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Despite significant progress in oncology, metastasis remains the leading
cause of mortality of cancer patients. Understanding the foundations of
this phenomenon could help contain or even prevent it. As suggested by
many ecologists and cancer biologists, metastasis could be considered
through the lens of biological dispersal: the movement of cancer cells from
their birth site (the primary tumour) to other habitats where they resume
proliferation (metastatic sites). However, whether this model can consist-
ently be applied to the emergence and dynamics of metastasis remains
unclear. Here, we provide a broad review of various aspects of the evolution
of dispersal in ecosystems. We investigate whether similar ecological and
evolutionary principles can be applied to metastasis, and how these pro-
cesses may shape the spatio-temporal dynamics of disseminating cancer
cells. We further discuss complementary hypotheses and propose exper-
imental approaches to test the relevance of the evolutionary ecology of
dispersal in studying metastasis.
1. Introduction
Since the beginning of the ‘war on cancer’ [1], considerable advances have been
made in understanding cancer progression and developing therapeutics to
extendpatient lifespan.Despite suchprogress,metastatic cancer remains extremely
hard to cure, and is still the primary cause of death in cancer patients (e.g. for
bone metastasis [2]). Our current knowledge of metastases thus still lacks
essential data and information that could be used to target metastatic cells, or to
exploit weaknesses of such cells (e.g. [3]). Many mechanisms, such as epithelial–
mesenchymal transition and cell dedifferentiation, have been suggested and
successfully tested to explain how cancer cells acquire the ability to leave the
primary tumouranddisseminate to other organs [3–6]. Yet, a fully satisfying expla-
nation for the various causes of this process is clearly missing. As the tumour bulk
expands and many cancer cells move away from the core, some of them may join
the surrounding lymph and blood flow [7]. Following intravasation into blood
microvessels, a small proportion of disseminating cells may survive long enough
and succeed in extravasation to reach a habitat that is permissive enough to
allow them to resume proliferation and invasion [8]. Although metastasis is a
very inefficient process (only a minority of cancer cells disseminating away from
the primary tumouractuallymanifest in clinicallyapparentmetastases), ultimately
these invading cells can lead to the demise of the organism.

Fortunately, the metastatic cascade can be understood through Darwinian
evolutionary theories, as cancer cell populations undergo selection events

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.2186&domain=pdf&date_stamp=2019-11-27
mailto:tazziotissot@gmail.com
http://orcid.org/
http://orcid.org/0000-0002-2035-8216
http://orcid.org/0000-0002-4098-955X
http://orcid.org/0000-0003-2391-2988
http://orcid.org/0000-0002-6401-2903
http://orcid.org/0000-0001-9588-6542
http://orcid.org/0000-0003-2238-1978


(ii) collective
             dissemination

(i) primary tumour

(iv) immune
 cells

dissemination

(iv’) predators

(ii’) collective
              dissemination

(iii’) independent
           dissemination

(vi’) breeding site

(–) exposure to predator behaviour
(–) search for supportive environments
(–) niche construction

(–) lack of supportive resources
(–) higher exposure to predatory behavior

(–) acquisition of mobility traits
(+) avoidance of kin competition
(+) unsupportive environment

(i’) birth site

(a) Is leaving adaptive?

(b) What are the odds of dying
during dissemination?

(c) How can they successfully establish
     in a new site?

