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We argue that natural language can be usefully described as quasi-
compositional and we suggest that deep learning-based neural language
models bear long-term promise to capture how language conveys meaning.
We also note that a successful account of human language processing should
explain both the outcome of the comprehension process and the continuous
internal processes underlying this performance. These points motivate our
discussion of a neural network model of sentence comprehension, the
Sentence Gestalt model, which we have used to account for the N400 com-
ponent of the event-related brain potential (ERP), which tracks meaning
processing as it happens in real time. The model, which shares features
with recent deep learning-based language models, simulates N400 ampli-
tude as the automatic update of a probabilistic representation of the
situation or event described by the sentence, corresponding to a temporal
difference learning signal at the level of meaning. We suggest that this process
happens relatively automatically, and that sometimes a more-controlled atten-
tion-dependent process is necessary for successful comprehension, which
may be reflected in the subsequent P600 ERP component. We relate this
account to current deep learning models as well as classic linguistic theory,
and use it to illustrate a domain general perspective on some specific linguistic
operations postulated based on compositional analyses of natural language.

This article is part of the theme issue “Towards mechanistic models of
meaning composition’.

1. Introduction

Language ultimately aims to convey meaning, but despite the crucial role of
meaning, the mechanistic basis of the processing of meaning in language
remains incompletely understood. One much debated issue is the composition
of meaning, i.e. the construction of an integrated meaning representation. In
sentence comprehension, this corresponds to the formation of a representation
of sentence meaning based on the sequence of individual words.

Correspondingly, in the world, situations and events are composed of entities
and actions, each contributing to the overall meaning. The situations and events
are often composed according to a specific structure or regularity in that they con-
sist of specific roles entailing specific expectations, which can be filled by different
event participants compatible with these expectations. For instance, in a restau-
rant, there are roles such as waiters and customers, or in a family, there are
roles such as father, mother and children, each of which can be filled by a large
variety of people. Even more interchangeable event participants can take on
roles in events involving actions such as giving, taking, buying, etc.

A widely discussed concept in investigations of the formation of an inte-
grated representation of sentence meaning is the concept of compositionality.
We are deeply interested in the neurocognitive processes underlying the
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formation of an integrated meaning representation during
language comprehension, but are not experts in the linguistic
and philosophical debates concerning the concept of compo-
sitionality. To set our ideas in relation to these debates,
we consulted the literature on compositionality, with basic
chapters on compositionality written by experts in the field
as our entry points.

A classic definition of compositionality is given by Partee
et al. [1], who define the principle of compositionality as the
statement that ‘the meaning of a complex expression is a func-
tion of the meanings of its parts and of the syntactic rules by
which they are combined’ [1, p. 318]. Pelletier notes in the
Oxford Encyclopedia chapter on semantic compositionality
[2, p. 1] that ‘most linguists have heard of semantic composi-
tionality. Some will have heard that it is the fundamental
truth of semantics. Others will have been told that it is so
thoroughly and completely wrong that it is astonishing that
it is still being taught’. An interesting perspective on compo-
sitionality is also provided by Janssen in his chapter on
compositionality in the Handbook on Logic & Language [3]
where he argues that ‘the principle [of compositionality]
should not be considered an empirically verifiable restriction,
but a methodological principle’ [3, p. 419]. Indeed, a common
topic of discussion and research concerning compositionality
seems to consist in the raising of counterexamples (i.e. sen-
tences that seem incompatible with the principle) and
the subsequent search for a solution, which allows for a
compositional analysis of the sentence by extending the
concept of parts, syntactic rules or both, as given in the
definition of compositionality above (see [3] for many such
counterexamples and their compositional solutions).

Based on this exercise, a viable position seems to be that
any natural language fragment can be analysed composition-
ally as long as enough complexity is built into the lexicon,
syntax or both. As an example, consider the meaning of
‘she felt the baby kick’ and ‘he felt the rifle kick’, which
describe very different events. We would not capture the
understood meaning of either sentence by simply placing a
representation of the meaning of each of the words into cor-
responding places in compositional structures, as the nature of
the action expressed by the word ‘kick’ is very different in
the two sentences above. For example, in the first sentence,
we understand the baby’s kick as an occurrence that may be
a mother’s first experience of the movement of her unborn
baby. This seems to suggest that the understood meaning of
the sentence is incompatible with compositionality. However,
it is argued that complexity added to the lexicon, the syntax
or both, will allow for a compositional analysis of such
sentences despite the initial apparent incompatibility. For
example, the entries for 'rifle’ and ‘baby’ could select specific
definitions of the meaning of ‘kick’. In the light of this flexi-
bility, we agree with Janssen who suggests that ‘the real
question is not whether a certain phenomenon can be analysed
compositionally, but what makes the overall theory (un)attrac-
tive or (un)acceptable’ [3, p. 441]. Relatedly, he notes that it has
been suggested that the necessity to stretch the concepts of the
lexicon and syntax to achieve compositionality makes compo-
sitionality ‘a vacuous principle’ [3, p. 457]. Jannsen goes on to
reject this view, because from his perspective, ‘the challenge
of compositional semantics is not to prove the existence of
such semantics, but to obtain one’. Here, as noted above,
compositionality becomes a methodological principle allowing
researchers to ‘design a function that assigns meanings’. Other

