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The temporal generalization method (TGM) is a data analysis technique that
can be used to test if the brain’s representation for particular stimuli (e.g.
sounds, images) is maintained, or if it changes as a function of time (King
J-R, Dehaene S. 2014 Characterizing the dynamics of mental representations:
the temporal generalization method. Trends Cogn. Sci. 18, 203–210. (doi:10.
1016/j.tics.2014.01.002)). The TGM involves training models to predict the
stimuli or condition using a time window from a recording of brain activity,
and testing the resultingmodels at all possible timewindows. This is repeated
for all possible training windows to create a full matrix of accuracy for every
combination of train/test window. The results of a TGM indicate when brain
activity patterns are consistent (i.e. the trained model performs well even
when tested on a different time window), and when they are inconsistent,
allowing us to track neural representations over time. The TGM has been
used to study the representation of images and sounds during a variety of
tasks, but has been less readily applied to studies of language. Here, we
give an overview of the method itself, discuss how the TGM has been used
to analyse two studies of language in context and explore how the TGM
could be applied to further our understanding of semantic composition.

This article is part of the theme issue ‘Towards mechanistic models of
meaning composition’.
1. Introduction
Someof the firstworks incorporating brain imaging into psycholinguistics compared
the brain’s responses to grammatically/semantically correct versus incorrect sen-
tences, and the field has continued to focus on these types of paradigms [1–4].
Such comparisons across conditions identified brain areas that responded more to
particular kinds of language violations, in turn, revealing the areas of the brain
involved in comprehension and compositional processes. More recently, there has
been interest in where information is represented in the brain. Several key works in
this area compared not across condition, but rather by using brain activation to
discriminate between the stimuli themselves (coined decoding) [5–7]. Initially, these
studiesusedhand-derivedsemantic features,buteventually itwasshownthat similar
performancecouldbeachievedwithapurelycorpus-drivenapproach [8,9],marrying
together fields of computational linguistics and the neuroscience of language.

Decoding methodology (which identifies the particular word/stimuli a
person is reading/experiencing) has been largely focused on high accuracy pre-
dictions, without concern for variance in the brain’s representations over time.
This obscures a dimension of the data that is pertinent to composition: how
stable is the representation of a word over time? That is, is the neural represen-
tation of a word the same for the whole period of time that it can be detected
using decoding methodology? Or does the neural pattern change over time, per-
haps as a function of context? Is the neural representation of a word available at
later time points during phrase or sentence processing? Is that later representation
consistentwith the representationwhile reading thatword? The types of decoding
analyses presented in the first decoding studies do not consider these questions.

The temporal generalization method (TGM) [10] allows us to tackle these
questions of consistency in time. The TGM tests if the brain’s representation
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for a word is stable over time by training a decoding model
using brain imaging data from one time period and then test-
ing it using data from another time period. This is particularly
useful when brain imaging data have good time resolution, as
in magnetoencephalography and electroencephalography
(MEG and EEG). We can use the TGM to study the signatures
of composition that require the recall of specific words, and
test if the representation of composedmeaning has a signature
that looks like the brain’s representations for any of the
individual words.

The TGM has been used in a variety of neuroimaging
experiments involving memory [11,12], vision [13], audition
[14] and even taste [15]. There are a few examples using the
TGM to study language; we will cover two of them as case
studies in §4, and other examples exist [16,17]. In addition
to the case studies, this paper gives a basic overview of
decoding methodology, and then describes the TGM. We
close with caveats and future work. The intent of this paper
is to (1) illustrate how more detailed study of the mechanisms
of composition can be executed using the TGM, and (2) pro-
vide interpretation for the kinds of results that the TGM can
provide.
80531
2. Predicting stimuli identity
A traditional decoding approach detects the brain’s represen-
tation for a stimulus during a particular window of time.
Decoding involves training a machine learning model (e.g.
regression model, classifier) to predict the stimulus (e.g. word,
phrase) as a function of the brain imaging signal. There are
two general approaches in this space: one that depends on
predicting the word by first predicting the dimensions of an
intermediate feature space (IFS) [18]; and one in which we
train a classifier to distinguish words/conditions as if they are
discrete and equally distinct classes. These methods both have
their pros and cons, which we will describe in turn.

