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Abstract

Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness
with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and
genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers
for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete
absence of novel disease-modifying therapeutic strategies.
Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity
of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS
literature to identify genes and genetic variants (candidate gene and limited genome-wide association study
approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for
ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address
the well-known health disparities that exist in susceptibility to and mortality from ARDS.
Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating
a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen
species, innate immunity-related inflammation, and endothelial vascular signaling pathways.
Future Directions: Future studies employing a system biology approach that combines clinical characteristics,
genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways
and genotype–phenotype connections and result in improved strategies for the sub-phenotyping of diverse
ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials
in ARDS and yield a better fundamental understanding of ARDS pathobiology. Antioxid. Redox Signal. 31,
1027–1052.

Keywords: acute respiratory distress syndrome (ARDS), genome-wide association studies (GWAS), ARDS
mortality, reactive oxygen species (ROS), inflammation, pathway analysis, candidate gene studies

Introduction

Critical illnesses, including infection, sepsis, trauma,
pancreatitis, hemorrhage, and acute respiratory failure/

acute respiratory distress syndrome (ARDS) (Fig. 1), account
for 20% of health care costs in the United States ($90 billion
annually) (152, 206). Estimates of the incidence of ARDS
vary between *200,000 and 400,000 individuals annually in
the United States with mortality rates of *30%–40% (23, 40,

49, 51, 64, 129, 176). The pathologic hallmarks of ARDS are
marked increases in high permeability pulmonary edema
related to acute endothelial cell activation/dysfunction re-
sulting in paracellular gap formation (57, 58, 62), alveolar
flooding, decreased lung compliance, severe hypoxemia, and
a requirement for mechanical ventilation.

From a pathobiological standpoint, two categories of lung
injury are recognized in ARDS. Direct pulmonary injury,
which is to the local lung epithelium such as in pneumonia,

Departments of 1Physiological Sciences and 2Health Sciences, University of Arizona, Tucson, Arizona.

ANTIOXIDANTS & REDOX SIGNALING
Volume 31, Number 14, 2019
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ars.2018.7701

1027



aspiration, mechanical ventilation, inhalation injury, and lung
contusion. Indirect pulmonary injury occurs secondary to
vascular endothelial damage (156), with sepsis being the most
common cause of indirect lung injury and the highest con-
tributor to ARDS mortality (Fig. 2) (49). However, these broad
categorizations and classifications of ARDS fail to capture the
nuances of the disease and the substantial heterogeneity of
phenotypes within ARDS has made interrogation of basic
mechanisms and therapeutic development extremely chal-
lenging. This has contributed to the abysmal track record of
Phase II/III trials of novel therapies in ARDS (70, 98, 152).
Clinical factors alone have failed to predict which patients will
develop ARDS or develop severe ARDS (122).

Although promising attempts exist to sub-phenotype
ARDS cohorts via blood-derived biomarkers that are pre-

dictive of mortality in hope of identifying at-risk individuals,
successful validation has been elusive (189–191). Scoring
systems such as the acute physiology and chronic health
evaluation II score (101, 152) or the injury severity score
(130) in critically ill patients predict patient outcomes but can
only be applied to general intensive care unit populations and
do not provide consistent and accurate estimates of the risk
of death in specific intensive care unit (ICU) patient pop-
ulations. For example, mean lung injury scores were not
significantly different between ARDS survivors and non-
survivors (42, 104) and attempts to characterize predictors of
death in ARDS by developing a prognostic index (189) remain
controversial and without replication or validation.

Thus, there is a compelling unmet need to identify ARDS
sub-phenotypes that risk-stratify patients for both accurate
prognostication and clinical trial purposes. A risk score is a
standardized metric for the likelihood that an individual will
experience a particular outcome—in this instance, higher risk
for ARDS mortality (32, 189). Risk stratification is the ag-
gregation of multiple individual risk scores to create a broader,
more complex profile of risk.

The ability to leverage newly described systems biology
and ‘‘omic’’ approaches and techniques (genetic and biomarker
panels) hold promise for improving the capacity to characterize
risk and prognosis for ARDS and in other ICU patients with
critical illness and respiratory failure. ARDS genetic and geno-
mic studies potentially provide the basis for identifying candidate
genes, biomarker discovery, risk stratification, and novel ARDS
therapeutic targets (83, 122). Although ARDS is not a known
inheritable condition, the pattern of injury response-recovery
has significant heritability (121, 122, 197). Unlike rare and
high penetrance monogenetic diseases, ARDS risk and se-
verity are influenced by multiple genes to a varying effect.

The potential to utilize genomic approaches to identify
ARDS high inflammatory sub-phenotypes at higher risk for
death is a currently untapped area of therapeutic stratification
in severe lung injury (32, 65, 122, 149, 175). The diversity of
potential genetic biomarkers in ARDS ranges from markers
of epithelial injury (the receptor of advanced glycation end
products [RAGE]) (62, 97), endothelial activation/injury
(angiopoetin [ANGPT-1], intercellular adhesion molecule 1
[ICAM-1], vascular endothelial growth factor [VEGF]) (33,
60, 62, 133, 159), pro-inflammatory (interleukin [IL]-1B, IL-18,
IL-6, IL-8) (55, 68, 79, 118, 120, 140, 166, 183), anti-
inflammatory molecules (IL-10) (140), coagulation and fi-
brinolysis proteins (pediocin PA-1) (28, 37, 56, 144), and
macrophage markers (high mobility group box 1 [HMGB1],
macrophage migration inhibitory factor [MIF]) (27, 50, 71,
74, 131).

Significance

We (Oita et al., manuscript in preparation, 3, 23–26, 35,
46, 59, 76, 82, 90, 126, 132, 141, 157, 169, 187, 199, 202,
205) and others (2, 13, 19, 21, 22, 45, 47, 63, 69, 92, 122–124,
149, 153, 163, 173, 181, 194) have contributed to the notion
that ARDS represents the ultimate in genetic stress, with a
complex assortment of genes that contribute a limited overall
effect size per gene (149). Individually, many of these loci have
limited value for risk prediction, but their aggregated impact
on lung injury phenotypes (effect size) in ARDS pathology is
much greater (122).

FIG. 2. ARDS causes. An adaptation of the summary of
Cochi et al. data from 15 years of ARDS comorbidity data
(1999–2013) that identified four major comorbidities that
occur with ARDS (49). ARDS, acute respiratory distress
syndrome.