researchers do view compositionality not as a method but as a
factual claim, open to empirical testing [4]. For those who see
compositionality as a factual claim, a possible empirical
research programme (related to the question raised in the
next paragraph) is to investigate whether the operations
postulated to enable compositional analyses of natural
language sentences are reflected in online measures of
human language comprehension [5-9].

Indeed, an important distinction we have not yet con-
sidered is the distinction between natural language
understanding, defined as the human process of understand-
ing natural language, and natural language semantics,
defined as the model-theoretical analysis of natural language
sentences in terms of their truth values. It is possible that com-
positionality holds to a different extent in these two cases.
Partee, who coined the classic definition of compositionality,
argues (according to Janssen [3]), that a finite complete compo-
sitional semantics that really deals with human natural
language understanding is not possible [10,11]. Specifically,
Janssen summarizes Partee’s view as follows [3, p. 447]: ‘Com-
positional model-theoretic semantics is possible and
important, but one should understand the limits of what it
can do. In a system of compositional semantics the flexibility
of language is abstracted away. Therefore it is too rigid to
describe the real life process of communication, and limits
the description of language users to creatures or machines
whose minds are much more narrowly and rigidly circum-
scribed than those of human beings. This underscores
the argument that a theory of natural language semantics
should be distinguished from a theory of natural language
understanding’. We agree with this view.

We respect that other researchers may have different views
on this issue and we agree that it can be a valuable research
programme to investigate in how far concepts from model-the-
oretic compositional semantics can account for aspects of
human language comprehension as noted above (see §5 ‘A
neural network perspective on linguistic operations postulated
in compositional analyses’ for further discussion). At the same
time, we agree with Partee that restricting theories of human
language understanding to lie within what is possible when
adhering to her definition of compositionality places undesir-
able limits on the development of a theory of human natural
language understanding, which is our main interest.

Elsewhere, we have described natural language as well as
natural objects and events as quasi-compositional or quasi-
regular [12-14]. We use the phrase ‘quasi-compositional’
to contrast our view with the usage of compositional found
in Fodor & Pylyshyn [15]. They give ‘compositionality’ a
restricted meaning, in which the contribution each lexical
item makes to the meaning of a sentence is always the
same. They appealed to such a restricted definition of compo-
sitionality, arguing that it allows language to be productive.
On p. 42, they wrote ‘in fact, you need a further assumption,
which we’ll call the “principle of compositionality’: insofar as
a language is systematic, a lexical item must make approxi-
mately the same semantic contribution to each expression
in which it occurs. It is, for example, only insofar as ‘the’
‘girl’, loves” and ‘John” make the same semantic contribution
to ‘John loves the girl’ that they make to ‘the girl loves John’
that understanding the one sentence implies understanding
the other’. However, as already discussed, such a restricted
form of compositionality does not fully capture the mapping
from language to meaning, and in our view this explains



why compositional approaches have (to the best of our
knowledge) not yet proven successful in large-scale machine
approaches to natural language processing (NLP).

Rather than adding complexity to try to address the wide
range of cases where the restricted form of compositionality
fails, we instead note that there is generally a degree of com-
positionality coupled with a degree of specificity in every
linguistic or conceptual object, from phonetic objects in
spoken words to conceptual objects in events and situations
[12-14]. In our ‘felt/kick’ examples, there is a force exerted
by an object on a target sentient being by either a rifle or a
baby causing a sensation in the target. We seek a system
that captures this core (the regular or compositional part)
and allows it to be available for generalization, just as
Fodor and Pylyshyn desire, while simultaneously providing
a means to capture the idiosyncratic elements that go
beyond it (thereby making the compositionality only partial).
We have the hope that our approach can capture the flexi-
bility of language Partee mentioned in the passage quoted
above,' while also capturing the regular or systematic part
of language as just described.

