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Abstract

Detecting early signs of neurodegeneration is vital for planning treatments for neurological 

diseases. Speech plays an important role in this context because it has been shown to be a 

promising early indicator of neurological decline, and because it can be acquired remotely without 

the need for specialized hardware. Typically, symptoms are characterized by clinicians using 

subjective and discrete scales. The poor resolution and subjectivity of these scales can make the 

earliest speech changes hard to detect. In this paper, we propose an algorithm for the objective 

assessment of vocal tremor, a phenomenon associated with many neurological disorders. The 

algorithm extracts and aggregates a feature set from the average spectra of the energy and 

fundamental frequency profiles of a sustained phonation. We show that the resultant low-

dimensional feature set reliably classifies healthy controls and patients with amyotrophic lateral 

sclerosis perceptually rated for tremor by speech language pathologists.

Index Terms—

Amyotrophic Lateral Sclerosis (ALS); Speech; Tremor; Dysarthria

1. INTRODUCTION

Early detection of neurological disease onset is vital for measuring the efficacy of drug 

interventions and slowing progression. However, early detection is difficult because the 

current gold standard endpoints for most neurodegenerative diseases are functional rating 

scales - questionnaires used by clinicians to assess a patient’s symptoms [1][2]. Though 

these scales span a comprehensive set of disease-specific symptoms, scores for individual 

questions are low-resolution and subjective, rendering the earliest signs of neurological 

decline hard to detect. Objective evaluation of speech is gaining popularity as a means of 

detecting subtle changes in neurological health [3][4][5][6][7]. Several current studies that 

detail these changes do so in a clinical setting using high-quality microphones [8] or 

specially-designed hardware and software systems [6][9][10]. Though reliable, these 
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methods are limited in that they still require patients to visit a clinic to be assessed. To 

increase the sensitivity of early detection paradigms, patients should be able to perform self-

administered evaluations remotely and frequently, without the use of specialized hardware. 

There is some work that proposes the use of mobile devices such as smartphones for 

collecting clinically-relevant measures of speech and monitoring disease progression [11]

[12]. However, further work is required to develop tools that reliably extract additional 

clinically-relevant measures from speech.

Sustained phonation (i.e. prolonging an “ah” for as long and as steadily as possible) is a 

common speech elicitation task used to evaluate the health of the phonatory speech 

subsystem. Increased variance in the fundamental frequency (F0) and energy contours of 

sustained phonations have long been considered interpretable measures of dysarthria [13]. 

There are several methods for characterizing the variance in F0 and energy in a sustained 

phonation. The most common family of measures aims to quantify cycle-by-cycle deviations 

in phonation energy and F0 due to incomplete closure of the vocal folds. Measures in this 

family include jitter and shimmer [14][15], as well as several more robust measures [16]

[17]. Though proven to be useful in differentiation of healthy subjects from Parkinsons 

patients, these measures do not evaluate vocal tremor, a low-frequency modulation in 

phonation common in neurological disease. Vocal tremor can manifest in some neurological 

disorders due to a loss of motor control in the laryngeal muscles, resulting in unintended 

quasi-sinusoidal modulations in energy and F0 [18] [19]. One of the earliest attempts at 

objectively measuring vocal tremor can be found as part of the Multi-Dimensional Voice 

Program [20], followed by the work by Brückl et al. in [21][22]. This family of metrics 

discard information about the distribution of tremor frequencies and intensities in the pitch 

and energy contours. This presents an issue because tremor frequency and intensity can drift 

in time. To model non-stationary tremors, Pantazis et al. proposed a tremor analysis 

technique based on the decomposition of sustained phonations into intrinsic mode functions 

[23]. Each decomposed intrinsic mode function can be analyzed for the presence of 

tremulous modulations, but no metrics for quantifying the tremor are proposed in that work. 

Furthermore, it is uncertain which intrinsic mode functions contain the most information on 

vocal tremor, or how many intrinsic mode functions should be analyzed to fully characterize 

tremor.

We propose an algorithm that objectively quantifies vocal tremor in sustained phonations. 

The proposed method estimates fundamental frequency (F0) and energy contours from a 

sustained phonation and extracts measures of intensity, energy, and entropy to quantify the 

presence of tremor in energy and pitch. We evaluate this method on a longitudinal speech 

dataset of 4,834 sustained phonations from 26 healthy English speakers and 65 ALS patients 

at varying disease stages. We demonstrate the utility of this method by constructing several 

binary classifiers for separating recordings from healthy controls, recordings from ALS 

patients rated negative for tremor, and recordings from ALS patients rated positive for 

tremor using only these proposed measures.
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2. ALGORITHM OVERVIEW

Figure 1 provides a high-level overview of the proposed approach. Consider a sustained 

phonation pre-processed such that silence in the recording and edges of the phonation are 

removed. We estimate the F0, p(n), and energy, e(n), contour along this phonation and 

decorrelate both contours via inverse filtering with linear prediction coefficients. We posit 

that tremor can be characterized by extracting statistics from the average spectra of both 

contours in the spectral sub-band between 3 Hz and 25 Hz. These bounds are informed by 

previous literature, both medical [18] and technical [20]. This approach accurately detects 

the presence of tremor regardless of its non-stationary behavior.

