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Abstract

During photosynthesis, plants fix CO2 from the atmosphere onto ribulose-bisphosphate, producing 3-phosphoglycer-
ate, which is reduced to triose phosphates (TPs). The TPs are then converted into the end products of photosynthesis. 
When a plant is photosynthesizing very quickly, it may not be possible to commit photosynthate to end products as 
fast as it is produced, causing a decrease in available phosphate and limiting the rate of photosynthesis to the rate of 
triose phosphate utilization (TPU). The occurrence of an observable TPU limitation is highly variable based on species 
and especially growth conditions, with TPU capacity seemingly regulated to be in slight excess of typical photosyn-
thetic rates the plant might experience. The physiological effects of TPU limitation are discussed with an emphasis on 
interactions between the Calvin–Benson cycle and the light reactions. Methods for detecting TPU-limited data from 
gas exchange data are detailed and the impact on modeling of some physiological effects are shown. Special consid-
eration is given to common misconceptions about TPU.

Keywords:  Gas exchange, phosphate metabolism, photosynthesis modeling, regulation of photosynthesis, sink strength, TPU 
limitation, triose phosphate utilization.

Introduction

Triose phosphate utilization (TPU) is one of the three canoni-
cal biochemical limitations of photosynthesis in gas exchange 
analysis of C3 plants. It reflects a steady-state condition in which 
assimilation of carbon is limited by the ability to regenerate 

phosphate through production of end products of photosyn-
thesis. Phosphate is required by ATP synthase to produce ATP, 
of which three are needed to fix a single carbon. Although 
all three ATPs are used for phosphorylation of carbon chains, 
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two are immediately released when the 3-phosphoglyceric 
acid (PGA) kinase reaction is followed by glyceraldehyde-
3-phosphate (GAP) dehydrogenase. Regeneration of ribulose 
1,5-bisphosphate (RuBP) releases two phosphates per three 
fixed carbons, one from fructose-1,6-bisphosphatase (FBPase) 
and one from sedoheptulose bisphosphatase (SBPase). One 
phosphate per three carbons remains on the triose phosphates 
(TPs) GAP and dihydroxyacetone phosphate (DHAP), which 
are used for synthesis of starch and sucrose. The capacity for 
end product synthesis relative to carbon fixation can determine 
the concentration of inorganic phosphate. If the capacity for 
TPU is high relative to carbon fixation, the concentration of 
phosphate will be high. A high concentration of phosphate will 
inhibit starch synthesis and, less so, sucrose synthesis, changing 
the partitioning of carbon among the end products. A  high 
concentration of phosphate could also make ATP synthe-
sis easier and so interfere with the acidification of the stro-
mal lumen, which is necessary to induce energy-dependent 
quenching (qE) in PSII. If TP use is too quick relative to car-
bon fixation, it may deplete Calvin–Benson cycle intermedi-
ates and lead to difficulty in regenerating RuBP. On the other 
hand, if the capacity for TPU is low relative to carbon fixation, 
the phosphate concentration decreases, leading to reduced 
conductivity of protons through thylakoid ATP synthase that 
ultimately slows photosynthesis (Kanazawa and Kramer, 2002; 
Takizawa et  al., 2008; Kiirats et  al., 2009). One minute after 
becoming TPU limited, the ATP/ADP ratio can fall from 2.3 
to 1.2 although after 18 min other regulatory processes can 
allow it to recover to 1.6 (Sharkey et al., 1986b).

The decline in ATP is a form of feedback limitation and is 
potentially quite dangerous to the plant. Feedback conditions 
are known to cause photodamage due to the inability to move 
energy downstream (Pammenter et  al., 1993; Takizawa et  al., 
2008; Kiirats et  al., 2009). To avoid photodamage, instead of 
maintaining phosphate-restricted feedback, a series of regula-
tory steps are engaged to slow photosynthetic electron trans-
port and carbon fixation by Rubisco. While the capacity is 
determined by phosphate balance, the steady-state rate is set 
by regulatory effects that serve to ameliorate feedback condi-
tions. This includes reduction in the PSII quantum yield (ΦPSII) 
(Sharkey et al., 1988; Kiirats et al., 2009) and reduced activation 
state of Rubisco (Sharkey et al., 1986a; Socias et al., 1993; Viil 
et al., 2004; Cen and Sage, 2005). In this review, we discuss the 
effect of end product synthesis on the overall rate and regula-
tion of photosynthesis.

How are triose phosphates used?