Specifically, we adopt neural network models, which are
not based on pre-defined symbols and explicit rules
accompanied by lists of exceptions, but rather learn continu-
ous nonlinear functions mapping from inputs to outputs
without imposing constraints on the internal representation
used. We adopt neural networks because we believe they
hold promise to capture both the regular or systematic as
well as the exceptional and idiosyncratic aspects of language,
of our construals of the world, and of the mapping between
them, and that the human process of learning to understand
language consists in learning functions mapping between
these domains. These learned functions are more flexible
than strict rules, extracting general statistical regularities,
which can yield rule-like behaviour, while being at the
same time sensitive to specific information, allowing them
to capture exceptions as well as graded influences of both
general and specific information as in quasi-regularities
(e.g. ’kick’ in the examples above). Here simplicity is achieved
by letting the gradient-based learning process that adjusts the
connection weights in the neural network sort out both the
systematic and idiosyncratic aspects of the mapping, rather
than attempting to capture them in explicit form.

Technical developments, increases in computing power,
and the availability of large corpora of training data have
resulted in deep neural network models making great progress
in large-scale NLP such as in machine translation [16] as well
as natural language understanding tasks as assembled in
the General Language Understanding Evaluation benchmark
[17]. Considerable challenges remain for neural network
models in the domain of language comprehension (see e.g.
[18,19]) and there is certainly room for improvement [20].
However, we are encouraged by the current rate of progress
on problems in NLP such as capturing scope phenomena
with negations [21] and quantifiers [22], the ability to use a
new word in combination with other words after learning
about it when it only occurs by itself [23], as well as a broad
range of other NLP tasks [24-27]. Together with the struggles
of rule-based approaches in NLP, these developments seem to
indicate there is certainly reason to continue exploring neural
network models as alternatives to more explicit, rule-based
compositional approaches when aiming to obtain functions
mapping from natural language to understood meaning.

Against this backdrop, our work asks whether and how
neural network models can account for neural responses
observed during human language comprehension. In our
view, a convincing theory of human language comprehension
needs to address not only successful comprehension as
measured by behavioural responses, but also the continuous
internal processes underlying this performance, operating
closer to what Marr called the ‘algorithmic” rather than ‘com-
putational’ level [28]. A pertinent measure of online language
comprehension processes is provided by event-related brain
potentials (ERPs), which offer time-resolved measures of elec-
trical brain activity during comprehension. While behavioural
responses in specific tasks are typically influenced by a mixture
of processes, specific ERP components (i.e. peaks and valleys in
the waveform which are reproducible in terms of their latency,
polarity, topographical distribution and functional character-
istics) reflect specific sub-processes taking place between
stimulus presentation and response, making it possible to
disentangle and investigate these sub-processes separately.

Here, we mainly focus on the N400 component, which has
been used in more than a thousand empirical studies and
seems to reflect the initial, relatively automatic brain response
to incoming language input [29]. We will argue that N400s
are currently most comprehensively accounted for by a
neural network model of sentence comprehension called the
Sentence Gestalt (SG) model [30], which learns a function map-
ping from the sequence of incoming words to a representation
of the event or situation the sentence describes. In this model,
meanings of components (words and phrases) are not
assembled into an overall meaning representation. Instead,
they provide clues to meaning [31], in that each incoming
word constrains the representation of all of the objects, actions
and relationships characterizing the described event.

We see the SG model as capturing the N400, which we view
(as noted above) as reflecting as relatively automatic brain
response. This process may not always result in a coherent
interpretation and in these cases, cognitive control may be
necessary for successful comprehension. We argue that control
processes and/or their outcome are reflected in another ERP
component, the P600, which sometimes follows the N400 and
seems more dependent on attention and task variables [32].
The distinction between automatic and controlled processes
or related distinctions such conscious versus unconscious per-
ception, and goal-directed versus habitual control in decision
making are ubiquitous in cognitive and systems neuroscience.
We suggest that this distinction plays an important role in
language comprehension as well. Sentence comprehension
often seems like an effortless process—it seems almost difficult
not to understand simple sentences (e.g. ‘the boy kicked the
ball’) when hearing or reading them. However, when asked
for instance whether the sentence ‘The dog was bitten by the
man’ describes a plausible event, there might be an initial
moment of confusion and some effort needed to reach the
conclusion that the described event is highly implausible. We
suggest that consideration of both automatic and controlled
aspects of language comprehension can help us understand
the internal processes involved in human sentence comprehen-
sion and thus the functional basis of language-related ERPs
such as the N400 and P600. This dimension currently seems
to be missing in modern neural network models of language
comprehension in use by the machine learning community,
where the goal is to solve applied problems. However, the elec-
trophysiology of language comprehension offers clues that we



argue must be attended to if we are to fully understand how the
human brain processes language.

