Table 2.
Summary of analysis methods with links to tutorials
Method |
Tutorial |
|
Dimensionality reduction methods | ||
1 |
Principal component analysis (PCA) [43] |
|
Unsupervised machine learning | ||
1 |
k-means [44] |
k-means tutorial https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/ |
2 |
Agglomerative hierarchical clustering (AHC) [45] |
AHC tutorial https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/ |
3 |
Divisive hierarchical clustering (DHC) [45] |
DHC tutorial https://www.datanovia.com/en/lessons/divisive-hierarchical-clustering/ |
4 |
Latent Dirichlet allocation (LDA) [24] |
LDA tutorial https://eight2late.wordpress.com/2015/09/29/a-gentle-introduction-to-topic-modeling-using-r/ |
Supervised machine learning | ||
1 |
Support vector machines (SVMs) [46] |
|
2 |
Random forest (RF) [47] |
|
3 |
Neural network (NN) [48] |
NN tutorial http://htmlpreview.github.io/?https://github.com/ledell/sldm4-h2o/blob/master/sldm4-deeplearning-h2o.html |