FIG. 1. Schema of the overlapping syndromes and
complications in the critically ill. Depicted are the major
causes of critical care illnesses and associated complications
that contribute to the staggering morbidity, mortality, and
health care costs in the critically ill.
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Unlike other complex genetic diseases, ARDS has not
benefited from family pedigree studies (149); however, using
both candidate gene and genome-wide association study
(GWAS) approaches, we have identified several novel ge-
netic targets and biomarkers of ARDS risk and severity, in-
cluding nicotinamide phosphoribosyl transferase (NAMPT)
(108, 168, 199), toll-like receptor 4 (TLR4) (169, 200), en-
coding myosin light chain kinase (MYLK) (46, 47, 72, 73,
119, 187), iodothyronine deiodinase 2 (DIO2) (187, 194),
growth arrest and DNA damage-inducible gene (GADD45a)
(124, 126), MIF (71), and sphingosine 1-phosphate receptors
1 and 3 (S1P1, S1P3) (132, 169).

In this article, we have chosen to integrate studies utilizing
peripheral blood mononuclear cells (PBMCs) for identifica-
tion of genetic signature in ARDS, meta-analysis of ARDS
risk, and mortality biomarker studies (175) with GWAS. We
speculate that this strategy may expand the understanding
of ARDS pathobiology and potentially identify genes asso-
ciated with ARDS mortality that may serve as diagnostic
makers and therapeutic targets.

We evaluated PubMed literature relevant to ARDS to
identify a total of 201 dysregulated genes potentially asso-
ciated with either ARDS risk or severity followed by pathway
analysis. Pathway analysis included genes from both candi-
date and agnostic GWAS studies, genes from mRNA mi-
croarray and sequencing studies, and proteomic evaluations
that identified putative candidate genes but without associ-
ated single nucleotide polymorphisms (SNPs) related to
ARDS risk or ARDS mortality. Blood biomarkers without
genomic/genetic evidence were not included.

We further summarize the current state of ARDS genetics
in terms of susceptibility risk SNPs and those that confer
increased mortality selected on the basis of adjusted signifi-
cance in their respective study. We have also chosen to
evaluate ARDS studies that use mortality as an end-point as

this captures the most severe outcome for ARDS patients.
Our bioinformatically derived results are consistent with the
concept that evolutionarily conserved inflammatory net-
works comprising reactive oxygen species (ROS), innate
immunity-related inflammation, and endothelial vascular
signaling pathways are potent contributors to multiple or-
gan dysfunction-related ARDS mortality and pathobiology
(82, 83).

Recent Advances

A brief timeline of ARDS clinical and genetic literature

ARDS was first described in the classic Ashbaugh et al.
report in 1967 (10). Clinical therapeutics in ARDS have been
studied exclusively in ARDS for several decades (107).
Figure 3 depicts a brief timeline of the initial important
clinical studies for common therapeutics in ARDS. The two
earliest clinical methods to manage ARDS were management
of lung collapse utilizing positive end-expiratory pressure
and the prone position to aid oxygenation (30a, 171).
Ventilator-induced lung injury (VILI) or barotrauma was
later described, and the further lung injury and alveolar
rupture induced by the mechanical ventilator used to treat
ARDS patients provides an additional challenge in the clinic
(57). In 2000, the landmark ARDSNet clinical trial using
lower tidal volumes to reduce VILI and ARDS mortality
represented another significant clinical therapeutic advance
(8) (Fig. 3), the sole ARDS clinical trial to succeed.

In contrast, the first candidate gene study in ARDS in-
volving angiotensin-converting enzyme (ACE) polymor-
phisms corresponding to higher ACE plasma levels in ARDS
was reported in 1992. Candidate gene studies in ARDS, rare
until the sequencing of the human genome (177), have
subsequently significantly populated the ARDS literature
(Oita et al., manuscript in preparation, 2, 3, 9, 11, 33, 36, 52,

FIG. 3. A timeline of ARDS clinical and genetic contributions. A selection of clinical contributions for ARDS (bottom)
and genetic contributions to the ARDS literature (top). The relative recent history of genetic contributions to the ARDS
literature should be noted compared with a much long history of clinical contributions to treatment. Clinical and genetic
timelines adapted from Laffey et al. and Reilly et al. (107, 149).
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61, 79, 89, 91, 98, 105, 106, 111, 112, 116, 120, 123, 127, 128,
131, 134, 140, 147, 150, 160, 168, 169, 173, 174, 183, 186,
187, 191–194, 198, 201, 203). The chronology of the discovery
of the major candidate genes in ARDS as well as the transition
into ARDS GWAS studies has been previously elegantly de-
tailed (149); however, in this review, we have attempted to
capture more recent genetic developments and reporting in
ARDS (53, 107).

We integrated a variety of genetic studies into the ARDS
literature, and excluding the initial ACE polymorphism study
(177), all candidate gene studies were published after 2000
(Fig. 3). GWAS studies enter the ARDS literature starting in
2012, but compared with GWAS studies in other disorders
and clinical arenas, ARDS GWAS studies generally include
smaller cohorts (122). The literature of ARDS genetics is
relatively small and recent compared with other academic
fields, and the genes presented are a comprehensive list of all
mapped genes in ARDS that were significant (irrespective of
the individual study) for either (i) a specific polymorphism
associated with ARDS or (ii) an overall gene expression level
significant for ARDS risk.

Later, the importance of gene expression studies and PBMC
mortality risk genes are discussed as these genes potentially
serve as novel therapeutic targets. The ‘‘Pathway analysis
methods’’ section given next highlights our attempt to syn-
thesize the recent and diverse genetic studies in the ARDS
literature. A list of 201 mapped genes were identified via
PMC/PubMed literature search of ARDS, acute lung injury
(ALI), and ‘‘lung injury’’ studies that identified genes that

were differentially expressed or conferred risk for ARDS, severe
sepsis, or mortality (15) (Fig. 4 and Supplementary Table S1).

ARDS genes identified by dysregulated gene
expression

The 201 ARDS genes were derived from studies with
clinical populations, human-derived cell lines, or genes val-
idated across multiple animal models with genetically con-
served regions (29, 53, 82, 83, 149, 196). Cross-species
analyses of VILI models (rat, mouse, canine) and human
ARDS patients have yielded a list of genes that are conserved
across species and of potential importance in the pathophysi-
ology of ARDS and VILI (196). Eleven genes were ‘‘immune
response’’ genes that were highly significant with Expression
Analysis Systematic Explorer scores, and two genes (IL-1B,
IL-6) were noted to harbor SNPs that were independently as-
sociated with ARDS risk or ARDS mortality (17, 180, 196).