Below, we first describe our account of language-related
ERPs, based on our model, which was initially developed
[33] to capture the quasi-compositional aspects of language
comprehension. We discuss aspects of the model’s relation to
modern deep learning models and to linguistic theory. We
also consider the P600, which, as we have suggested above,
we take to reflect more-controlled processes that occur when
the more automatic process reflected in the N400 results in con-
flict or uncertainty. Finally, we use our model to illustrate
a domain general perspective on some specific linguistic
operations postulated based on compositional analyses of
natural language.

As just noted the N400 is of particular relevance to meaning
construction in the brain. The N400 is a relative negativity at
centro-parietal electrode sites peaking around 400 ms after
the presentation of a potentially meaningful stimulus (with
‘meaning’ broadly construed to include the meaning of math-
ematical formulas, specific sounds, etc.). The N400 is reliably
modulated by a wide variety of semantic variables, e.g. at the
level of single words, word pairs, sentences and discourse as
well as by semantic factors in non-linguistic domains such as
pictures, sounds, maths, etc. The first observation was that
N400s are reduced for words that are semantically expected
as compared to words that are implausible or unexpected
in a given context. However, N400s are also reduced for
words following semantically or associatively related prime
words, for repeated words, and for words of higher lexical
frequency (see [20] for review). Interestingly, N400 effects
have been observed even during the attentional blink, a para-
digm resulting in an inability to report the presented stimulus
[34], suggesting that the process underlying N400s occurs
relatively automatically as discussed above.

In recent years, there has been growing interest in linking
N400s to neural network models [30,35-41]. Our own account
focuses on modelling N400 amplitude, i.e. its magnitude, at a
functional level, thus abstracting away from the spatio-
temporal profile of the physiological response. Our account
is based on the observation that N400s seem to crucially
depend on the discrepancy between probabilistically expected
and encountered meaning, which can be seen as corresponding
to an implicit prediction error. From a neural network model-
ling perspective [42], processing and learning is based on the
generation of implicit expectations based on experienced
statistical regularities in the environment, reflected in model-
generated activation at the output layer. This model-generated
activation is compared to actual observations (implemented as
the correct target activation). The implicit prediction error, i.e.
the difference between implicit expectations and actual obser-
vations (i.e. between model generated and correct activation)
serves as the learning signal driving adaptation and learning,
implemented as the adaptation of connection strengths in the
network via error-backpropagation [43]. Based on these
assumptions, Rabovsky & McRae [38] simulated N400s as
the network error in a neural network model of word meaning
in a series of simulations, which they took to suggest that N400

amplitudes reflect an implicit prediction error and learning
signal in the semantic system.

However, this model left open how the presumed predic-
tion error is implemented in neural activation. This issue was
addressed by Rabovsky et al. [30], who extended the approach
by Rabovsky & McRae [38] to sentence processing and refined
the notion of the assumed implicit prediction error in crucial
ways. Specifically, N400s were simulated as the stimulus-
induced change in activation at a hidden ‘Sentence Gestalt’
layer [33], which implicitly and probabilistically represents
predicted sentence meaning. Because the activation pattern at
any given point in sentence presentation corresponds to
the model’s implicit prediction of all the semantic features
involved in the described event, the change in this activation
state induced by the new incoming stimulus corresponds
to the implicit prediction error contained in the previous
representation. Here, implicit semantic prediction error is
dynamically implemented as the change in an internal prob-
abilistic representation of meaning. Using this approach,
Rabovsky et al. successfully simulate 16 distinct and diverse
empirically observed N400 effects, including N400 effects at
the sentence level (semantic violations, categorically related
semantic violations, cloze probability, a word’s position in
the sentence) and word level (semantic, associative and rep-
etition priming, lexical frequency). In addition, they simulate
several N400 effects related to language learning and develop-
ment (N400 effects across development, in a newly learned
language, interaction between repetition and semantic viola-
tions). Moreover, they demonstrate the specificity of the
model’s N400 correlate by showing that it is not sensitive to
several factors that do not influence the N400. Factors that do
not influence the N400 include reversal anomalies (see
below), syntactic/word order violations that do not change
meaning, and the specificity of the constraint imposed by
prior context: N400s are equally large for unexpected words,
independent of whether no specific word is expected (e.g.
‘please replace the word dog’) or whether a specific word is
expected that differs from the one presented (e.g. ‘I take my
coffee with cream and dog’). Based on its breadth of coverage
and specificity, this model currently provides a more compre-
hensive account of N400 effects than other existing models
([26-31]; see the electronic supplementary material S1 for dis-
cussion of these alternative models). Even though in the
current version of the model, incoming words are the only
input that updates the SG layer representation, the general
theory views the N400 as the change in a probabilistic represen-
tation of meaning that can be induced by any kind of input
(including e.g. pictures, sounds) so that a future version of
the model should include additional inputs to the SG layer.

