, Bioinformatics 26(4): 493–500. [PubMed: 20022975] 

Love MI, Hogenesch JB and Irizarry RA, 2016 Modeling of RNA-seq fragment sequence bias reduces 
systematic errors in transcript abundance estimation, Nature Biotechnology 34(12): 1287–1291.

Love MI, Huber W and Anders S, 2014 Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq2, Genome Biology 15(12): 550. [PubMed: 25516281] 

Máximo V, Lima J, Soares P, Silva A, Bento I and Sobrinho-Simoes M, 2008 GRIM-19 in health and 
disease, Advances in Anatomic Pathology 15(1): 46–53. [PubMed: 18156812] 

Morán I, Akerman I, van de Bunt M, Xie R, Benazra M, Nammo T, Arnes L, Nakic N, Garcia-Hurtado 
J, Rodriguez-Segui S et al., 2012 Human β cell transcriptome analysis uncovers lncRNAs that are 
tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes, Cell 
Metabolism 16(4): 435–448. [PubMed: 23040067] 

O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-
White B, Ako-Adjei D et al., 2015 Reference sequence (RefSeq) database at NCBI: current status, 
taxonomic expansion, and functional annotation, Nucleic Acids Research 44(D1): D733–D745. 
[PubMed: 26553804] 

Patro R, Duggal G, Love MI, Irizarry RA and Kingsford C, 2017 Salmon provides fast and bias-aware 
quantification of transcript expression, Nature Methods 14(4): 417–419. [PubMed: 28263959] 

Pertea G, 2018 GffCompare, https://ccb.jhu.edu/software/stringtie/gffcompare.shtml.

Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT and Salzberg SL, 2015 StringTie 
enables improved reconstruction of a transcriptome from RNA-seq reads, Nature Biotechnology 
33(3): 290.

Phillippy AM, Schatz MC and Pop M, 2008 Genome assembly forensics: finding the elusive mis-
assembly, Genome Biology 9(3): R55. [PubMed: 18341692] 

Robert C and Watson M, 2015 Errors in RNA-Seq quantification affect genes of relevance to human 
disease, Genome Biology 16(1): 177. [PubMed: 26335491] 

Ma and Kingsford Page 25

Cell Syst. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ccb.jhu.edu/software/stringtie/gffcompare.shtml


Roberts A and Pachter L, 2013 Streaming fragment assignment for real-time analysis of sequencing 
experiments, Nature Methods 10(1): 71. [PubMed: 23160280] 

Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen H-C, Kitts PA, Murphy TD, Pruitt KD, 
Thibaud-Nissen F, Albracht D et al., 2017 Evaluation of GRCh38 and de novo haploid genome 
assemblies demonstrates the enduring quality of the reference assembly, Genome Research 27(5): 
849–864. [PubMed: 28396521] 

Shao M and Kingsford C, 2017 Accurate assembly of transcripts through phase-preserving graph 
decomposition, Nature Biotechnology 35(12): 1167–1169.

Smith-Unna R, Boursnell C, Patro R, Hibberd JM and Kelly S, 2016 TransRate: reference-free quality 
assessment of de novo transcriptome assemblies, Genome Research 26(8): 1134–1144. [PubMed: 
27252236] 

Soneson C, Love MI, Patro R, Hussain S, Malhotra D and Robinson MD, 2019 A junction coverage 
compatibility score to quantify the reliability of transcript abundance estimates and annotation 
catalogs, Life Science Alliance 2(1). URL: http://www.life-science-alliance.org/content/2/1/
e201800175

Soneson C, Love MI and Robinson MD, 2015 Differential analyses for RNA-seq: transcript-level 
estimates improve gene-level inferences, F1000Research 4.

The Illumina Body Map 2.0 data, 2011 URL: https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-513

Turro E, Su S-Y, Gonçalves Â, Coin LJ, Richardson S and Lewin A, 2011 Haplotype and isoform 
specific expression estimation using multi-mapping RNA-seq reads, Genome Biology 12(2): R13. 
[PubMed: 21310039] 

van Dam S, Võsa U, van der Graaf A, Franke L and de Magalhães JP, 2018 Gene co-expression 
analysis for functional classification and gene-disease predictions, Briefings in Bioinformatics 
19(4): 575–592. [PubMed: 28077403] 

Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander 
C, Stuart JM, Network CGAR et al., 2013 The cancer genome atlas pan-cancer analysis project, 
Nature Genetics 45(10): 1113–1120. [PubMed: 24071849] 

Zheng D, Wang R, Ding Q, Wang T, Xie B, Wei L, Zhong Z and Tian B, 2018 Cellular stress alters 3 
UTR landscape through alternative polyadenylation and isoform-specific degradation, Nature 
Communications 9(1): 2268.

Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell 
CP, Sonstegard TS et al., 2009 A whole-genome assembly of the domestic cow, Bos taurus, 
Genome Biology 10(4): R42. [PubMed: 19393038] 

Ma and Kingsford Page 26

Cell Syst. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.life-science-alliance.org/content/2/1/e201800175
http://www.life-science-alliance.org/content/2/1/e201800175
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513


Highlights

• A method to identify regions of transcripts that have inconsistent read 

coverage.

• Read re-assignment to reduce coverage anomaly generates adjusted 

quantification.

• Labeling anomalies as unadjustable or adjustable based on the reduction of 

anomaly.

• Common unadjustable anomalies usually have under-expressed regions on 

their 3′ exon.
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Figure 1: Examples of adjustable anomalies.
(A)–(C) The kidney sample of the Human Body Map dataset. (A) Red and blue points are 

the observed and expected coverage distribution before SAD adjustment. The expected 

distribution refers to the estimated expected distribution by the quantifier subtracted by the 

mean of Gaussian error. Each point is a 50 bp bin along the transcript. The anomaly 

transcript ENST00000545682.5 has an under-expression after its first splicing junction (top), 

marked by the red box. Another transcript is involved in the adjustment (bottom). (B) The 

distributions of the same pair of transcripts after SAD adjustment. (C) The protein domain 
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annotation of the two transcripts. In the plot, for readability, exon regions are expanded and 

intron regions are reduced. The lengths are in proportion to the genomic lengths for exons 

and introns separately. The under-expression anomaly region is marked by the red boxes. 

(D)–(F) A sample from the GEUVADIS dataset (accession ERR188088). (D) The top 

transcript ENST00000532808.5 is identified to be an adjustable anomaly, and its under-

expression anomaly region is marked by the red box. The bottom transcript is involved in the 

read reassignment. (E) The observed and expected distribution after SAD adjustment. (F) 

The protein domain annotation of the previous transcripts. The under-expression anomaly 

region is marked by the red boxed.
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Figure 2: Examples and characteristics of unadjustable anomalies.
(A) An example of unadjustable anomaly of gene UBE2Q1 (B) An example of unadjustable 

anomaly of gene LIMD1. Both examples are found in the heart sample of the Human Body 

Map dataset. Red and blue points are the observed and expected coverage distribution of the 

anomaly transcripts, and the blue shade is the standard deviation of the expected distribution 

estimation. The red box indicates the under-expression anomaly region. For both genes, the 

transcript region near the 5′ end is over-expressed, and the region near the 3′ end is under-

expressed. (C) The start and end proportion of the over-expressed and under-expressed 

Ma and Kingsford Page 30

Cell Syst. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



region of common anomalous transcripts. The red diagonal line separates between anomalies 

of which the over- (under-) expression regions mainly overlaps with the first half (5′ half), 

and the second half (3′ half) of the transcripts. For most of the anomalies, the over-

expressed region mainly overlaps with the first half of the anomalous transcript, and the 

under-expressed region mainly overlap with the second half of the anomalous transcript. (D) 

Histogram of the number of exons spanning the under-expressed region of the common 

anomalies. Y-axis is the count summed over all 46 samples. The under-expressed region 

usually only contain one or a partial exon.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Deposited Data

GEUVADIS Lappalainen et al. (2013) SRA:ERR188297, ERR188088, ERR188329, ERR188288, ERR188021, 
ERR188356, ERR188145, ERR188347, ERR188382, ERR188436, 
ERR188052, ERR188402, ERR188343, ERR188295, ERR188479, 
ERR188204, ERR188317, ERR188453, ERR188258, ERR188114, 
ERR188334, ERR188353, ERR188276, ERR188153, ERR188345, 
ERR188192, ERR188155, ERR188132, ERR188408, ERR188265

Human Body Map The Illumina Body Map 2.0 data SRA:ERP000546

1000 Genome Trio short 
read

Clarke et al. (2016) SRA:ERP012633

1000 Genome Trio long 
read

Chaisson et al. (2019) SRA:ERP015321

Human Reference Genome 
GRCh38

Schneider et al. (2017) ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/
GRCh38.primary_assembly.genome.fa.gz

Gencode annotation v26 Frankish et al. (2018) ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/
gencode.v26.annotation.gtf.gz

Software and Algorithms

SAD this work https://github.com/Kingsford-Group/sad

Salmon Patro et al. (2017) https://salmon.readthedocs.io/en/latest/

RSEM Li and Dewey (2011) https://deweylab.github.io/RSEM/

STAR Dobin et al. (2013) https://github.com/alexdobin/STAR

Scallop Shao and Kingsford (2017) https://github.com/Kingsford-Group/scallop

StringTie Pertea et al. (2015) http://ccb.jhu.edu/software/stringtie/

gffcompare Pertea (2018) http://ccb.jhu.edu/software/stringtie/gffcompare.shtml

Polyester Frazee et al. (2015) https://github.com/alyssafrazee/polyester

samtools Li et al. (2009b) http://samtools.sourceforge.net/

eXpress Roberts and Pachter (2013) https://pachterlab.github.io/eXpress/index.html
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