The maximal photosynthetic rate under TPU limitation is pri-
marily, but not exclusively, determined by the rate of conversion 
of TPs into starch and sucrose. The synthesis of sugar alcohols 
in some plant species (Escobar-Gutiérrez and Gaudillère, 1997; 
Loescher et al., 2000) has the same effect as sucrose synthesis. 
The limitation on assimilation is based on the release of phos-
phate from Calvin–Benson cycle intermediates that leave the 
cycle, and the most immediate release is from the activity of 
FBPase in the chloroplast for starch synthesis or in the cytosol 

for sucrose synthesis. Sucrose synthesis begins with the trans-
location of TPs through the triose phosphate/phosphate trans-
locator (TPT) (Riesmeier et  al., 1993). This removes carbon 
from the Calvin–Benson cycle and returns phosphate from the 
cytosol to the chloroplast. Each sucrose molecule requires the 
combination of two hexose molecules, for a total of four triose 
phosphates. Net phosphate release from organic phosphates 
during sucrose synthesis occurs at FBPase (2), UDP-glucose 
pyrophosphorylase (1), and sucrose-phosphate phosphatase (1). 
Sucrose synthesis is typically measured at between 25% and 
50% of total carbon assimilation (Sharkey et al., 1985; Escobar-
Gutiérrez and Gaudillère, 1997; Szecowka et al., 2013; Abadie 
et al., 2018), with some studies demonstrating up to 75% (Stitt 
et al., 1983). It is likely that the species and environmental con-
ditions have an effect on partitioning of carbon into sucrose.

In starch synthesis, phosphate release occurs at stromal FBPase 
and ADP-glucose pyrophosphorylase. The flux to starch var-
ies considerably with the growth conditions of the plant; for 
example, Arabidopsis growing in an 18 h photoperiod com-
mitted only 24% of fixed carbon to starch but in a 6 h pho-
toperiod committed 51% (Sulpice et al., 2014). Other studies 
show that between 30% and 60% of fixed carbon goes to starch 
(Sharkey et al., 1985; Escobar-Gutiérrez and Gaudillère, 1997; 
Szecowka et  al., 2013; Abadie et  al., 2018), but the amount 
of carbon partitioned to starch can vary greatly among plant 
species (Huber, 1981). A small amount of phosphate is added 
to starch in photosynthesizing leaves by glucan-water dikinase 
and phosphoglucan-water dikinase, but the amount is very 
low, 0.1–0.9% of glucose moieties (McPherson and Jane, 1999; 
Ritte et al., 2002; Kötting et al., 2005), and so is not relevant 
for understanding gas exchange properties of photosynthesis.

There are a number of other routes by which carbon is 
exported from the Calvin–Benson cycle (Fig. 1). Any car-
bon metabolism pathway that begins with a phosphorylated 
Calvin–Benson cycle intermediate and ends with a non-
phosphorylated molecule will contribute to TPU. The shiki-
mate pathway to aromatic amino acid synthesis begins with 
the export of GAP from the chloroplast to make phospho-
enolpyruvate (PEP). PEP is reimported into the chloroplast 
through the phosphoenolpyruvate/phosphate translocator 
(PPT) and combines with erythrose 4-phosphate (E4P) and 
ends with chorismate, accounting for 1–2% of fixed carbon 
(Escobar-Gutiérrez and Gaudillère, 1997; Abadie et al., 2018). 
Fatty acids and branched chain amino acids are synthesized 
from acetyl-CoA from pyruvate and account for 1–3% of fixed 
carbon (Bao et al., 2000). It has been shown that oil biosynthesis 
can be increased as a carbon sink, and this would contribute to 
a higher capacity for TPU (Sanjaya et al., 2011). The methyl-
erythrtitol 4-phosphate (MEP) pathway begins with GAP 
and pyruvate to produce isoprenoids consuming up to 3% of 
fixed carbon (Rasulov et al., 2014). Pyruvate is made from TP 
exported from the chloroplast and dephosphorylated by pyru-
vate kinase, freeing phosphate in the cytosol, or by beta elimi-
nation of phosphate during the Rubisco reaction (Andrews 
and Kane, 1991) freeing phosphate in the stroma.

Amino acid intermediates in the photorespiratory pathway 
can be exported from the leaf or used in the cytosol as carbon 
skeletons, for transamination, or for protein construction. It is 



Triose phosphate utilization in photosynthesis | 1757

estimated that an average of 30% to a high of 70% of pho-
torespiratory glycolate carbon is exported from the Calvin–
Benson cycle as modeled from gas exchange measurements 
(Busch et al., 2018). If the ratio of oxygenation to carboxyla-
tion (ϕ) is assumed to be 0.25, this represents carbon export 
from the Calvin–Benson cycle equivalent to 7–15% of fixed 
carbon. In addition, CO2 lost from conversion of glycine to 
serine will allow for increased rates of carboxylation, though it 
does not increase the maximum assimilation rate. If we assume 
ϕ is 0.25 and no glycine export, this would represent 12.5% 
of fixed carbon lost, but under TPU-limited conditions excess 
carboxylation capacity allows fixation of the same amount of 
CO2. This is part of the reason photosynthesis becomes insen-
sitive to CO2 even though the rate of photorespiration varies 
with CO2.