Importantly, while the change in the probabilistic represen-
tation of meaning in the SG model corresponds to an implicit
prediction error, it differs in crucial ways from the way predic-
tion error is implemented in most neural network language
models, including modern deep learning models [44,45].
First, it is not a prediction error concerning an external obser-
vation, but a prediction error concerning the next internal
state, as used in temporal difference learning [46]. This seems
very interesting in that it suggests that N400s constitute the
electrophysiological correlate of temporal difference learning
in language comprehension—a learning mechanism that is
widely employed in reinforcement learning and has also
been found to have a distinct neural correlate in that domain
[47]. This temporal difference error corresponds to an implicit



prediction error at a deep internal hidden level of represen-
tation, rather than a surface prediction error. Second, the
model does not predict the next word, as many other models
[44,45] and also does not aim at translating a sentence into
another language [16], both of which are tasks mapping from
some aspect of language to another aspect of language. Instead,
the SG model aims at predicting the situation or event descri-
bed by the sentence, thus mapping from language to an
interpretation of an event in the world. Thus, the model’s rep-
resentations and its implicit (temporal difference) prediction
error are not specifically linguistic, but rather concern a level
of latent representation of situations and events. This is an
important feature, e.g. for processing the so-called Winograd
sentences such as ‘The trombone didn’t fit in the suitcase
because it was too large/ small’ [48]. Humans correctly inter-
pret the word ‘it’ in this sentence as referring to the trombone
if the last word is ‘large’ but to the suitcase if the last word is
‘small’. We believe that a semantic regularity—the fact that
for an object (a) to fit into another object (b), (a) must be smaller
than (b)—underlies this ability, and this is just the kind of regu-
larity we believe a fully successful model based on the ideas
underlying the SG model should capture, while Winograd sen-
tences pose challenges for even the best current deep learning
models, for which training is purely language based [24].

There are some important differences in the behaviour of the
prediction error concerning the next word (word surprisal [49-
51]) as measured by most current neural network models of
language [45] and the change in a probabilistic representation
of meaning in the SG model. Specifically, word surprisal is sen-
sitive to both semantic and syntactic regularities and violations,
while the change in a probabilistic representation of meaning is
specific to meaning, in the sense that it reflects the amount of
change in sentence meaning induced by the presented word.
For instance, changes in word order do not necessarily give
rise to plausible alternative interpretations, as e.g. apparent in
a study with sentences such as ‘The girl was very satisfied
with the ironed neatly linen’ [52], which does not seem to
entail an alternative meaning, but rather seems erroneously
ordered. This manipulation induced a P600 rather than N400
effect. While the change in a representation of sentence meaning
may be small for changed word order (in line with the N400),
word surprisal is large in this situation (unlike the N400).

Entropy reduction, i.e. the reduction of uncertainty about
the rest of the sentence [53,54], resembles our measure in that
it relates to the entire sentence rather than just the next word.
However, an important difference between the change in a
probabilistic representation of meaning and entropy reduction
is that the change does not necessarily reduce uncertainty—
some changes could also increase uncertainty about the sen-
tence’s meaning, or could change expected sentence meaning
while entropy stays similar.”

3. The Sentence Gestalt model in relation to
classic linguistic theory

The SG model contrasts with models grounded in classical lin-
guistic theory in that it carries out its computations using
learned functional mappings rather than explicit syntactic
rules. This accords with the neural network based functional
mapping approach described in the Introduction, in which
the brain is thought to extract statistical regularities at all
levels of representation, including statistical regularities

about roles played by objects in situations and events and stat- [ 5 |

istical regularities in how sentence structure (i.e. word order,
morphosyntactic cues, etc.) conveys information about these
roles. This knowledge is assumed to be implicit in the
model’s connections mapping from incoming words to esti-
mated sentence meaning. Models from classical linguistic
theory (e.g. [55]), treat syntactic cues as triggering obligatory
computations based on explicit syntactic rules. In our model,
by contrast, syntactic cues can impose strong constraints, but
these cues can be overridden if they conflict with the semantic
plausibility of the event the sentence seems to describe [30,33].
This view is partially consistent with recent suggestions that
language comprehension is sometimes just ‘good enough’
and does not always result in representations that are correct
in light of the syntax [56], without, importantly, sharing the
implication of the phrase ‘good enough’ that the syntactically
determined interpretation is necessarily the best one. In gen-
eral, it seems beneficial to rely on all possible sources of
information rather than giving overriding importance to a
single consideration. In line with this view, rates of plausibility
based interpretations are higher when listening to speakers
with a foreign accent, suggesting that such interpretations are
not a failure of the system, but rather result from a Bayes opti-
mal process taking into account all available cues to best
estimate the intended meaning, integrating noisy evidence
and semantic priors [57].