Six genes were involved in ‘‘inflammatory response’’ and
‘‘innate immune response’’ pathways. Taken together, these
data indicate that multiple genes fall into the evolutionary
conserved inflammatory and immunological-related pathways
across species and are potentially important in ARDS and VILI
pathology (196). A limited mRNA study of ARDS and healthy
controls yielded 12 upregulated genes in ARDS (106) with
IL-1R2, a decoy receptor that dampens IL-1 signaling (106),
identified as the top upregulated gene. Three genes
(Arginase-1, MHC-DRB1, CCR2) are macrophage-specific
genes expressed by activated macrophages (106).

FIG. 4. ARDS gene table and top pathways. Two hundred one genes identified through differential gene expression
(mRNA sequencing, mRNA CHIP array, RNA microarray, proteomics, candidate gene sequencing, or GWAS) that mapped
onto either the Reactome or Wikipathways databases for pathway analysis (5359 human pathways covered). The second,
third and fourth columns reflect the number of citations for each gene (14). Four broad categories of enriched pathways
(immunological signaling, ROS-related signaling, vascular signaling, and transcription factor-related pathways) and the
number or genes represented in each ( p < 0.01, five members minimum per pathway). GWAS, genome-wide association
study; ROS, reactive oxygen species.
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Another strategy to study pathways incorporating genes of
interest is to utilize genetically engineered preclinical murine
models involving exposure to ARDS and VILI followed by
genome-wide lung tissue gene expression and pathway analysis
(90). For example, NAMPT, also known as PBEF, is an ARDS
candidate gene (175) that harbors several promoter SNPs
(-2422A/G, -948G/T) that are associated with an increased
risk of ARDS and ARDS mortality (3, 12, 108, 135, 169).

We have shown that extracellular NAMPT (eNAMPT)
directly interacts with TLR4 (62) and genomic comparisons
of wild-type mice and NAMPT heterozygous mice exposed to
eNAMPT, VILI, or lipopolysaccharide revealed signifi-
cant NAMPT-influenced pathways involved in ‘‘acute phase
response signaling,’’ ‘‘IL-10 signaling,’’ ‘‘IL-6 signaling,’’
‘‘NF-lB signaling,’’ ‘‘LXR/RXR activation,’’ ‘‘Leukocyte
Extravasation Signaling,’’ ‘‘PPAR signaling,’’ ‘‘Death Receptor
Signaling,’’ ‘‘Apoptosis Signaling,’’ and ‘‘TLR signaling’’
(35, 202). Similar genomic-intensive studies independently
identified TLR1 and interleukin-1 receptor-associated kinase
(IRAK1) as ARDS risk genes (142, 155).

A complementary approach to identify pathways relevant
to ARDS mortality is to utilize proteomic analyses to identify
ARDS biomarkers that identify ARDS sub-phenotypes (21).
Proteomic analysis of bronchoalveolar lavage fluid (BALF)
in ARDS survivors and non-survivors (22) revealed differ-
entially expressed proteins that fall within ‘‘acute phase
signaling’’ and ‘‘FXR/RXR Activation’’ pathways, results
remarkably similar to results from preclinical models of
ARDS (22, 90).

The ‘‘oxidative ethanol degradation’’ and ‘‘fatty acid
a-oxidation’’ pathways were significantly upregulated in
BALF obtained from ARDS non-survivors (22). Utilization of
the quantitative electrophoresis-based proteomics method
(difference gel electrophoresis) identified 37 proteins differ-
entially expressed between ARDS patients and healthy con-
trols (39), with ‘‘Wounding’’ and ‘‘Inflammatory Response’’
being the top network pathways that included calgranulin
A (S100A8), calgranulin B (S100A9), calgranulin C (S100A12),
serum amyloid protein (SAA), complement C9 precursor
(C9), hemopexin precursor (HPX), peroxiredoxin 5 mito-
chondrial (PDX5), complement C3 precursor (C3), annexin A1
(ANXA1), and alpha-1-antitrypsin (SERPINA1) (39).

PBMC gene expression in ARDS as predictors
of mortality

PBMCs are an easily obtainable blood cell fraction that is
broadly representative of innate immunity status. A meta-
analysis of PBMC molecular biomarkers (54 distinct studies)
attempted to validate ARDS gene biomarkers (175) and
found two significant sets of biomarkers (175). One set
consisted of ARDS risk genes and included Krebs von den
Lugen-6 (KL-6), lactate dehydrogenase (LDH), soluble
RAGE, and von Willebrand factor (vWF). A second set of
genes associated with increased ARDS mortality (175) in-
cluded IL-4, IL-2, angiopoetin 2 (Ang-2), and KL-6. IL-4 is
also an ARDS candidate gene with SNPs associated with
ARDS risk, possibly via regulation of lung repair in cellular
and animal models of ARDS (52, 85, 120, 173).

To further determine the utility of a PBMC-derived gene
signature in the ICU setting, we interrogated differentially
expressed PBMC genes in 55 ARDS survivors and non-

survivors (Affymetrix GeneChip Human Exon 2.0 ST mi-
croarray). Figure 5A depicts heatmap-displayed results of
bioinformatic analysis with 33 differentially expressed genes
(DEGs) identified in a molecular signature in ARDS patients
(n = 23) versus controls (n = 80), 19 genes downregulated, 14
upregulated (fold change >2 – 4.41, p < 7.26e-23). Importantly,
of the 215 genes (23 upregulated, 192 downregulated) pre-
dictive of survival with ‘‘Toll-like receptor signaling path-
way,’’ the top enriched pathway, Figure 5B depicts DEGs in
PBMCs from 23 ARDS patients that reflect survival with 16
downregulated genes and 5 upregulated genes (Fig. 5).

These gene lists includes genes previously reported as
dysregulated in other ARDS studies (PLAUR, IL1B, VEGFA)
(17, 83, 159). In addition, IL1R2 harbors SNPs that confer
increased risk for ARDS and represents a biomarker poten-
tially predictive of sepsis-induced ARDS mortality (123).
The gene with the greatest magnitude of upregulation was
matrix metallopeptidase 8 (MMP8) with >400-fold change.
Although levels of plasma proteins reflecting the expression
of these genes were previously reported, this is the first article
of MMP8 and TIMP-1 as genomic markers among non-
survivors in ARDS (91). This link between MMP8 and IL1B
as molecular biomarkers in blood and gene expression bio-
markers predicting survival in ARDS suggests that this ap-
proach may yield clinically- and biologically relevant ARDS
biomarker candidates (14, 58, 85, 91, 109, 120).

Figure 5B results are also consistent with other reports that
the TLR4 signaling pathway is a top pathway in predicting
survival in ARDS patients (35, 92). eNAMPT, a validated
ARDS blood biomarker whose NAMPT promoter SNPs
confers risk of ARDS and ARDS mortality (3, 12, 108, 135,
169), is a TLR4 ligand (35) and both TLR4 and NAMPT are
differentially expressed in animal models of ARDS (63, 173,
196). There is increasing interest in potentially therapeuti-
cally targeting the NAMPT pathway as a strategy to reduce
ARDS mortality (Oita et al., manuscript in preparation).
In addition, NAMPT genotypes and plasma protein levels
represent an opportunity to develop a panel of biomarkers/
genotypes that could be employed for clinical trial stratifi-
cation based on ARDS mortality risk (27, 105).