2.1. Pre-processing

Sustained phonations are first processed with a voice activity detector (VAD) to remove all 

silence segments. We used the VAD method described in [24].

2.2. F0 and Energy Contour Extraction

The VAD-processed signal is decomposed into 10ms analysis windows with a 1ms window 

overlap. The first and last 5 percent of windows are discarded to avoid amplitude ramping at 

the beginning and end of the phonation. The signal energy is calculated in each window to 

form the energy contour of the phonation e(n). Since estimating F0 is a difficult task for 

speech from clinical populations and the proposed method relies heavily on the shape of the 

F0 contour, care is taken to ensure that the F0 estimates used herein are reliable. To that end, 

we extract F0 from each windowed segment of phonation using a modified version of the 

Praat pitch detection algorithm [25]. The Praat algorithm is modified so that the F0 search 

range is adjusted depending on the sex of the speaker. This allows us to reduce the frequency 

search range, which mitigates octave jumping and increases accuracy. The F0 search ranges 

for males and females were [60–260] Hz and [120–380] Hz respectively. This approach is 

used to estimate the F0 in successive windows of phonation, forming the F0 contour, p(n).

2.3. Contour Whitening

Forward linear prediction coefficients are estimated by minimizing the expected value of the 

error between a ground truth sequence and a low-order approximation of the sequence 

constructed from a linear combination of past samples. Thus, to estimate prediction 

coefficients ak for a pitch sequence p[n], we minimize

E p[n] − ∑
k = 1

q
akp[n − k]

2
, (1)

with respect to ak, where q is the number of prediction coefficients. To obtain the residual 

contour pr(n), we inverse filter p(n) with its prediction coefficients

pr[n] = p[n] − ∑
k = 1

q
akp[n − k] . (2)
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The inverse filtering detrends each contour, which is speaker-specific; thus, pr[n] is 

spectrally-flattened, making it easier to detect the low-frequency tremor-like variations in the 

signal. The whitening process is repeated for the energy contour to obtain er[n], the 

spectrally-flattened version of the energy contour.

2.4. Spectrum Averaging and Feature Extraction

The signals er[n] and pr[n] are independently decomposed into 1-second windows with an 

overlap of 100ms. We take the FFT in each window and average across windows to obtain 

the long-term average spectra Er(f) and Pr(f) respectively. These average spectra contain 

information regarding the average intensity and modulation frequencies of er[n] and pr[n]. 

Lastly, we standardize the spectra by z-scoring the values of their spectral bins. To 

characterize the presence of tremor in the contours, we propose several metrics that capture 

the prominence of low-frequency variations in the long-term average spectra. Informed by 

seminal work done on tremor in neurodegenerative disease [18], we restrict the calculation 

of these metrics to the band range between fT ∈ [3Hz … 25Hz]. These metrics are defined in 

Table I.

2.5. Dimensionality Reduction

The 9 features detailed in Table I are extracted for Er(f) and Pr(f). The metrics extracted 

from the same spectra tend to be highly correlated. Thus, we can reduce the dimensionality 

of the feature set by collapsing the features into a single feature vector using principal 

component analysis (PCA). This is done across all sustained phonations in the dataset by 

first standardizing each feature vector by converting to z-scores then performing PCA. The 

first PCA dimension is retained as the combination feature vector. The above process is 

performed for the 9 features on Er(f) and Pr(f), resulting in two combination features 

capturing tremor-like characteristics in energy and pitch respectively.

3. EXPERIMENTAL EVALUATION

We evaluate the proposed method on a dataset of sustained phonations recorded by healthy 

English speakers and ALS patients. The recordings were gathered as part of the ALS at-

home study where patients used a speech elicitation tool in a smartphone application [11]. 