These considerations play into an important contrast
between the SG model and an alternative model by Brouwer
et al. [39], which is grounded in the classical view that syntax
necessarily has a decisive role in interpretation. Their model
links the N400 to changes in lexical activation and the P600
to changes in sentence meaning to explain the small N400
and large P600 in the so-called reversal anomaly sentences
such as ‘Every morning at breakfast, the eggs would only
eat...” [56]. In their view, the small N400 reflects primed lex-
ical access and the large P600 reflects the difficulty in forming
an implausible integrated representation, which is assumed
to proceed strictly based on syntax.

The SG model links N400s to the update of a representation
of sentence meaning, and thus it might be thought that the
model should predict a large N400 at the occurrence of ‘eat’
in the ‘eggs’ example. However, simulations indicate that it pre-
dicts a small N400 in this case [30]. In line with previous
proposals of a temporary ‘semantic illusion” [58] and with
independent evidence suggesting influences of plausibility
on comprehension (e.g. 25% of college students report under-
standing the sentence ‘The dog was bitten by the man’ as
indicating that the dog was the agent of the biting action
[56,57,59,60]), the model’s representations are influenced by
plausibility in addition to syntactic cues, so that it can end up
in a state where the interpretation remains dominated by its
experience with the typical roles played by objects in events
(e.g. eggs being eaten rather than eating something).

4. The P600 and its role in controlled aspects of
sentence processing

We view the N400 as reflecting a relatively automatic process
that can result in a correct and confident determination of
sentence meaning, but there are cases—such as, e.g. reversal
anomalies—where this process does not resolve to an unam-
biguous interpretation owing to conflicting cues. When this
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occurs, a more controlled, attention-dependent process may
come into play, which can revise or disambiguate the initial
automatic representation. This could allow participants to
resolve uncertainty in their interpretation of reversal anomaly
sentences or allow them to find interpretations of garden
path sentences (e.g. “The horse raced across the barn fell’ [61])
when the automatic process has led them down the garden
path, and a word occurs (e.g. ‘fell’) that does not fit into the
interpretation constructed up to that point. We suggest that
this attention-dependent process contributes to P600 ampli-
tudes (see e.g. [62] for review). This is in line with the
correspondence between P600s and eye movement regressions
during natural reading [63,64] and seems compatible with the
proposal that the P600 is a variant of the P3b [65], which has
been linked to surprise and update in working memory [66]
and to activation of the noradrenergic attention system [65].
Thus, we agree with Brouwer et al. [39] that the P600 is not
specific to syntax, but disagree with their proposal that the
P600 reflects the default semantic integration process, which
seems to occur so effortlessly in simple sentences.

Cogpnitive control is currently missing from the SG model.
Ingredients of a solution to this issue might include prioriti-
zation of specific cues via attention-dependent signals as
proposed in a model of cognitive control in the Stroop task
[67]. For example, the aim to understand a foreigner’s
intended meaning despite possible syntactic errors might
result in an up-weighing of semantic cues [57]. By contrast,
the aim to enjoy fairy tales might result in an up-weighing
of syntactic cues to determine the syntactically indicated
meaning despite its possible real-world implausibility. In
addition, it would seem useful to implement what can be
conceived of as a controlled retrieval process where a slight
advantage of a specific representation over other competing
representations is increased in each processing cycle [68].
Future work should test our view on the P600 via explicit
simulations in an extended version of the SG model including
mechanisms of cognitive control.

As noted in the Introduction, we certainly see it as worth-
while to investigate whether operations postulated in
compositional analyses of natural language sentences are
reflected in online measures of human language comprehen-
sion. An important caveat in this endeavour, which was
recently voiced by Hasson et al. [69] in their opinion piece
on ‘grounding the neurobiology of language in first prin-
ciples’ is to consider possible alternative interpretations
based on domain general mechanisms, before taking neural
correlates of postulated linguistic operations as operationa-
lized in specific experimental paradigms as evidence for the
neuro-psychological reality of these operations. In accordance
with such a domain general perspective on language compre-
hension, in the current section we address some postulated
linguistic operations and their ERP correlates that have been
raised as challenges to our model, and consider how we
might address them within the perspective implemented in
the SG model.