Pathway analysis methods

High-throughput screenings have provided a wealth of
valuable genome-wide data with pathway analysis; the log-
ical next step will be to integrate these results to understand
the biological phenomena that underpin these data and gen-
erate future hypotheses (29, 100). Database analysis is cur-
rently coding protein focused, and multiple database searches
can be used to integrate GWAS, mRNA, and proteomic
studies (100). We employed multiple genomic and biological
pathway database searches to compile the results of ARDS
genomic studies to facilitate a better understanding of the
pathways involved in a complex genetic disease such as
ARDS.

Although pathway analysis is not a meta-analysis of ARDS
patients, pathway analysis using multiple databases allows
the results of candidate gene, agnostic GWAS studies, and
unclassified studies to be combined for analysis and for a
better understanding of the cellular and molecular pathways
that are involved in ARDS pathobiology. Pathway analysis
has two major benefits: (i) It allows for thousands of genes to
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be reduced in complexity (29), and (ii) it allows for the de-
velopment of active pathways that are significantly dysre-
gulated in ARDS, potentially providing mechanistic insights
that extend beyond creation of a simple gene list (29).

With a complex genetic disease such as ARDS, many
genes with varying effect sizes will presumably be involved
in ARDS pathobiology. Pathway analysis organizes the re-
sults of GWAS studies, candidate gene studies, and meta-
analysis to understand the biological pathways that contribute
significantly to disease progression. We used pathway anal-
ysis for gene sets (Gene Ontology terms), protein–protein

interactions, and gene interactions (Reactome and Wiki-
pathways; 5259 human pathways searched) to analyze our
collected pool of 201 ARDS genes (100). These studies were
performed on the Max Planck Institute for Molecular Ge-
netics consensus pathway database (CPDB) across three
pathway sources with the most relevance (Reactome and
Wikipathways) (Table 1) (88, 102, 103).

Enriched pathways were defined as containing more than
five genes represented and a p-value of <0.01, which resulted
in 72 total enriched pathways. In addition, 38 relevant and/or
highly enriched pathways were chosen based on clustering of

FIG. 5. Heatmap of PBMC gene expression predicting ARDS susceptibility and ARDS mortality. (A) The 33 top
genes identified in a molecular survival signature from PBMC mRNA in ARDS patients (n = 23) versus controls (n = 80,
PMID:19222302). Nineteen genes are downregulated, and 14 are upregulated (Fold change >2 – 4.41, p < 7.26e-23). (B) 22
genes in the ROS pathway were predictive of ARDS survival in ARDS patients. Five of these genes are upregulated, and 17
are downregulated (24). PBMC, peripheral blood mononuclear cell.
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genes (Fig. 4; Table 1). Of the enriched pathways, 17 resided
in Reactome and 21 in Wikipathways (Table 1) and were
further divided into ROS pathways (n = 6), immune and in-
flammatory pathways (n = 9), cardiovascular signaling path-
ways (n = 11), transcription factor signaling pathways (n = 6),
and other pathways (n = 6).

ROS pathways

ROS play an important role in sepsis and ARDS, and they
contribute to the severe disruption of the endothelial barrier
and the resulting inflammation and inflammatory cascade in
the lower airway (54). Neutrophils migrate across the endo-
thelial barrier in response to endothelial-secreted cytokines
and chemoattractants. In addition to endothelial-secreted pro-
inflammatory signaling, neutrophils are further sources of
released pro-inflammatory cytokines, ROS, proteolytic en-
zymes, nitrogen species, cationic proteins, and lipid media-
tors (54). Each inflammatory cell type in the lung generates
and releases distinct profiles of ROS molecules (45). Leu-
kocytes express NADPH oxidase and nitric oxidase syn-
thases, which together generate peroxynitrite and other ROS
species (45).

In ARDS, polymorphonuclear neutrophils and macro-
phages initiate prolific ROS activation (45). Several isoforms
of NADPH oxidase (NOX1, NOX2, NOX4, NOX5) are ex-
pressed in the endothelium, and increased expression of
NOX1, NOX2, and NOX4 drives endothelial and epithelial
barrier dysfunction and generates substantial amounts of sec-
ondary ROS (19, 45, 81, 86). The main role of NOX is to
catalyze the reduction of molecular oxygen (O2) to superoxide
(O2

-) (19). Pulmonary endothelial cells express both NOX2
and NOX4 that generate ROS under hypoxic conditions as well
on exposure to mechanical stress caused by VILI (81, 86).

ROS generation is linked to survival in sepsis patients (2,
11, 25, 69, 73, 74, 96, 99, 105, 148, 169, 197), and we recently
reported that a 21-gene ROS gene signature was significantly
linked to survival in sepsis (25) with ‘‘Oxidative phosphor-
ylation’’ being the top enriched pathway. Oxidative phos-
phorylation is the major pathway of ATP generation in
eukaryotic cells, including the vascular endothelium (139).
Endothelial mitochondria are also a major source of ROS
under aerobic conditions, which include encode complex
organelles, including multiple peroxisomes (the P450 com-
plex, xanthine oxidases, and nicotinamide adenine dinucle-
otide [NADPH] oxidase complexes) that are encoded by a
large number of genes (139).

Mitochondria and many genes involved in ATP production
create ROS byproducts. The list of ROS genes (Fig. 5B) in-
clude chaperon proteins (HSP40, HSP70), which were not
commented on in the original paper (25) but are included in
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
oxidative phosphorylation pathway, and these chaperon pro-
teins are of potential mechanistic interest to understanding the
role of oxidative phosphorylation in ARDS. The 21 ROS gene
signature (CSDE1, DNAJC8, DNAJB9, PRDX5, GCLM,
FTH1, DNAJA3, GSTP1, CCT7, NCF1, CCT8, DNAJB6,
PRDX3, SOD2, DNAJC5, CYBA, PRDX2, DNAJB11,
HSPA1A, KEAP1, GSR) was used to create a sepsis risk score
(25) (Fig. 5B) and significantly outperformed a thousand
randomly picked genes in predicting survival among ARDS
patients (25).