In order to test our ability to predict a stimuli, we perform
some sort of cross validation, which involves reserving a
subset (n) of our N brain imaging signal, and use the remain-
ing N− n examples to train our machine learning model.
Then, at test time, we use the n held out examples to test
our model. In this way, we have an independent test of the
ability of the model to identify the stimuli, and can measure
our model’s ability to generalize to unseen stimuli. See
Kriegeskorte et al. [19] for more information on properly
testing such models.

(a) Prediction through classification
Prediction by classification is by far the simplest approach,
with only a few design decisions to make. In a set of N stimuli,
a classifier is trained to predict, using a brain image, which of
the N stimuli (or N stimuli classes, or N conditions) is being
experienced by the participant. There are a few constraints on
this system, the largest being that every one of the N stimuli
that appear in the test data must also appear in the training
data. This requires that more trials per stimuli be collected
(at least two) and even more if the trials are to be averaged
before analysis. It also assumes no difference in similarity
amongst the stimuli. That is, if the stimuli consist of animals
and tools, the classifier is unaware of the fact that animals
are more similar to other animals than to tools. There are
many classification algorithms; support vector machine
(SVM) is a reasonable first choice, and our case study uses a
ridge regression classifier. Often, the accuracy of the classifier
is reported: the total number of examples correctly classified
divided by the total number of examples. In §3b, area under
the receiver operating characteristics curve is reported (AUC
ROC), which measures the predictor’s ability to produce true
positives (correct predictions) without also producing more
false positives (incorrect predictions). A value of 1 is ideal for
AUC ROC, 0.5 is random guessing.

(b) Prediction using an intermediate feature space
Another approach is to train an algorithm not to predict the
stimuli directly, but rather to predict a vector of properties
associated with the stimuli, called an IFS [18]. At the word
level, these properties can be actual behavioural norms col-
lected about the stimuli as in Sudre et al. [6], or be based
on word co-occurrence statistics calculated over a large text
corpus, as in Mitchell et al. [5], or based on the hidden rep-
resentations of a word embedding model (called word
vectors) as in Fyshe et al. [20]. In each case, the word is defined
by a point in high dimensional space (tens to hundreds and
sometimes even thousands of dimensions). These high
dimensional word embedding spaces have been shown to
correlate with human judgements of word similarity [21,22]
and also with behavioural norms [23]. There is some dis-
agreement about whether the vectors correlate with
semantics versus other properties (e.g. word length, word
frequency), but the previously mentioned studies show that
there is a strong relationship to semantic meaning, though
the influence of other non-semantic properties may be
difficult to completely eliminate.

Prediction using an IFS has an advantage over classifi-
cation: during training, the model does not need to observe
an example of every item in the test set. Instead, so long as
the multidimensional space is fairly well represented, novel
examples become predicted points in the multidimensional
space and we can predict their identity based on that point
[24]. This is called zero shot learning [25], and allows exper-
imenters to collect responses to very diverse stimuli,
sometimes even without repeated trials [7].

Once an IFS has been chosen to represent the stimuli,
regression models are trained to predict each dimension of
the IFS. Typically, one independent model is trained for each
dimension, though some parameter sharing could improve
performance. Then, we are tasked with evaluating the per-
formance of the model by comparing the predicted vector
(generated by the regression models) to the true vector
associated with the stimuli. There are several possibilities: cor-
relation, rank accuracy and 1 versus 2 or 2 versus 2 accuracy;
the case study included here uses 2 versus 2 accuracy.

2 versus 2 accuracy involves leaving out two words
during cross validation (words i and j), and thus two true
word vectors (vi and vj). After training, the model produces
two predicted vectors for the held out words (v̂i and v̂j).
The 2 versus 2 test determines if the cosine similarity (cos)
of properly matched true to predicted vectors (left hand of
equation (2.1)) is greater than the correlation of mismatched
vectors (right hand of equation (2.1)):

cos (v̂i, vi)þ cos (v̂j, vj) .
?
cos (v̂i, vj)þ cos (v̂j, vi): (2:1)