Plants are capable of carboxylating PEP and releasing the 
phosphate on PEP. The resulting oxaloacetate can be transami-
nated to aspartate or reduced to malate for use in anapleurotic 
reactions or storage in the vacuole (sometimes as fumarate). 
PEP carboxylation contributes to TPU as PEP may come from 
TPs exported from the chloroplast, and the carboxylation con-
sumes atmospheric carbon which would be measured in gas 
exchange. Gauthier et al. (2010) found that amino acids made 
from α-ketoglutarate are quickly labeled by [15N]ammonium 
nitrate but not 13CO2 fed to photosynthesizing leaves, indicat-
ing that the carbon for these amino acids comes from pre-
existing pools and so does not contribute to TPU. Szecowka 
et  al. (2013) showed that no more than 2.6% of label goes 
through PEP to organic acids or amino acids, including non-
carboxylation reactions. Ma et al. (2014), using extensive in silico 
modeling combined with MS measurements, found that PEP 
carboxylation represented 0.5–4% of fixed carbon, depending 
on how much PEP carbon is assumed to be directly from the 

Calvin–Benson cycle and the overall rate of photosynthesis. 
Another study found that the rate of PEP carboxylation varied 
with the rate of photosynthesis, increasing significantly in its 
proportion at low assimilation from 2% to 25% of fixed car-
bon (Abadie and Tcherkez, 2019). In Arabidopsis, a significant 
amount of carbon is stored in the vacuole as fumarate; it is not 
known how much of this carbon is recent (and therefore con-
tributes to TPU) and how much is pre-existing carbon (Chia 
et al., 2000; Pracharoenwattana et al., 2010; Zell et al., 2010; Ma 
et al., 2014). This is also true of sunflower (Abadie et al., 2018).

In summary, TPU is primarily starch and sucrose synthe-
sis (~80%). The next most important ‘use’ of TPs may be in 
removal of glycine or serine from the photorespiratory cycle, 
potentially reaching 15% but probably usually well below 10%. 
Many other metabolic pathways account for the remainder, 
but none of these is likely to exceed 5% of the rate of carbon 
fixation and so they usually do not have a significant impact on 
TPU limitation behavior.

TPU and gas exchange

TPU is typically assessed from gas exchange data obtained 
using infrared gas analyzers to measure rates of CO2 uptake. 
Because of the usefulness of fluorescence parameters in ana-
lyzing gas exchange data, gas exchange measurements are 
frequently combined with chlorophyll fluorescence analysis. 
Measuring the stomatal conductance to gas exchange by tran-
spiration allows the calculation of the partial pressure of CO2 
inside the leaf (Ci) (Sharkey et al., 1982). Diffusion resistance 
within the mesophyll will further reduce the effective partial 
pressure of CO2, resulting in the partial pressure of CO2 at 
the site of carboxylation (Cc). TPU-limited photosynthesis is 

Fig. 1. A depiction of the major phosphate and carbon exits from the Calvin–Benson cycle. Rates: sucrose, 25–50%; starch, 30–60%; photorespiratory 
amino acids, 7–15%; shikimate pathway, 1–2%; lipids 1–3%; methylerythritol pathway, 1–3%; PEP carboxylation, 0.5–4%; CO2 release from 
photorespiration*, 7–12.5% of fixed carbon lost and does not contribute to TPU capacity. Abbreviations: E4P, erythrose 4-phosphate; F6P, fructose 
6-phosphate; GAP, glyceraldehyde 3-phosphate; PEP, phosphoenolpyruvate; PGA, 3-phosphoglyceric acid; SBP, sedoheptulose bisphosphate; TP, 
triose phosphates; Xu5P, xylulose 5-phosphate.
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mostly insensitive to CO2, so resistance to diffusion of CO2 has 
little or no effect on TPU-limited photosynthesis.

Plots of carbon assimilation (A) as a function of Ci (or bet-
ter Cc when mesophyll conductance can be estimated) can be 
interpreted using Rubisco kinetics to predict what biochemical 
process is limiting assimilation. At low Cc, assimilation is typi-
cally limited by binding affinity of Rubisco for CO2 (and the 
inhibition by oxygen), known as the Rubisco limitation (often 
abbreviated as C limitation). At intermediate Cc or when given 
insufficient light, assimilation is typically limited by the rate of 
regeneration of ribulose 1,5-bisphosphate (RuBP), frequently 
referred to as J limitation. TPU limitation, sometimes called P 
limitation, only happens when the plant has a greater capacity 
to fix carbon than it has to remove carbon from the Calvin–
Benson cycle in end product synthesis. In many plants, this can 
be seen at high Cc and saturating light. The requirement for 
a high photosynthetic rate may be why TPU limitation is so 
hard to detect in plants with low inherent photosynthetic rates 
such as Arabidopsis (Yang et al., 2016).