All speech samples were collected with a sampling frequency of 16kHz and 16-bit 

resolution. Patients were asked to produce sustained phonations of the vowel /a/ once a day 

(along with other stimuli) for the duration of their participation in the study. The dataset 

includes 1,650 phonations from 26 healthy patients and 5,017 phonations from 65 ALS 

patients. Phonations were recorded several times each week over the course of several 

months. Seven phonations from each ALS patient were assessed for tremor by a speech 

language pathologist (SLP). Rated phonations were chosen from the beginning, middle, and 

end of each patient’s study participation, so that they are representative of a patient’s 

phonatory ability throughout the study. To increase the statistical power of our analysis, we 

extrapolate additional tremor ratings using two assumptions. The first assumption is that no 

ALS patients experienced a decrease in symptom severity over the course of the study. This 

is reasonable as ALS is a neurodegenerative disease with no expectation that symptoms 

improve over time. Because tremor is a symptom of neurodegenerative disease, we also 
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assumed that positive ratings for tremor were likely to be followed by subsequent positive 

ratings for the same participant. Thus, if all seven of a subjects ratings were positive or 

negative for tremor, we labeled all files for that subject as either positive or negative. The 

revised set of scores include 423 phonations labeled with tremor and 2,761 phonations 

labeled without tremor. We confirm that the extrapolated scores represent the SLP-rated 

scores by plotting histograms of feature values for SLP-rated scores and extrapolated scores 

in Figure 2.

3.1. Classifying Clinical Ratings using Tremor Features

To demonstrate the utility of the proposed method, we use a collection of binary 

classification tasks for discriminating sustained phonations labeled by diagnosis group (e.g. 

healthy control, ALS without tremor, ALS with tremor). Each classification task is run 

twice: once for each sex. This is because the normative distributions for the tremor scores 

are not equivalent for males and females. Previous research has also identified significant 

sex differences in the analysis of F0 and energy contours [26]. We therefore construct six 

binary logistic regression classifiers which are trained and validated using 10-fold stratified 

cross-validation. The classification tasks test the discriminative power of the proposed 

features in classifying all six combinations of two classes (across diagnosis groups and 

sexes). Because the class sizes are unbalanced, we oversample the minority class using the 

Synthetic Minority Over-Sampling Technique (SMOTE) proposed in [27]. The SMOTE 

procedure is only performed on the training set to avoid information leakage between the 

test and training sets. The results of the classification experiments are presented in Table II. 

Results of each classification task show that the combination tremor measures possess 

noticeable discriminative power for separating sustained phonations rated perceptually for 

vocal tremor. This is true for both males and females, though classification results are much 

better for women. There is evidence that suggests that measures of deviation in phonatory 

control may be a better indicator of decline in women compared to men [26]. For both sexes 

however, the algorithm is incapable of reliably discriminating between healthy controls and 

ALS patients with negative perceptual ratings for vocal tremor, with predictive power just 

above that of random guessing. This result is expected due to the fact this method is only 

intended to measure the presence of tremor. A visualization of tremor feature values for each 

diagnosis group is shown in Figure 3.

4. CONCLUSION

Current objective measures of tremor do not fully characterize the distribution of tremor 

frequencies and intensities throughout a sustained phonation. In this paper, we propose a 

comprehensive approach to characterizing tremor that extracts a variety of statistics from the 

average spectra of the decorrelated F0 and energy contours of a sustained phonation. We 

have shown that this approach possesses discriminative power for identifying sustained 

phonations with perceptual vocal tremor. In conjunction with other objective measures of 

speech, the proposed measures may be useful in identifying subtle changes in speech, 

supporting the early detection and possible diagnosis of neurological disease.
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Fig. 1: 
An overview of the proposed tremor detection algorithm.
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Fig. 2: 
Feature distributions of clinical and extrapolated tremor ratings. Grey = Clinical, Blue = 

Extrapolated.
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Fig. 3: 
Plots of tremor features by sex and diagnosis group. Blue = Healthy, Black = -Tremor, Red = 

+Tremor.
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TABLE I -

Tremor Feature Definitions

Feature Name Mathematical Definition

Dominant Tremor Frequency arg max X(fT)

Max Absolute Tremor Intensity max X(fT)

Median Absolute Tremor Intensity median X(fT)

Mean Absolute Tremor Intensity mean X(fT)

Max Relative Tremor Intensity max X(fT)-median X(f)

Median Relative Tremor Intensity median X(fT)-median X(f)

Mean Relative Tremor Intensity mean X(fT)-median X(f)

Tremor Energy ‖X(fT)‖2

Tremor Entropy − ∑ X(fT) log2 X(fT)
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TABLE II -

Performance Metrics for Binary Classification of Tremor Diagnosis Groups

Classes Sex Sample Size Class. Accuracy ROC Area FPR

Healthy v. −Tremor M 2240 58.17 0.580 0.498

Healthy v. +Tremor M 702 77.07 0.869 0.229

−Tremor v. +Tremor M 1918 74.14 0.850 0.263

Healthy v. −Tremor F 2238 57.95 0.601 0.407

Healthy v. +Tremor F 1384 88.43 0.952 0.118

−Tremor v. +Tremor F 1326 83.18 0.924 0.172
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