In the wider ARDS literature, 27 other genes were iden-
tified in pathways related to oxidative and cellular stress
(Table 1). NOX4 represented a link across multiple pathways
(‘‘detoxification of ROS,’’ ‘‘Cellular stress,’’ ‘‘Cellular re-
sponse to external stimuli,’’ and ‘‘oxidative stress’’). Both the
superoxide dismutase (SOD) family (SOD2, SOD3) and the
peroxiredoxin gene family (PRDX2, PRDX3, PRDX5,
PRDX6) were also represented across multiple pathways
(‘‘Detoxification of ROS,’’ ‘‘Cellular stress,’’ ‘‘Cellular re-
sponse to external stimuli’’) (Table 1) and exhibited common
variants associated with ARDS in case–control studies (87,
112). These genes, together with those that comprise the
previously identified 21 gene signature (25), are relevant to a
genetic ROS risk and survival signature in ARDS.

‘‘Oxidative stress’’ pathways join ‘‘inflammation’’ and
‘‘apoptosis’’ as pathways implicated as being important to
ARDS pathology (22, 44, 90, 110, 151), with several ‘‘Oxi-
dative stress’’ pathway genes exhibiting SNPs that are sig-
nificantly linked to ARDS (NAMPT, IL-6, IL4, IL-13) and to
vascular signaling pathways (44). Important redox-sensitive
pathways in ARDS are the mitogen-activated protein kinase
(MAPK) and signal transducer and activator of transcription
(STAT) pathways that regulate several ARDS candidate
genes (18, 135a, 182, 185, 203). Another redox-sensitive
pathway involved in signaling and fibrotic proliferation is the
PI3K/Akt pathway (36). Individually, many genes (NOX1,
NOX4, STAT4, STAT5) in the MAPK/STAT and PI3K/Akt
pathways exhibit mechanistic roles in ARDS pathology in
animal models (36).

One highly ROS-related pathway is the NRF2 (NFE2L2)
transcription factor and signaling pathway. NRF2 is a ubiq-
uitous master transcription factor that regulates antioxidant
response elements (ARE) and mediates cytoprotective and
antioxidant protein expression (Fig. 5A) (43). In the healthy
lung, NRF2 has a protective effect against hyperoxia, me-
chanical stress, and VILI (43, 150); it regulates NOX4 in the
human and mouse lung, and ROS signaling in ARDS (141, 150).

NRF2 binds to Kelch-like ECH associated protein 1
(KEAP1), another differentially upregulated gene in the ROS
ARDS survival gene signature (25, 150). The Keap1–Nrf2
complex translocates Nrf2 to the matrix that binds to AREs
and transcribes heme oxygenase-1, NAD(P)H:quinone oxi-
doreductase 1, catalase, and SOD (41). Interestingly, NRF2
was recently shown to uniquely repress the expression of
another ARDS candidate gene, MYLK, via a novel mecha-
nism involving the AREs (113, 125, 141, 172), again high-
lighting the involvement of NRF2 in ARDS.

Immune-linked and inflammation-linked pathways

Many innate immunity genes are implicated in severe lung
injury, contributing to neutrophil infiltration into the alveo-
lar space and ‘‘cytokine storm,’’ an ARDS hallmark (90). In
sepsis-induced ARDS, neutrophil-related genes (OLFM4,
CD24, LCN2, BPI, RBP7, UTS2) are significantly expressed
compared with sepsis patients alone (105). The most highly
enriched pathways in our analysis were related to immune
signaling (Table 1), with the caveat that many genes were
shared between pathways.

A strong 37-gene signature (ARG1, CAP1, CAT, CCT8,
CEACAM1, CEACAM8, CHIT1, COTL1, CRIPS3, CYBA,
DEFA4, DNAJC5, FABP5, FTH1, FTL, GPI, GSTP1, HBB,
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HSP90AB1, HSPA1A, HSPA8, LCN2, LGALS3, MIF, MMP8,
MMP9, OFLM4, PGAM1, PLAUR, PPIA, RNASE3, S100A8,
S100A9) was shared between ‘‘neutrophils,’’ ‘‘innate im-
mune system,’’ and ‘‘immune system signaling’’ pathways
(Fig. 6). The strong neutrophil/immune system signature
highlights dysregulation in neutrophil cellular biology as of
key importance in ARDS risk and survival (84).

MMP8 and MMP9, two genes present in the ARDS sur-
vival signature depicted in Figure 6 (Manuel Gonzales-
Garay, title unknown), are released by neutrophils at the site
of acute inflammation (7). Both MMP8 and MMP9 had in-
creased protein levels in models of lung injury (6, 7, 91).
Absence of MMP8 and MMP9 in MMP8-/- and MMP9-/-

mice exposed to VILI models shows decreased risk for ALI
(6, 7). Both MMP levels in BALF correlate with increased
lung injury (84).

HMGB1 is represented across all five of the top immune
system pathways and in the IL-1 signaling pathway (Table 1;
Figs. 6 and 7). HMGB1 was identified as a cytokine in a
murine model of endotoxin-mediated lethality (184) and is

upregulated in vitro under 18% cyclic stretch conditions of
high mechanical stress (194). Similar to eNAMPT, HMGB1
binds TLR4 as well as RAGE, the primary receptor of
HMGB1 (133, 161). HMGB1 protein expression correlates
with ARDS severity, 28-day mortality, and 90-day mortality
(34, 94–96, 179).

Another important immunological cytokine in ARDS is
MIF, first described in animal models of ARDS (20) and as
a product of activated T cells that inhibit macrophage mi-
gration (71). In humans, MIF levels in BAL were elevated
in both ARDS and septic patients, and we identified two
SNPs (rs755622 and rs2070767) in MIF to be associated with
African American ARDS patients (71). In pathway analysis,
MIF is present in three of the immune pathways (neutrophils,
immune system signaling, innate immune system signaling),
hemostasis, and adipogenesis (Table 1).

IL-6 and IL-4 are well established biomarkers in ARDS
(14, 25, 44, 79, 120, 175), and enrichment of IL signaling
pathways in ARDS merits commentary (Fig. 7). Pathways for
‘‘IL-4 and IL-13 signaling,’’ ‘‘IL-1B signaling,’’ ‘‘IL-10

FIG. 6. Inflammation
pathways. Using the entirety
of 201 genes identified by
our eGWAS approach, we
identified the top five en-
riched inflammation path-
ways: neutrophils, cytokine
signaling, immune system,
innate immune system, leu-
kocytes. Shown are the indi-
vidual genes in each pathway
with significant overlap.
eGWAS, expression gen-
ome-wide association study.