(v) blood or lymph vessels

(v’) land, water or air routes

(vi) secondary tumour

(iii) independent
         dissemination

Figure 1. The pros and cons of (cancer cell) dispersal. Dispersing individuals/cells have to leave (i) the primary tumour (respectively their birth sites) to disseminate
(ii) collectively or (iii) independently. They may be exposed to (iv) predatory behaviour (from predators or immune cells) when joining (v) the lymph or blood flow
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to beneficial or detrimental factors, which may or may not tip the balance towards dispersal. (Online version in colour.)
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during oncogenesis [9]. Most genotypic and phenotypic fea-
tures of cancer cells are deemed as adaptations, and the
same may apply to metastatic cells: the fact that they can
and do metastasize may result from proliferative advantages
to do so (e.g. [10,11]). Especially, a growing number of papers
has considered dispersal ecology as a good framework to
apprehend the dynamics of metastasis: in this case, biological
dispersal consists of the movement of cancer cells from their
birth site (the primary tumour) to other habitats where they
resume proliferation (metastatic sites [12]). ‘Why do cancer
cells metastasize?’ is conceptually equivalent to ‘why does
one disperse?’. The few papers that have embraced this ques-
tion propose that resource scarcity motivates the malignant
cells to leave (e.g. [13–16]). Yet, from the literature on the
evolution of dispersal, there are several other reasons why
cancer cells could benefit from moving [17–19]. In this
review, we address the current knowledge of metastasis in
regard to the ecology and evolution of dispersal, and we
investigate whether the characteristics of metastasis match
the definition of dispersal. Moreover, cancer cells shift
between habitats does not necessarily mean that they dis-
perse, and we further discuss alternative hypotheses and
propose possible approaches to disentangle the primary
causes of metastasis.
2. The pros and cons of cancer cell dispersal
For dispersal to evolve in a population, the benefits of
moving away must outweigh the cost of developing and
maintaining dispersal traits, the risk of colonization failure
and the spatial heterogeneity of the environment [20–23].
Organisms are more prone to disperse (i) when they initially
live in low-quality environments, (ii) when they are clustered
in groups of related individuals and (iii) when environmental
quality is variable in time and desynchronized in space or
when existing populations randomly go extinct [19]. More
complex cases involving a combination of these factors (e.g.
a high variability in environmental quality across time and
space [24]) can lead to the evolution of polymorphic or
alternative dispersal strategies, or even to cycles of dispersal
evolution (e.g. [25]). The evolution of dispersal is also
linked to the evolution of other important traits such as the
ability to assess local conditions (e.g. local population den-
sity), local adaptation or survival during the dispersal
episode.
(a) Costs of dispersal
Most of the time, the cost incurred by individuals leaving
their birthplace is high, as they involve energetic, time, risk
and opportunity expenses (see [23] for a review). None of
these costs has been directly investigated in metastatic
cancer cells, yet variation in the cost of dispersal can greatly
influence its success [26–28]. Less than 0.1% of cells dissemi-
nating from the primary tumour manage to form metastases
(a phenomenon referred to as ‘metastatic inefficiency’ [29]),
which suggests that disseminating cancer cells do indeed
incur at least some of these costs.

Before disseminating, organisms have to develop and
maintain dispersal traits (figure 1a). This can be achieved
through a phenotypic switch, for example, the dispersing
locust morph Locusta migratoria grows larger wings prior to
dispersal [30]. Organisms can also adapt to the migratory life-
style and obligatorily express dispersal traits in a given
proportion of offspring (e.g. the pappus parachutes of



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20192186

3
dandelion fruits [31]). Either way, in many cancers, dissemi-
nating cancer cells differentiate from non-disseminating
ones, as they display mesenchymal rather than epithelial
traits [3,32]. This switch clearly improves their disseminating
abilities [3] and thus might be adaptive, yet seems not to be
mandatory [33,34].

During dispersal, organisms are at high risk of being
harmed, or even of dying (figure 1b). During any movement
between habitats, they are much more exposed to dangers,
such as starvation (e.g. [35]), accidents or predation (e.g.
[36]). This latter risk seems to be strong enough so that
many prey species avoid dispersal behaviour when predation
risk is high (e.g. [37]). This risk seems moderate in the case of
metastasis, as about 80% of disseminating cancer cells survive
long enough in the lymph/blood flow to reach new organs
[29], the rest dying from higher exposure to the immune
system [38].