If the correlation of properly matched vectors is greater, the
2 versus 2 test is said to have passed. There is one test per
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Figure 1. 2 versus 2 accuracy for predicting the adjective when presented as part of a phrase, presented as a TGM matrix. (a) All results, (b) false discovery rate
(FDR) thresholded. A TGM matrix mixes training and testing data in all possible combinations to track the similarity of a neural representation in time. Within each
TGM matrix, the colour at point i, j indicates the prediction accuracy when the model is trained using data from an interval centred at time point i, then tested with
data centred at time point j. Time windows are 90 ms wide and overlap by 10 ms with adjacent windows. Time 0 is the onset of the adjective, 0.8 is onset of the
noun, as annotated with grey rectangles. The adjective representation is still available after the presentation of the noun, and matches the representation observed
during adjective presentation ( patches near the ‘X’ annotation in (b)). In addition, there are significantly below chance regions when training during adjective
presentation and testing during noun presentation (near the ‘Y’ annotation in (b)). From Fyshe et al. [26].
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pair of held out words, and 2 versus 2 accuracy is the percen-
tage of 2 versus 2 tests that pass. 2 versus 2 accuracy is often
calculated using all possible pairs of stimuli. For even a
modest stimuli set, this can result in thousands of tests. For
example, for 60 stimuli, there are 1770 possible unique pairs
for which we can run the 2 versus 2 test, each of which
requires training a new prediction model. All tests are
averaged to compute a final 2 versus 2 accuracy.
3. Temporal generalization method
Typically, we look at the accuracy of a trained model using all
the data during stimuli presentation (e.g. 0–800ms), or the
accuracy if we use a sliding window over the full presentation
time (e.g. 0–100ms, 10–100ms, etc.). This tells us at what time
during the stimuli presentation there is information available in
the brain images that we can differentiate between stimuli.

But we may be interested in asking a different question:
does the brain’s representation for a stimulus change over
time? To test the consistency of the ‘neural code’ in time, we
use the TGM to produce TGM matrices [10]. TGM matrices
use train and test data from different time windows, thus
measuring the stability of the neural representation over
time. Each of the case studies covered here used a variant of
the prediction framework described in §2, and mixed training
and testing data from different time windows. In a TGM (T),
the entry at (i, j ) (T(i,j )) contains the accuracy when we train
using brain imaging data from a time window centred at
time i, and test using brain imaging data from a time
window centred at time j. Thus, depending on the values of
i and j we may use train and test data from different time
periods, possibly comparing times when the participant is
viewing a different word, or no stimuli at all. If the neural rep-
resentation of a concept is stable across time, then models can
be trained and tested with data from different time windows
with little or no impact on accuracy.
King & Dehaene [10] include several illustrative examples
of hypothetical TGM matrices in their paper (see fig. 2 of
their article). In their examples, and in figure 1, the y-axis rep-
resents the time used to train a model, and along the x-axis is
the time used to test the model (generalization time), and the
colour of each cell of the matrix corresponds to the accuracy
level. The diagonal of the TGM matrix (i.e. Ti,i for all i) corre-
sponds to the typical analysis regime, under which we train
and test using data from the same time window (as plotted
in figure 2b). As we will see in our case studies, the TGM
matrices can identify patterns in data that might otherwise
go undetected. For example, in figure 1b, we have annotated
an area with the symbol ‘Y’. Near the ‘Y’, we are viewing the
results when we train a model using data collected around
1.25 s, and test using data collected around 0.5 s. Thus, the
results near the ‘Y’ annotation tell us if the representation
during adjective comprehension matches the representation
during noun comprehension. This mixing of training and
testing time windows is what gives the TGM its power.
(a) What can the temporal generalization method show
us?

Models trained on brain imaging data can leverage multiple
kinds of information. For example, a classifier trained to
distinguish between words might operate solely on visual
features of the stimuli such as the number of white pixels on
the screen, if that value happens to be correlated with some
aspect of semantics. When the visual information is no
longer salient in the brain activity (because the stimuli are no
longer displayed), the classifier may still be able to distinguish
words based on semantic featuresmaintained in the brain. In a
typical analysis, we would have no way to differentiate a
period that used visual features from a period using semantic
features. However, a TGM matrix can signal if these two
windows of high accuracy are represented the same way in
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Figure 2. Generalization in time for distinguishing between congruent and
incongruent trials, which elicit both N400 and P600. (a) A TGM matrix show-
ing the ability to distinguish malformed versus correct sentences. Training
times are along the x-axis, test on the y-axis. Black contours indicate
above chance performance. (b) The diagonal decoding from figure (a).
(c) Decoding performance for time periods corresponding to the N400
(300–500 ms; green) and P600 (600–800 ms; blue), averaged over rows of
the TGM matrix in (a). Shaded regions represent 95% bootstrapped confidence
intervals. Horizontal lines indicate time points significantly above chance (thick
lines p < 0.01; thin lines p < 0.05). These results support the hypotheses that
the N400 and P600 are cascading processes. The TGM matrix shows that the
information processing regimes underlying the processes are not interchange-
able. Adapted from Heikel et al. [27].