FIG. 7. Five interleukin-
associated signaling-specific path-
ways. (IL-10 signaling, IL-4 and
IL-13 signaling, development of
the ILC family, IL-1 signaling,
leukocytes) and the genes that
overlap. IL, interleukin.
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signaling,’’ development of the ‘‘ILC’’ family, and ‘‘leuko-
cytes (general)’’ were enriched in pathway analysis (Table 1).
IL1B is involved in all pathways, and IL-1B is an early
candidate biomarker whose serum levels correlate with en-
dothelial cellular injury (120, 143).

eNAMPT-driven gene pathways after TLR4 ligation in-
clude ‘‘IL10-signaling,’’ ‘‘IL-6 signaling,’’ ‘‘leukocyte ex-
travasation signaling,’’ and ‘‘toll-like receptor signaling’’
(90). A total of 28 genes are involved in at least one IL-related
signaling pathway (AGER, AHR, ANXA1, AREG, CCL2,
CDKN1A, CEBPD, CSF2, CSF2RB, CXCL2, CXCL8,
HMGB1, HSPA8, IL13, IL1B, IL1R2, IL1RN, IL4, IL6,
JUN, LCN2, MMP9, OSM, PTGS2, S100A12, SAA1, TNF,
YWHAZ) (Table 1; Fig. 7).

Endothelial vascular and cellular signaling pathways

One of the most studied and diverse groups of genes re-
sponsible for the pathology of ARDS are the highly conserved
vascular signaling genes (196). Our ARDS pathway analysis
identified 11 pathways involved with vascular biology rele-
vant to ARDS, with the 6 most highly enriched vascular and
cellular signaling pathways shown in Table 1 and Figure 8 and
genes from platelet-specific pathways shown in Figure 9. Both
growth factors and coagulation factors are upregulated in

mRNA studies across species (mouse, rat, canine, human)
(196). Of the 37 genes upregulated in this cross-species study,
5 were related to cell proliferation, 6 were related to wound
healing, 5 were related to extracellular spaces, and all were
related to pro-fibrinolytic processes associated with poor
outcomes in ARDS (167, 196). One of these genes, SERPINE1,
encodes PAI-1, a potential biomarker for ARDS (137, 196).

Signaling by VEGF (KEGG pathway map04370) is asso-
ciated with ARDS in a large genomic ARDS study that
yielded 44 significant genes of interest (87), with 13 being
specifically involved in VEGF signaling, a critical pathway
for cellular proliferation in vascular signaling and ALI (87).
Expression of the RAGE is correlated with severity in ARDS
patients (97). RAGE is predominantly expressed in epithelial
cells, and several RAGE SNPs are potential ARDS risk SNPs
(30). NOS3, IL-1B, NOX4, SERPINE1, and IL6 all have a
history of associations with ARDS pathology, risk, and se-
verity (17, 24, 86). The VEGF signaling pathway also trig-
gers the downstream activation of many transcription factors
such as SP1, which regulates the key cytoskeleton protein,
non-muscle myosin light chain kinase (160).

Genes associated with platelet count and coagulation have
been discovered to be indirect mediators of endothelial dam-
age in ARDS (193). Five genes associated with platelet counts
(BAD, LRRC16A, CD36, JMJD1C, SLMO2) in a meta-
analysis were studied in a larger population of ARDS and at-
risk controls (146, 192, 193). Five pathways (‘‘hemostasis,’’
‘‘platelet activation,’’ ‘‘signaling and aggregation,’’ ‘‘platelet
degranulation, response to elevated platelet cytosolic Ca2+,’’
‘‘complement and coagulation cascades’’) were involved with
platelet signaling or coagulation (Table 1; Fig. 9). In a study
with a canine model of lung injury, 7.4% of the differentially
regulated genes were in blood coagulation pathways (163).

CPDB pathway analysis identified four separate significant
enrichment pathways involving platelets and coagulation
(‘‘Hemostasis,’’ ‘‘Platelet activation, signaling and aggre-
gation,’’ ‘‘Platelet degranulation,’’ ‘‘Response to elevated
platelet cytosolic Ca2+’’) (Table 1; Fig. 9). These pathways
share 14 common genes that drive this platelet and coagu-
lation pathway signal (Fig. 9). Many of these coagulation
genes (ANXA1, APOA1, FGA, PPIA, SERPINA1) were iden-
tified in ARDS proteomic studies as well (39). Genes involved
in the sphingolipid generation and signaling pathway, such
as S1PR1 and S1PR3, are highly abundant in platelets and
are also potential novel biomarkers and risk SNPs (132, 155,
169, 170).

FIG. 8. Genes represented in top enriched endothelial
vascular pathways. Shown are the top six cardiovascular
signaling pathways and the number of genes in each path-
way: Hemostasis, VEGFA-VEGFR2, MAPK signaling,
PI3K-Akt signaling, AGE-RAGE. RAGE, receptor of ad-
vanced glycation end products; MAPK, mitogen-activated
protein kinase; VEGF, vascular endothelial growth factor.

FIG. 9. Platelet and coagulation path-
ways. Fourteen genes are shared among the
top four enriched platelet and coagulation
pathways.
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Other transcription factor and signaling pathways

Several important transcription factor and signaling path-
ways emerged from our pathway analysis (Table 1). Nuclear
receptors can directly interact with DNA as a ligand, and the
‘‘Nuclear receptors meta-pathways’’ represent a diverse
group of genes that point to the overall importance of DNA
regulation and transcription in ARDS. Nuclear receptor
meta-pathways are a nebulous category but they present a
large and highly significant pathway identified in this study
(Table 1; p = 6.42e-17). Of the 201 mapped ARDS genes, 31
represent either nuclear receptors or their interacting genes
(Table 1) (ABCB1, AGER, AHR, APOA1, CCL2, CYP1A1,
EGFR, FTH1, FTL, GCLC, GCLM, GSR, GSTP1, HBEGF,
HSP90AB1, HSPA1A, IL1B, JUN, KEAP1, NFE2L2, PDE4B,
FLK2, PRDX6, PTGS2, SERPINA1, SOD3, TGFB2, TNF,
TNFAIP3, TXN, UGT2B7).

Critical Issues

ARDS genetic variants/genes identified by GWAS

The recent advances (149) in identifying risk SNPs for
ARDS not only present new therapeutic opportunities for
ARDS therapies but also present challenges for validation
and replication across multiple cohorts in a heterogeneous
genetic disease such as ARDS (122, 175). Attempts to ad-
dress the challenge of defining genetic risk factors involved
in the development of ARDS and the severity of the ARDS
phenotype largely relies on two approaches: candidate gene
studies and genome-wide association studies (149). Candi-
date gene studies focus on specific gene(s) with probable
biological and mechanistic links to vascular permeability,
cytoskeletal protein dysregulation, apoptosis pathways, or
pro-inflammatory cascades (185, 203).