Having reached a new (micro)environment, the settle-
ment might fail due to (i) the presence of predators [39], (ii)
ending up in an unsuitable habitat [40] or (iii) the loss of facil-
itative interactions with other species (figure 1c) [41]. Though
often ignored, dispersing organisms can also cope with the
costs of habitat optimization, either by looking for supporting
habitats [42] or by constructing their niches [43]. Yet, on the
one hand, metastatic cells seem to be constrained by only
two of these factors [29]: the loss of immunosuppression
[44] and the loss of supporting interactions [45]. On the
other hand, the primary tumour seems to bear the costs of
habitat optimization by remotely initiating niche formation
in certain organs [46,47].
(b) Causes of dispersal
In spite of all the above-listed costs, dispersal and metastasis
are not rare phenomena, in wildlife and in cancer patients,
respectively. Leaving their birth habitat to find a more suit-
able environment, to ‘hedge their bets’ against temporal
fluctuations of the environment or to favour their kin, there-
fore appears to be mutually beneficial for individuals and
cancer cells (figure 1a) [16,17].

Several factors can make a habitat less suitable for a
species to thrive in, especially habitat decay: a sudden burst
of proliferation in a community accelerates resource con-
sumption and waste production, which in turn might lead
to a depleted, toxic ecosystem. This phenomenon has been
well documented in phosphorus- and nitrogen-polluted
aquatic and marine ecosystems, among which many are at
high risk of collapse due to recurrent algal blooms [48]. In
the absence of higher-level consumers, pulse eutrophication
(sporadic increases of resource influx) increases consumer
population size beyond equilibrium and hence enhances
competition for temporally heterogeneous resources (i.e.
decreases per capita resource consumption rate), which in
turn should favour facultative dispersal response to emigrate
towards more suitable environments (i.e. eutrophic patches
that are still devoid of competitors [17]). A similar phenom-
enon can actually be identified in tumours: the rapid
proliferation of cancer cells quickly overwhelms the physio-
logical turnover of oxygen and nutrients, and the
emergence of glycolytic subclones favours the accumulation
of lactic acid in the micro-environment. The resulting
hypoxic, acidic micro-environment (the ‘cancer swamp’
[16,49]) is part of the tumour niche construction, but is hostile
to the survival of acid-non-adapted cells [50]. The emergence
of the cancer swamp could allegedly be a leading ultimate
cause of dissemination and metastasis: not only could this
degraded ecosystem theoretically not support a larger cell
population [51], but many cancer cells might have better
chances to thrive in other distant, undegraded habitats
[16,52,53]. In agreement with this hypothesis, the emergence
of hypoxia has been proximally linked to metastasis through
pericyte depletion and the effect of hypoxia-induced tran-
scription factors favouring intra- and extravasation of
cancerous cells [54–56].

Whether cancer cells may evolve under kin selection
remains debated [57]. However, cancer cells are involved in
cooperative interactions (e.g. the collective production of
growth factors [58]), which benefits could be mediated by
their distance to related cells [59]. Indeed, limited dispersal
favours spatial proximity between related individuals and
enhances the likelihood of kin competition, which can
cancel out the transmission of benefits among kin. Thus, on
the one hand, many species should evolve long-distance dis-
semination specifically to avoid kin competition [18,60]. On
the other hand, cooperation and aggregation can still favour
the evolution of plastic negatively density-dependent long-
range dispersal, when cooperators end up clumped together
in a new habitat with weak competition [61]. In the absence
of phenotypic plasticity of dispersal and in sexually reprodu-
cing populations, theoretical models predict that cooperation
and dispersal tend to not co-evolve jointly, either through
alternative evolutionary outcomes (i.e. evolution towards
cooperation or dispersal, but not both [62]; but see [63] in
the case of budding dispersal) or through the evolution of
social polymorphisms with self-serving dispersers and sessile
cooperators [64]. Circulating tumour cells (CTCs) have them-
selves been observed to disperse alone and in groups of up to
around 100 cells (CT clusters [65]), and cancer cells reproduce
asexually, so it is uncertain which of the aforementioned evol-
utionary outcomes is the most likely to explain a role of kin
selection in metastasis.
3. Modes of cancer cell dispersal
Many cancer cells may be exposed to ecological factors that
could drive them to metastasis, but only a few of them will
disseminate and metastasize. This can be explained by a
strong selection of adaptations to dissemination, with some
cells being more prone than others to join dispersal (i.e.
inter-cell heterogeneity). Identifying and targeting dispersal-
prone cells might help the early containment of the metastatic
process. Besides, several routes are likely to lead to metastasis
[66], but why and how cells engage in one route rather than
another remains to be determined.