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20180531

4

the brain (even if the features are highly correlated, e.g. if the
short word stimuli are all animals). This differentiation is
possible because the areas of the brain tasked with processing
low level visual word form information are not known to be
involved in the representation of semantics. Thus, models
trained during a visual processing time window will leverage
brain signals from the visual cortex, and models trained
during a semantic window will leverage brain signals from
other areas of the brain. Thus there will be no off-diagonal
accuracy in the TGM matrix where models trained on visual
time windows and tested semantic time windows meet (or
vice versa). In §4b, we will see an example that compares
information processing regimes, and shows that the brain
representations during the two regimes are not identical, and
thus high off-diagonal accuracy does not appear in the TGM
matrix during all train/test time window combinations. TGM
matrices can also show us when the brain’s representations
are the same. We will see this in §4a.

Though both case studies covered here use a whole-brain
analysis (i.e. use all sensors or all sources computed from the
EEG/MEG data), TGM matrices can also be created by select-
ing only a subset of sensors or sources from specific regions of
interest (ROIs). Thus the TGM matrix will tell us if the same
representation is present in a specific area of the brain during
two time windows. A TGM matrix generated using whole-
brain recordings just indicates if the same representation is
present anywhere in the brain during the two time windows.
4. Temporal generalization method case studies
The TGM framework described above is very general pur-
pose and can be applied to a variety of stimuli and
conditions to explore different aspects of semantic compo-
sition. We will discuss two case studies wherein the TGM
was used to explore different aspects of language processing.

(a) Adjective noun phrases
Perhaps the simplest example of composition is phrase read-
ing. Fyshe et al. [26] used an adjective-noun phrase reading
paradigm to explore the semantic representation of adjectives
and nouns when presented in phrases. The stimuli were 30
phrases created from four adjectives (plus the determiner
‘the’) and six nouns. Phrases were presented to nine partici-
pants while MEG data were recorded. Words were
presented for 500ms, with 300ms between the words of a
phrase and 3 s total between subsequent phrases. A regression
model was trained to predict each dimension of an IFS, which
was built from statistics based on sentence dependency struc-
tures in a large corpus. Because there was a correlation
between the adjectives and nouns in the phrases, when decod-
ing the adjective, the 2 versus 2 accuracy is reported for all
pairs of phrases that share a noun. When decoding the noun,
the 2 versus 2 accuracy is reported for only those pairs that
share an adjective. This way, a model that leverages correlated
noun semantics when being trained to predict the adjective
would not be able to use that correlated information, since
the noun is the same for both words in the 2 versus 2 pair
(and similarly so for predicting the noun).

In their original paper, Fyshe et al. [26] present two TGM
matrices, one for predicting the adjective of the phrase and
one for predicting the noun. Here, we focus on the TGM
matrix for the adjective (figure 1). The TGM matrix for adjec-
tive decoding shows both above and below chance decoding
in off-diagonal regions. The significantly above chance
decoding appears when training on the inter-stimulus interval
(ISI), when a fixation cross is present (2–3 s after adjective
onset), and testing on the time during which the adjective is
displayed (0.4–0.5 s after adjective onset; figure 1b, near the
‘X’ annotation). This patch shows that the same brain areas
are representing the same information at two points in time,
and indicates that the meaning of the adjective is recalled
during what can be assumed to be the compositional period
(i.e. during the ISI). It should be noted, however, that the
paradigm for this study did not include a non-compositional
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task, which would allow us to definitively confirm that the
phenomenon is indeed owing to composition.