GWAS focus on genotyping the entire genome without
requiring an a priori hypothesis regarding specific genes or
their biological significance (5). GWAS studies benefit from
not requiring an understanding of mechanisms of gene in-
volvement, allowing for the discovery of novel genes in
ARDS (149). Candidate gene studies have several limitations
that GWAS studies overcome but have the potential advan-
tage of facilitating defining SNP functionality. In complex
diseases such as ARDS with a myriad of environmental and
genetic causes, GWAS studies are valuable as they may be
performed without a complete mechanistic understanding of
the many biological pathways involved (5), with this agnostic
approach allowing for the discovery of unique genotype–
phenotype relationships (149).

GWAS studies exploring ARDS risk are primarily divided
between European populations (80%) and African popula-
tions (20%) (24, 116, 123, 162, 173). Together, 5 GWAS
studies have yielded 11 genes with 15 independent SNPs
associated with ARDS susceptibility in GWAS case studies
(Table 2).

Among European ARDS GWAS studies, nine ARDS
genes, including XK-related 3 (XKR3), arylsulfatase D
(ARSD), and Zinc-Finger/Leucine-Zipper Co-Transducer
NIF1 (ZNF335), were identified (Table 2) by case–control
whole exome sequencing of Asian American and European
American populations (162). Another study in multiple
ARDS populations (trauma- and sepsis-induced ARDS) of
European descent identified several genes (POPDC3, FAAH,

PDE4B, ABCC1, TNFRSF11A) to reach population-wide
significance in a meta-analysis (173). Two other independent
ARDS studies in European descent patients (Philadelphia,
PA) had two genes (IL1RN, PPFIA1) reaching population-
wide significance in their respective case–control studies (47,
123). IL1RN is linked to the development of both ARDS and
sepsis (123, 140); IL1RNA levels were shown to be signifi-
cantly higher in ARDS patients compared with controls, and
predicted mortality (140).

Another immunity-related gene, TNFRSF11A, is a member
of the tumor necrosis factor receptor (TNFR) family, mecha-
nistically important to developing ARDS (78, 145). TNFR1
mediates cell death, inflammation, which, in turn, leads to
vascular leak and neutrophil infiltration of the alveolar space
(145). TNFRSF11A encodes the receptor activator of NF-kB
(RANK), which is the receptor for receptor activator of NF-kB
ligand (RANKL), key to altered NF-kB signaling (78, 165).
Although TNFRSF11A SNPs have been significantly asso-
ciated with the severity of Paget’s disease, the reported
ARDS risk SNPs are unique (78, 123) and may influence
TNFRSF11A alternative splicing, a largely unexplored mech-
anism in ARDS (165, 181), and NF-kB signaling (78, 165).

GWAS studies of ARDS mortality

In the ARDS genetic literature, GWAS studies are less
common than candidate gene studies due to their expense as
well as that ARDS GWAS studies require larger patient
populations to overcome the limitations of multiple associ-
ation testing (Bonferroni correction) (149). Only two GWAS
studies evaluated ARDS as an end-point with approximation
of severity (11, 89, 117, 195), and both were conducted in
European (89) or European descent populations (11, 116,
117). Each study had a single gene reach population signifi-
cance for mortality association (ADIPOQ, FER, ACE) with at
least one SNP, although other SNPs in linkage disequilibrium
were reported (Table 2).

ADIPOQ encodes adiponectin with an SNP associated
with the ARDS mortality study (4), and it has been linked in
several meta-analyses to type 2 diabetes or obesity (114, 178)
in Caucasians, in a South Eastern Asian population (114) and
with type 2 diabetes in Chinese and Taiwanese populations
(4, 48, 178, 195). However, after adjusting for body mass
index, a measure of obesity, and for diabetes status, rs2082940
remained significantly associated with ARDS mortality (4).

Unlike ADIPOQ, ACE has a history of mechanistic studies
that implicate ACE as an important gene in ARDS pathology
(77, 198, 201). ACE is the enzyme that degrades angiotensin I
(Ang I) to angiotensin II (Ang II), which is the peptide that is
primarily responsible for maintaining blood pressure ho-
meostasis and fluid/salt balance in kidney filtration (198). In
animal models, ACE is strongly associated with elevations in
IL-6 and leukocyte counts (201) and it is elevated in human
ARDS BALF (198, 201).

Ang I has also been implicated as having an insertion/
deletion polymorphism that is associated with mortality in an
ICU ARDS cohort (116). FER is a member of the FPS/FES
non-transmembrane receptor tyrosine kinase family, and it is
significantly associated with ARDS (Table 2) and survival in
septic patients (148). In a multi-cohort study, rs4957796 was
significantly associated with survival in sepsis patients (148)
and with increased survival in ARDS (89). Many ARDS
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patients have sepsis as a comorbidity, and rs4957796 being
an SNP associated with both mortality in ARDS and sepsis
makes it a strong candidate gene to study in ARDS, and
potentially useful in developing an ARDS risk SNP panel
(89, 148).

ARDS genetic variants/genes identified by candidate
gene studies

Candidate gene studies require an a priori hypothesis or
prior knowledge of a gene’s function, which make candidate
gene studies popular for studying genes with known func-
tional roles in ARDS (5). A limitation of candidate gene
studies is a potential failure to account for genetic drift and
population demographics on natural selection (5). In ARDS,
this is a particularly important limitation because of observed
health disparities between African, Hispanic, and European
populations (64). The largest category of ARDS genetic
studies are ARDS risk-association candidate gene studies (2,
12, 17, 24, 80, 93, 111, 154, 158, 174, 188). Candidate gene
studies are the original genetic approaches in the ARDS lit-
erature and are often associated with a gene or protein’s
hypothesized role in lung injury (149).

The first reported candidate risk genes were SFTPB (SP-B
variant), ACE, and IL-6 (68, 80, 111, 116, 117). The ad-
vantage of candidate gene studies is that analyses can be
performed in smaller population case sizes to achieve sig-
nificance when compared with GWAS approaches (111, 116,
117). Although candidate gene studies are numerous, repli-
cation of specific SNPs has proven difficult. However larger
study populations have produced more robust results for
specific risk genes (NFE2L2, NAMPT/PBEF, IL-4, IL-13,
SP-B, AGER, PI3, MAP3K1, IL-6, MYLK) and specific SNPs
of interest (Table 2). Among candidate gene risk studies, 18
of 23 studies (*78%) have been performed exclusively in
European populations or populations of European descent
(11, 12, 24, 80, 93, 111, 154, 158, 174, 188).