Coercion is defined as ‘a semantic operation that converts an
argument to the type that is expected by a function, where it
would otherwise result in a type error’ [70, p. 425]. An
example of complement coercion is the sentence ‘The journal-
ist began the article” where the predicate ‘began’ requires its
complement to denote an event, but ‘the article’ denotes an
entity. Therefore, ‘began’ coerces ‘the article’ from an entity
to an event involving this entity, allowing for an interpret-
ation such as ‘The journalist began writing the article’. An
example of aspectual coercion is the sentence ‘For several
minutes, the cat pounced” where the prepositional phrase
“for several minutes’ coerces the lexical meaning of pounced
to be interpreted as occurring iteratively across the duration,
contrary to its usual punctate aspect.

Coercion is interesting to consider from the SG model’s
perspective because from this view, there is no separate pro-
cess such as coercion required to explain the interpretation of
these sentences. As the model does not assume fixed rules, no
operation is required to prevent a presumed rule violation
(i.e. a type error). It seems useful to highlight two features
of the model to explain how it accounts for sentences invol-
ving ‘coercion’. First, the model continuously estimates the
probabilities of relevant aspects of meaning involved in
the described event based on the statistical regularities in its
environment, including aspects that are not explicitly men-
tioned (e.g. in the sentence ‘The boy spread honey on the
bread’, a knife would be represented as the instrument of
spreading, even if not explicitly mentioned). The represented
meaning naturally includes aspects that are implied but not
mentioned, rather than consisting just of those arguments
that are explicitly given. Crucially, in the SG model, there
are no fixed lexical representations of words, which would
need to be converted into something else. Instead, each
word gives cues constraining the overall interpretation.

Thus, the SG model does not predict specific neural corre-
lates of the presumed coercion process (i.e. converting an
argument into another type [70]), independent of the specific
type of coercion, e.g. complement or aspectual coercion.
Instead, the model’s predictions for sentences involving any
type of ‘coercion” depend on the same mechanisms assumed
to underlie N400s in general—the amount of change in
expected sentence meaning induced by the critical word.

A study investigated complement coercion, presenting sen-
tences such as “The journalist began/ wrote/ accomplished the
article’ (i.e. ‘coerced’/ ‘non-coerced’/ anomalous) and compar-
ing ERPs at the noun [6]. The authors observed larger N400s for
‘coerced’ as compared to ‘non-coerced” sentences and also
report significantly lower cloze probability for ‘coerced’ as
compared to ‘non-coerced’ conditions (also see [5]). The SG
model predicts this result, because the sentence beginning
‘The journalist began...” has low constraint (she could begin
her vacation, playing volleyball, etc.), resulting in large seman-
tic update at the noun, while ‘The journalist wrote...” entails a
relatively high probability of the journalist writing an article, so
that semantic update at the noun is smaller. This view seems
largely consistent with a recent study controlling for surprisal
between coercion and non-coercion conditions (e.g. ‘John
began/ bought the book’) and observing no differences in
N400s nor any other significant ERP differences [9]. These
authors suggested, however, that the absence of ERP correlates
should not be taken to indicate that coercion did not take place,



because in their view it was needed to explain comprehension.
Another study investigated aspectual coercion comparing sen-
tences such as ‘After/ for several minutes, the cat pounced’
(no-coercion/ coercion) [7]. There was no difference in
N400s, which makes sense from the SG model’s perspective
because both sentence beginnings have similarly low
constraint (in both cases, the cat could do all sorts of things).

Overall, the N400 pattern observed in studies investigating
different types of ‘coercion’ seems well explained by the
change in a probabilistic representation of meaning assumed
in the SG model. This seems consistent with the view that
separate ‘coercion” processes, which convert arguments into
another type to prevent assignment errors, may not be required
to explain the interpretation of these sentences. However, note
that our suggestions concerning the model’s likely behaviour
are currently based on our intuitions rather than actual simu-
lations, and explicit computational simulations are required
to back up these claims. Also note that besides the N400,
some ‘coercion’ studies observed a late sustained negativity
(one study concerning complement coercion [5], and another
concerning aspectual coercion [7]), which was however not
obtained by others (two studies concerning complement coer-
cion [6,9]), so that the specific functional basis of this effect
awaits further research.