(a) Which cells should disperse?
As argued above, the depreciation of the tumour micro-
environment is likely to drive cancer cells to metastasis. Yet,
should every cancer cell metastasize? The answer is
obviously ‘no’, as a significant reduction in population den-
sity might be sufficient to lower the pressure on the
remaining cells (e.g. [60]). But then, should dissemination
intensify as the tumour grows (e.g. [67]), or should tumour
size decrease or remain steady as disseminating cells flee
the ship? Recent experimental evidence indicates that



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20192186

4
cancer cell dissemination may start as early as 1 year after
initiation [68–71], and up to 80% of metastases result from
early dissemination [69]. Metastasis thus coexists with other
strategies that can lead cancer cells to thrive in the primary
tumour micro-environment. Indeed, generally there is a
trade-off between dispersal and local adaptation [72,73]: the
cost of leaving can be higher than the cost of specializing to
a particular habitat type, which in turn would discourage
dispersal if habitat types keep constant in time. The fate of
cancer cells towards metastasis could, therefore, be deter-
mined by the relative cost of local adaptation, which
should vary a lot due to the spatial heterogeneity of
primary tumours [74], and the comparative disadvantage
of generalism versus specialization in local adaptation to
environmental conditions. Moreover, since the permissivity
to cancer proliferation varies with organs and over time, dis-
seminating cancer cells could maximize the odds that cancer
cells survive most micro-environmental changes.

Although metastasis could be an adaptation to the pro-
gressive transformation of the tumour into a cancer swamp
[16,49], cancer cells can also fix their micro-environment by
growing de novo blood vessels through the recruitment of
endothelial cells (angiogenesis [56]) or by forming channel-
like structures (vasculogenic mimicry [75]). This probably
results in the spatial redistribution of glucose, oxygen and
waste [74], and might determine the fate of cancer cell popu-
lations. In the areas of the tumour most distant to blood
vessels, perturbations are temporally correlated (as little
oxygen and metabolites diffuse till there), which might
favour local adaptation as acid-tolerant, slow-growing sub-
clones [74] rather than dispersal [22,24]. Closest to the
blood vessels, the local concentrations of oxygen and nutri-
ents are overall higher, but fluctuate even more in time
[76,77]. One can thus expect that cancer cells surrounding
blood vessels are the most prone to disperse (e.g. [75]), as
they experience a highly fluctuating environment [22,24].
Yet, to differentiate this ultimate hypothesis from the proxi-
mal mechanism of a nearer access to blood flow, migration
rates should be measured when resources are provided to
cells with different schedules in in vitro cell culture models.
(b) To disperse alone or collectively?
Although CTCs have been known since the 1950s, collective
routes to metastasis have not been in the spotlight of cancer
research until recently [45,65]. The recent discovery of CT
clusters goes hand in hand with their huge metastatic poten-
tial: they have been observed to be up to 50-fold more likely
to establish metastases than independent CTCs and they are
escorted by neutrophils [33,78–81]. Indeed, cells of CT clus-
ters are clumped together by intercellular adhesion proteins
[33,34], which protect them from anoikis during dissemina-
tion in blood vessels [82]. Moreover, despite being bigger
than individual CTCs, CT clusters can actually join capillary
microcirculation [83], where they are prone to be intercepted
and form a microemboli (a small blot clot in the bloodstream)
to the direct vicinity of an organ to metastasize [33]. Finally,
as observed in xenografts [84], several distinct clones are
necessary to form a tumour de novo. Contrary to indepen-
dent CTCs, many CT clusters are oligo- or polyclonal
[33,34,85], and thus could settle more easily by importing
their collective niche in the new habitat [45,86].
Yet, despite the potential efficacy of CT clusters to pro-
duce metastases, they are found in only less than 20% of
cancer patients, whereas independent CTCs are more wide-
spread and abundant (greater than 60% of patients [87,88])
and emerge much earlier than CT clusters [87]. This apparent
paradox could be compared to the competition–colonization
trade-off [89,90]: for a given amount of resource allocated to
dispersal, an individual can produce either few efficient
propagules or many inefficient propagules, or any intermedi-
ate strategy between these two extremes. CTCs and CT
clusters thus would be two distinct strategies achieving the
same role with different levels of effectiveness. Independent
CTCs might first colonize unoccupied sites, while the more
efficient CT clusters might then outcompete the preexistent
micrometastases in a few sites.