The early research into candidate genes provided viable
genotype–phenotype links for biomarker studies, and one of
the most successful has been IL-6 (117). A haplotype of IL-6,
-174G/C, has been identified and validated as a risk SNP for
several ARDS case–control studies (68, 118). Increased
levels of IL-6 cause a rise in ROS via the TLR4-TRIF-TRAF6
pathway (92). IL-6 is elevated in patients with ARDS and
has been shown to have a significant role in the permeability
of the lung endothelium in multiple ARDS mouse models
(79). IL-6 has several risk SNPs and promoter haplotypes
associated with sepsis-related ALI (66, 79). IL-6 levels are
determined by many genetic factors, and the SNPs associ-
ated with ALI in sepsis patients were discovered in a His-
panic population (66).

Most importantly, two of the SNPs (-597G/-174G) are
associated with a risk haplotype (118). A strong phenotype–
genotype relationship with IL-6, genotypes, clinical outcomes,
and ARDS severity or mortality has been documented, and
the case for IL-6 genetics playing a role in ARDS severity
risk and mortality is strong (66, 117, 118).

Candidate gene studies of ARDS mortality

Although there are more candidate gene studies that focus
on ARDS risk genes, multiple candidate gene studies have
evaluated ARDS mortality and associated risk genes (4, 12,

17, 61). When ARDS patients are stratified by the Berlin
definition (mild, moderate, and severe), the more severe
ARDS patients are significantly more likely to die from
ARDS than patients with mild or moderate ARDS (16).
Thus, patients who die from ARDS can be argued to have
severe ARDS (16).

Of the four candidate gene studies that reported on mor-
tality, three genes (75%) were obtained in European descent
populations, and one population is from a pediatric, Brazilian
population (Table 3). In the European populations, NAMPT/
PBEF, IL-1b, and PHD2 were identified as each having at
least one SNP (NAMPT/PBEF has four) that is associated
with ARDS mortality (4, 17, 61). In the Brazilian, pediatric
ARDS population, TNF had two SNPS that were associated
with death in septic and ARDS populations (4).

Two of these candidate genes (TNF and IL-1b) were
chosen because they are molecules with a long history as
ARDS biomarkers (11, 31, 120). IL-1b transcription is
caused by stress and endotoxin triggers and is secreted by
macrophages, thrombocytes, and injured endothelial cells
(31, 55). The promoter for IL-1b includes NF-kB sites and
activating protein-1 sites (55). In an attempt to link bio-
markers to genotype and establish a genotype–phenotype
relationship in IL-1b, a significant SNP was found in the IL-
1b promoter region (-511 upstream from the TATA box and
transcription start site) (17, 55). The site found to be related to
ARDS and sepsis mortality was previously reported to be an
important site for the secretion of IL-1b (143).

ARDS risk SNPs in African Americans

Racial and ethnic disparities in ARDS mortality and dis-
ease susceptibility have been reported (64); however, genetic
studies in ARDS have focused on larger, European cohorts.
Although this has provided a strong foundation for the un-
derstanding of ARDS genetics, population diversity among
ARDS should not be discounted in the sub-phenotyping, di-
agnosis, and treatment of ARDS. Understanding genetic
population diversity in ARDS is critical because there is a
significant difference in mortality rates between European
and African descent populations (49, 64).

Across multiple age populations (until the age of 65),
African Americans have significantly higher rates of both
sepsis and ARDS than their matched European American
cohorts (16, 23, 49, 51, 129), greater duration on mechanical
ventilation than European Americans (64), and a higher risk
of ARDS mortality (16, 23, 129) when compared with age-
matched European American counterparts. Hispanic Ameri-
cans also have significantly higher mortality rates (5).

The health disparity borne by African Americans in ARDS
and severe sepsis warrants additional research and attention
to the role of genetics in identifying unique biomarkers and
genetic markers for African Americans at risk for ARDS.
Several unique candidate genes MYLK, HEATR1, MIF,
GADD45a, DIO2, SELPLG, and S1PR3 are promising ge-
netic markers for increased risk of ARDS and ARDS mor-
tality among African Americans (Fig. 10) (24, 46, 71–73,
115, 155, 169). In the case of MYLK, the gene encoding
myosin light chain kinase, a risk haplotype was identified
consisting of coding SNPs with one of these SNPs verified in
other inflammatory disorders, including sickle cell disease
and severe asthma in African Americans (67).
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The functionality of the SNP has been shown to cause a
delay in restoration of the vascular barrier in inflammatory
models as well as to cause secondary mRNA structure al-
terations that promote excessive expression of this major
cytoskeletal regulatory protein (67, 72, 73, 187, 204).

Our group recently conducted a GWAS study of African
American ARDS patients and ICU controls that was under-
powered but after innovative pathway prioritization, it discov-
ered three novel genes that achieved genome-wide significance
(24). Unlike in the European American ARDS studies, the
population size in this study was relatively small (n = 232)
(Tables 2 and 3; Fig. 10) (24). Two unique risk SNPs for ARDS
(rs2115740, HEATR1; rs109017898, SELPLG) were found in
this African American GWAS study in two genes that had not
previously been identified as ARDS risk genes. Further, higher-
powered GWAS studies in non-European populations may
potentially provide more novel genes and SNPS that are risk
factors for ARDS in other under-studied populations.

Future Directions

ARDS is a severe, high-mortality complex and heteroge-
neous critical illness influenced by environmental and ge-
netic factors. In this review, we have collated the available
preclinical and human ARDS literature and identified 201
pooled ARDS candidate genes (Supplementary Table S2)
in a multi-database approach. Although we highlighted risk
SNPs from both candidate gene studies and GWAS, pathway
analysis allowed genes without known SNPs but reported
mRNA and protein fold change to be included in our pathway
analysis (25, 167, 196).

Our pathway analysis strategies revealed results that were
consistent with the concept that evolutionarily conserved
inflammatory and ROS networks and vascular gene dysre-
gulation are potent contributors to ARDS pathobiology
(82, 83). A broader ‘‘omics’’ approach to ARDS allows for

the focus on biologically relevant pathways and genotype–
phenotype connections between established ARDS bio-
markers and differentially expressed ARDS risk genes.

We have also chosen to evaluate ARDS studies that use
mortality as an end-point as this captures the most severe
outcome for ARDS patients and summarized the evidence
from genetic studies in diverse populations that have the
potential to uncover novel biomarkers for ARDS risk and
mortality and potential therapeutic targets in ARDS. We
highlighted information relevant to the role of genetic factors
in ARDS susceptibility and mortality (23) that address the
well-known health disparities that exist in susceptibility to
and mortality from ARDS (23, 38, 75). Improved strategies
for sub-phenotyping of diverse ARDS patients via molecular
signatures or SNP panels will facilitate the potential for
successful clinical trials in ARDS and yield a better funda-
mental understanding of ARDS pathobiology (105).

Supplementary Material

Supplementary Table S1
Supplementary Table S2
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