(b) Argument sharing in light verb constructions

Light verb constructions refer to constructions such as e.g.
‘give a kiss’, where the meaning of the verb is underspecified
and most of the meaning is carried by the noun, in contrast to
standard uses of the same verbs, as in, e.g. ‘give a rose’. Light
verbs are special from a rule-based perspective as they do not
easily fit the classic notion of compositionality, because light
verbs form composite expressions with their complement
nouns. Furthermore, light verb constructions pose issues for
classic accounts because both the verb (e.g. give) and the
noun (e.g. kiss) provide arguments such as agent and patient,
which results in a mismatch of the thematic role structure
with the syntactic structure of the sentence, and a problem
of alignment between the arguments [8]. The problem result-
ing from this analysis has been solved by postulating a
process called ‘argument sharing’, which enables the sharing
of arguments (agent and patient) between verb and noun
through the formation of a complex predicate, combining
the verb and the noun [71]. Again, from the SG model’s per-
spective, the presumed problem does not occur and thus does
not require a solution. Because the model maps from incom-
ing words to the described event, the thematic roles in the
event are not linked to specific words such as the noun or
verb. Instead, the model estimates the agent and patient in
the event, which in the case of ‘the boy gave the girl a kiss’
would be the same as for ‘the boy kissed the girl. The
event interpretation gets converging evidence from the cues
provided by the verb and the noun. Thus, from this view, it
is not necessary to postulate a process of ‘argument sharing’
or complex predicate formation. The model’s predictions for
N400s in light verb constructions depend again simply on
the change in the probabilistic representation of sentence
meaning induced by the critical word.”> Again, note that we
have not yet explicitly simulated N400 effects in light verb
constructions, so that further modelling efforts are required
to corroborate these claims.

6. Challenges and future directions

The current version of the SG model is simplified and many
issues remain to be addressed. These include the processing
of quantifiers and negation, influences of verb aspect on the
activation of event knowledge, influences of orthographic
neighbours, the handling of types, tokens and co-reference, as
well as other language-related ERPs (electronic supplementary
material, S2).

7. Conclusion

In summary, we argue that natural language understanding can
be adequately described as quasi-compositional and that—in
the long run—deep learning models, which learn functions
mapping from linguistic input to meaning and are sensitive to
both general and specific information, bear great promise
to capture the process of human language comprehension.
We further suggest that the N400 ERP component, which is
the most widely used ERP component in research on language
and meaning, can be accounted for by a neural network model
of sentence comprehension, the SG model, which shares fea-
tures with deep learning-based language models [30]. We
suggest that a complete model of human language comprehen-
sion requires additional mechanisms such as cognitive control
and internal revision, and we believe that the close integration
between empirical ERP studies, providing time-resolved
measures of electrical brain activity and neural network
models, providing computer simulations of the assumed
processes, will play an import role in working towards this goal.
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Endnotes

'Partee’s perspective is exemplified in her case study on genitives,
which appears in an appendix to Janssen’s ch. [3, pp. 222-225],
where she suggests that ‘the problems raised by the genitive con-
struction relate to general issues concerning compositionality’.
Specifically, for one analysis she suggests to include a ‘not totally
implausible interpretation strategy that could be caricatured as “try
to understand”’, and she later mentions that ‘for the compositional
solution it is clear that it deals with the phenomena, how it would
work out in a grammar, and how it would interact with other
rules. For the suggested alternatives (interpretation strategy, partially
unspecified meanings, new variable mechanisms) this is less clear’.
One might say that neural network models are steps towards addres-
sing the ‘try to understand” interpretation strategy, which seemed to
Partee to be difficult to formalize but possibly a necessary part of
natural language understanding.

?In the simulation of the influence of a word’s position in the sen-
tence, with N400s decreasing over the course of the sentence, there
would probably be a high correlation between the change in a prob-
abilistic representation of meaning and entropy reduction, but for
cloze probability, with one high probability and one low probability
object, the change in a probabilistic representation of meaning is
larger for presentation of the low probability object, but entropy
reduction would be the same in both conditions (the value would
be the same before word presentation and near-zero afterwards).
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3A study with German verb-final materials looked at ERP effects of
light verb constructions, e.g. ‘giving a kiss’ as compared to ‘giving
a rose’. The authors did not observe an N400 effect in this situation
[8] and this is indeed somewhat surprising from the perspective of
the SG model, primarily because cloze probability for the verb was
higher in the light verb condition (literal translation: ‘...a kiss
given’) as compared to the neutral condition (lit: “... a rose given’).
However, there was not even an increased N400 for the incongruent
condition (lit: ‘...a conversation given’, which is anomalous in
German), which is one of the most well established and robust
N400 effects in the literature, raising the issue of power in an exper-
iment with only 20 participants. Wittenberg et al. [8] also observe
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