Especially after false discovery rate (FDR) correction, it is
clear that the TGM matrices is not symmetric. What is the
source of this asymmetry? There are differing noise properties
for different time windows, and this affects the ability of the
regression model to generalize across those time windows.
This difference in noise is probably because one window is
closer to the onset of the stimuli and thus is more likely to be
tightly time-locked to stimulus onset, reducing noise. When
we train on data that is noisier than our test data, the model
can learn to discount features affected by noise [28]. Then, at
test time, a model trained on the noisier time window will
still have the capacity to predict on data taken from a less
noisy time window. On the other hand, a model trained on
data from the lower noise time window may rely on features
that are corrupted by noise in the test time window, leading
to less accurate predictions. It should be noted that the asym-
metry in figure 1b may very well be a threshold effect, and a
separate statistical analysis would be required to determine if
there is a statistically different value in symmetric coordinates.

Another interesting feature of the adjective TGM matrix is
the appearance of significantly below chance accuracy (figure
1b, near ‘Y’ annotation). Below chance accuracy indicates that
the predictions are not random, but are systematically
inverted. This means that in the 2 versus 2 test, equation
(2.1), the left side is very often less than than the right, caus-
ing the 2 versus 2 test to fail a significant number of times.
Because of the regression framework, this systematically
incorrect prediction can be traced to MEG data having oppo-
site sign during this time period (see Fyshe et al. [26] for a full
explanation). That is, the MEG features on which the model
depends have changed sign, causing the 2 versus 2 prediction
to be systematically wrong. The underlying cause of this
phenomenon has yet to be explained, but the implication is
that, though the brain is clearly still representing the adjec-
tive, its form has changed in a way that is negatively
correlated with the original representation. This is the sort
of information that is not observable in a diagonal decoding
experiment, and only measurable in the TGM matrix.
(b) N400 and P600 effects
N400 and P600 effects have been studied for decades, and the
neural processes they represent have been widely studied and
debated [3,29,30]. Decoding analyses can help us to decipher
what each of these processes is related to, and a TGM matrix
can help us to contrast the brain’s representations present
during each of these processing steps. Heikel et al. [27]
propose four possible hypotheses to explain the N400 and
P600: a single process (not consistent with the N400
and P600 literature, as the two are dissociable), two strictly
serial processes, two cascading processes that overlap in
time, and a latency shift in which the same process produces
both N400 and P600, but a delay in timing (stemming from
sentence difficulty) that causes two distinct effects.

Heikel et al. [27] used a classic sentence listening paradigm
in which 80 sentences with noun violations were analysed
(40 congruent and 40 incongruent sentences). The sentences
were presented to 40 participants while EEG was collected.
The paradigm elicited a strong N400 and a weak P600.
A ridge classifier, which uses ridge regression to perform
binary classification, was used to distinguish congruent from
incongruent stimuli. The authors defined the N400 time
window to be 300–500ms, and P600 to be 600–800ms
post-stimulus onset. They found that the congruent versus
incongruent sentences could be distinguished from each
other (using diagonal decoding) from as early as 270ms and
as late as 1270ms after stimulus onset (see dots at the
bottom of figure 2b). However, the TGM matrix (figure 2a)
shows that not all time windows during the N400 and P600
timeframes are interchangeable. If the N400 and P600 time
windowswere completely interchangeable, wewould observe
above chance performance at off-diagonal locations in the
TGM matrix that correspond to training on N400 and testing
on P600 time windows (or vice versa). Because we do not
observe this, we can infer that the processes create different
brain representations. In other words, the N400 classifier per-
forms significantly above chance during the time period 140 to
770ms, and the P600 classifier during the time period 360 and
1270ms (figure 2c). Though there is overlap between these
two time periods, they do not completely overlap, indicating
that the underlying processes differ in some respects.

These results could support two of the four proposed
hypotheses. First, the results could indicate that a single
computational process is acting during both time periods,
but that a different kind of linguistic information is being
processed in different brain areas during each time period
(however, if the same process can act on different information
facilitated by differing brain regions, the definition of process
becomes unclear). The data are also consistent with two
cascading processes that overlap in time, as indicated by the
overlap in above chance performance for classifiers trained
during N400 and P600 time windows. This result (and indeed
all brain imaging results) hinges on the assumption that differ-
ing neural processes producemeasurably different EEG signals.
5. Caveats
TGM matrices are an interesting analysis tool, but a few
caveats must be considered. First, oscillations in data that
are time-locked to the onset of stimuli will produce oscil-
latory results. For example, alpha oscillations will entrain to
a visual stimuli [31], and this can show up as diagonal
lines in the TGM matrix. This is observable in the TGM
matrices in figure 1, made especially strong by lack of stimuli
jitter between trials. To avoid these effects, one should jitter
stimuli, and/or average the time course within windows to
reduce the effect of oscillations. However, averaging the
signal within windows before training a machine learning
algorithm can result in lower accuracies owing to lost signal.