The kin selection might also play a role in the coexistence of
both strategies. If the competition–colonization trade-off
has been reported both in multicellular [91] and unicellular
organisms [92], budding dispersal has mostly been reported
to evolve under kin selection, notably in social arthropods
(colony fission [93]; ballooning in arachnids [94]) and social
microorganisms [95]. Dispersal in small groups can favour the
evolutionary persistence of altruistic behaviours [95], and CT
clusters might thus be the expression of preferential assortment
(e.g. [96]). Moreover, Giuliano et al. [45] recently argued that the
highly metastatic potential of CT clusters could be the result of
the initiation of a pre-metastatic niche by independent CTCs—a
phenomenon that was earlier reported for the primary tumours
[46,47,97]. Independent CTC dispersal would thus also be the
result of a complex, altruistic strategy driven by kin selection,
independent CTCs paving the way for future CT cluster
dispersal and ensuing metastasis.
4. The timing of cancer cell dispersal
Although metastasis is usually the final stage of cancer pro-
gression, there has been much debate on when it does
really occur. The most recent estimates support early origins:
cancer cell dissemination can occur before malignancy is his-
tologically detectable [71,98]. Dissemination as early as 1 year
after initiation can yield distant metastases [70]—more than
80% of them in the case of breast cancer [69,99]. Yet, if
most micrometastases are formed early, it is unclear if CTCs
and CT clusters found in the blood flow during clinical
stages have evolved to disperse, and why metastases only
become detectable in late cancer progression.

(a) The same causes through time?
A likely scenario is that the selective pressure driving cancer cell
dispersal might shift through time, with late clinical-stage
pressure strongly differing from selective pressure acting on
cell dissemination abilities at the onset of the primary tumour
development (figure 2 for a summary). Indeed, though compe-
tition for the colonization of new sites could be quite lowduring
earlydissemination, the relative benefits fromdispersing should
still make up for the risk of dying and/or settlement failure
[100]. Early dissemination thus could be driven—at least in
part—by the avoidance of kin competition: in early tumours,
relatedness is expected to be very high among cancer cells and
between cancer cells and the neighbouring tissues. Whether
the degradation of the primary tumour is a significant enough
pressure todrivemetastasis is unclear at this stage. Thepotential
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benefits of dispersing towards different sites should gradually
decrease as micrometastases are formed (and thus competitive
pressure for the invasion of healthy organs increases), but selec-
tive pressures on dispersal could also increase throughout
cancer progression due to modifications of the local environ-
ment. As the primary tumour grows, its degradation should
worsen due to the growing accumulation of toxic waste.
Moreover, the diversification of subclones across time [101] is
likely to decrease the relatedness between cancer cells, which
likely favours the emergence of cheaters and the collapse of
cooperation networks [58]. Both micro-environmental decay
and the lack of supportive interactions could make the tumour
unbearable for many cancer cells, which would then have
better chances of sustenance in other habitats, though they
wouldbeuncertain to settle inanyof them.The relativedecrease
in relatedness among cancer cells in advanced tumours might
also select negatively against dispersal [102,103], but the
strength of the kin competition effect on dispersal is expected
to decrease as population size increases anyway [104–106],
so this effect might be very minor when compared with the
disruption of cooperation networks mentioned above.