It is also important to recognize that interpreting a TGM
matrix requires multiple comparisons, and these must be
corrected for when determining statistical significance. One of
the easier ways to do this is with the Benjamini–Hochberg–
Yekutieli correction [32], which is less conservative than a
simple Bonferroni correction.
6. Potential future uses
The TGM tells us more than the typical diagonal-only decod-
ing analysis. Most importantly, it allows us to track and
measure the stability of a representation as a function of
time. As we consider next steps in the study of composition,
how could the TGM best be used?
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There are multiple studies emerging that use long short-
term memory (LSTM) neural networks to study the effect
of context on brain activity. LSTMs are neural network
models that are trained to predict the next word in a
sequence, and have the ability to keep contextual information
in ‘memory’ for long periods of time. Though the human
brain is certainly doing more than just predicting the next
word in a sequence, several studies have found that the con-
text vectors correlate well to the brain activity observed
before the onset of a word [8,33]. Using a TGM-style analysis
could provide information about how these context vectors
are used over time, such as if they are predictably recalled
at future points in the sentence or story.

The idea that a full sentence (or even a document) can be
represented by a vector has garnered a lot of interest [34,35].
Some work has shown that the identity of words is available
at later points during the processing of a sentence [17]. Com-
positional processes could also be identified by searching
not just for some theoretical composed representation, but
also by looking for the signatures of keywords in the sentence.
This is where the TGM becomes useful, as it provides a scan of
the sentence showing where word signatures appear and
reappear (see examples of such an analysis in Rafidi [17]).
And, as computational models for composition improve,
the TGM may prove to be an even more useful technique.

It is important to remember that a TGM matrix showing
no off-diagonal accuracy is still an interesting result; it is evi-
dence that the signature for the word is not consistent over
time. During more complex reading paradigms (e.g. story
reading), words and concepts must be remembered in order
to successfully understand the material. If individual words
cannot be detected at later time points this could mean that
the word has been incorporated into a composed represen-
tation that no longer resembles the constituent words. If a
TGM matrix shows no high off-diagonal accuracy, this is
further evidence for pursuing a compositional model that
modifies single word semantics.
7. Conclusion
The TGM is a powerful tool for searching for compositional
processing in the brain. It allows us to probe for the represen-
tation of meaning at multiple time points, and also to
compare the representation of meaning across time. It
should be noted that computing TGM matrices is computa-
tionally expensive, as models trained at each time window
need to be tested across multiple time windows. However,
the process of parallelizing this computation is fairly straight-
forward, because the value of each cell in the TGMmatrix can
be computed independently, and furthermore, the same
trained model can be tested across multiple time windows
without retraining. Recall that, because each TGM matrix
represents multiple comparisons, we must account for this
by adjusting our statistical significance thresholds.

The TGM can help detect the resurgence of word mean-
ing later in time, as seen in §4a. This suggests that the
meaning of the word is recalled at a particular time, possibly
in preparation for, or for use in, a compositional process. As
our understanding of composed meaning improves, we can
further explore the recollection of composed meaning as a
function of time using the TGM.

The TGM can also distinguish between conditions, as seen
in §4b. Here, a classifier was trained to differentiate between
congruent and incongruent sentences that elicited both an
N400 and a P600. The brain activation signatures during
N400 and P600 windows were somewhat consistent in time,
but not entirely interchangeable. This indicates that the neural
activity underlying the N400 and P600 correspond to different
processes, not simply a delay in the same process. The TGM
provides a pivotal piece of evidence for this argument.

At a higher level, the TGM is useful when we wish to
study the dynamics of brain activation, and how represen-
tations change over time. This is useful across myriad
applications, but is particularly interesting when considered
in the context of language. As we read and understand
text, our brain is performing multiple ongoing processes to
understand words, integrate them into context and anticipate
future words. The TGM provides a framework for studying
those processes when they require the retention or recall of
previous brain activation states.
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