Opportunities of dispersal might even be stronger as cancer
progresses. On the one hand, cancer cells have more time to
evolve complex adaptations to dissemination and settlement,
such as invasion and motility [13,32,107,108]. Moreover, thera-
peutical interventions and the immune system select cancer
cells for treatment resistance [109], immune editing and
immune regulation throughout cancer progression [110],
which results in better chances of survival and settlement for
late-disseminating cells [111]. On the other hand, as free meta-
static sites become scarcer, the selection on metastatic abilities
becomes stronger: either to successfully construct their niches
in free sites or to outcompete previous settlers. This
could explain the late emergence of CT clusters [112], in which
metastatic potential is much higher than in CTCs [33].
(b) A kin selection perspective on metastatic dormancy
Though most micrometastases are formed early, the late
occurrence of macrometastases has mostly been explained
by dormancy [100,113–115]: once settled in a new habitat,
metastatic cancer cells arrest cell division until reactivation.
Thus, metastatic dormancy has sometimes been deemed
imposed by immune control [116]. However, it could also
be considered adaptive for metastatic cells themselves: dor-
mant cells go under the radar of the immune system, and
their stem-cell-like state allows them to survive during the
time they adapt to their new habitat [117].
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There is also some evidence that the primary tumour is
able to inhibit metastatic proliferation [118,119], as undetected
micrometastases frequently grow into macrometastases after
the primary tumour is surgically resected. A similar phenom-
enon can be observed in many plant species, which force their
seeds into dormancy so that they are reactivated only when
environmental conditions are suited to germination [120].
But seed dormancy can also play a role in kin competition
avoidance: dormancy of natal dispersers decreases the likeli-
hood that two related individuals grow at the same time,
and therefore compete for resources. Kin selection thus favours
seed dormancy in species that rarely disperse or that disperse
to short distances [121]. Early-disseminating cancer cells may
likewise evolve the ability to enter dormancy if they receive
benefits from related, neighbouring cells [122]. It is important
to notice though that, alternatively, non-dispersing cells could
simply evolve the ability to force other cells into dormancy in
order to avoid competition altogether.

Conversely, metastatic dormancy could be the result of
altruistic behaviour produced by the primary tumour and
early dispersers to favour the settlement of late dispersers.
Indeed, primary tumours have been observed to remotely
initiate pre-metastatic niches in other organs, through the
secretion of exosomes [46,47]. It is unclear whether this behav-
iour is adaptive or a non-adaptive by-product, but similar
behaviours from early-disseminating CTCs have been hypoth-
esized to explain the huge metastatic ability of late CT clusters
[45]. Thewaste of early-disseminating cells favouring late disper-
sers could—at least partly—explain the late occurrence of
macrometastases. If altruistic, these behaviours should evolve
under kin selection; yet metastases could also behave as a stock
of seeds that can support the primary tumour if needed [123].
5. Future directions
In this paper, we have discussed many aspects of the meta-
static cascade and we have drawn similarities to the
dispersal process—some of which remain untested and/or
controversial. Here, we discuss a few alternative explanations
for the metastatic process, and suggest a protocol to study the
existence of dispersal dynamics in cancer.
(a) Complementary explanations
The fact that the dissemination of cancer cells is under selection
is by no means a guarantee that the important selection press-
ures are the same as those found in dispersing organisms.
There are actually other incentives for the primary tumour to
spread some of its cells towards multiple other sites. For
instance, cancer cell movement could evolve as an extremely
altruistic behaviour, such as a lure-based defense mechanism
against the immune system. Indeed, some CTCs could be a
bait to lure the immune system out of the range of the primary
tumour [124]: by scattering the attacks of the immune system,
such a strategy could be adaptive for the primary tumour.
Most of CTCs would be sacrificed but, by chance, a few of
them could shelter in other tissues, and eventually formmetas-
tases. Under this hypothesis, one could expect not only that
CTCs have a lower fitness than non-dispersers, but also that
non-dispersers’ fitness would drop if CTCs were selectively
removed (e.g. with monoclonal antibodies) before being
detected by the immune system. Another hypothesis would
be that metastasis occurs as a result of group selection [125].
Given several cancer cell lineages simultaneously evolve in the
body, primary tumours able to yield secondary tumours
might be able to invade new environments, and thus to locally
outcompete the tumours that do not disseminate. Under this
hypothesis, metastasis would be a strategy allowing the pri-
mary and secondary tumours, as a whole, to outcompete
every other lineage from the body.
(b) Putting the dispersal hypothesis to the test
If metastasis relies on the same causes as the evolution of dis-
persal, it could be triggered by the following causes: (H1) the
deterioration of environmental conditions within the primary
tumour and (H2) altruistic behaviours among kin cells. We
suggest that a xenograft experiment might help investigate
whether some of these factors can control the dynamics of
metastasis, and ultimately whether the evolution of dispersal
is a relevant paradigm to study metastasis. In the experiment
described below, we propose (i) to isolate a few cancer
lineages from in vivo tumours, (ii) to investigate their geno-
types and phenotypes and (iii) to mix them into tumours à
la carte. By xenografting these tumours into isogenic mice,
by controlling for mice microbiota to avoid the onset of het-
erogeneous immunotherapy [126] and by following
metastasis rates, one might be able to test all the hypotheses.
It is important to note that these tumours could also be
implanted in chemostats to follow dispersal rates in vitro,
by counting cells acquiring disseminating traits.

To test the hypothesis (H1), we propose to use xenograft
mice with unvascularized tumours composed of oxygen-
dependent lineages. In the test groups, xenografts would
contain a range of frequencies of fermentative, oxygen-
independent lineages. As the fermentative cells should pollute
their micro-environment more quickly than the respiratory
ones, we predict that the number of metastases growing in
mice would increase with the initial frequency of oxygen-inde-
pendent lineages. To test the hypothesis (H2), we propose to
use xenograft mice with unvascularized tumours composed of
several genetically distinct clones. We predict that the number
of metastases would be the highest for intermediate levels of
intra-tumour heterogeneity: a certain level of genetic diversity
is necessary for tumours to adapt (alternatively for metastases
to settle), but cancer cells would have no incentive towards
metastasis in the most heterogeneous tumours where virtually
no other cell will be related to them.

It is important to note that we do not propose the hypo-
theses to be mutually exclusive. In fact, the metastatic process
could be due to a combination of different phenomena in
response to different selective pressures, so that the inefficiency
of the metastatic process could be ‘only apparent’.
Glossary
altruistic
 what increases another individual’s
fitness while decreasing the carrier’s
circulating tumour cells
(CTCs)
cells that have shed into the vascula-
ture or lymphatics from a primary
tumour
dispersal
 movement of organisms from their
birth site to their breeding site
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hypoxia
royal
condition in which a region of the
body is deprived of adequate oxygen
supply at the tissue level
soc
kin selection
 ietypub
evolutionary strategy that favours
the reproductive success of an
organism’s relatives
lish
metastase
ing.
secondary tumour formed by cells
derived from a primary site
org
metastasis
/journa
spread of cancer cells from a pri-
mary site to a secondary site within
the body
niche construction
 the process by which an organism
alters its own local environment
xenograft
 tissue transplant from another species
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