Lack of, or reverse, sensitivity of A to oxygen partial pres-
sure changes and CO2 partial pressure increases is the primary 
gas exchange behavior of TPU limitation (Sharkey, 1985a). 
Insensitivity had been reported for many years (Ludwig and 
Canvin, 1971; Jolliffe and Tregunna, 1973; von Caemmerer and 
Farquhar, 1981). Critically, Harris et  al. (1983) found insen-
sitivity following feeding with mannose, which sequesters 
phosphate. Later it was shown that oxygen insensitivity was cor-
related with CO2 insensitivity (Sharkey, 1985a). Leegood and 
Furbank (1986) found that oxygen-insensitive photosynthesis 
in leaf discs was induced by a combination of low temperature 
and high CO2 partial pressure. Feeding of phosphate restored 
normal oxygen sensitivity and also increased CO2 assimilation 
rate, showing that phosphate metabolism was involved in both 
oxygen sensitivity and the limitation of assimilation. From this 
and other considerations, Sharkey (1985a) concluded “(a)s the 
rate of CO2 assimilation increases, starch and sucrose synthesis 
must increase as well. If not, triose-P and PGA will build up 
and phosphate will decline. These changes in pool size will 
stimulate starch and sucrose synthesis. However, there is a limit 
to how far the phosphate pool can fall before it begins to limit 
photophosphorylation. Once this limit is reached, CO2 will be 
assimilated at the rate at which starch and sucrose synthesis can 
metabolize triose-P, regardless of whether oxygenation occurs 
or not”.

When photosynthesis is limited either by Rubisco or by 
RuBP regeneration, increasing CO2 or decreasing O2 should 
increase A. When A is Rubisco limited, A will increase because 
of (i) the affinity of Rubisco for CO2 and the effects of O2 on 
CO2 affinity and (ii) the reduced CO2 release in photorespira-
tion. When A is limited by RuBP regeneration, A will increase 
because of (i) the reduced CO2 release in photorespiration 
(as above) and (ii) the diversion of RuBP from oxygenation 
to carboxylation when photorespiration is suppressed. TPU-
limited photosynthesis does not exhibit this increase or exhib-
its a reduced stimulation when photorespiration is suppressed 
(Badger et  al., 1984; Sharkey, 1985a). The insensitivity of A 
while TPU is limited happens because the controlling factor 
is the ability of the leaf to make end products and this is not 

affected by CO2, O2, or the rate of photorespiration. Increasing 
photorespiration by increasing O2 or decreasing CO2 partial 
pressures will be compensated by increased RuBP regeneration 
and carboxylation but, because these capacities are in excess in 
a TPU-limited state, this will not affect A. Use of oxygen or 
CO2 insensitivity to determine photosynthetic limitations in 
A/Ci curves is discussed in greater detail in Busch and Sage 
(2017).

It is not possible to determine whether C4 plants suffer TPU 
limitation. The carbon pump of C4 metabolism makes it dif-
ficult to see the gas exchange behaviors that characterize TPU 
limitation. C4 plants at high photosynthetic rates are inter-
preted to be limited by CO2-saturated Rubisco activity, and at 
lower rates by PEP carboxylase activity (Collatz et al., 1992). 
Even if Rubisco is not saturated with CO2, oxygen-dependent 
changes in the rate of photorespiratory CO2 release change 
the CO2 concentration in the bundle sheaths, making the C4 
photosynthesis rate independent of the photorespiration rate 
(von Caemmerer, 2000). Thus, the CO2 and O2 dependence 
that results from the variation in the ratio of carboxylation to 
oxygenation is not observed in C4 photosynthesis and, because 
this is the gas exchange characteristic that is used to diagnose 
TPU limitation, it is not possible to tell if C4 plants have a 
TPU-limited state.

Reverse sensitivity to CO2 and O2 partial 
pressures

While the TPU limitation offered understanding of insensi-
tivity to increasing O2 and CO2 partial pressures, it did not 
immediately explain reverse sensitivity. It has long been known 
that oxygen inhibits photorespiration due to competitive bind-
ing to Rubisco and photorespiratory CO2 release (Warburg, 
1919; Ludwig and Canvin, 1971; McVetty and Canvin, 1981). 
It was therefore unexpected to find that reducing oxygen or 
increasing CO2 partial pressures could sometimes reduce the 
rate of CO2 assimilation. As photorespiration releases CO2, it is 
counterintuitive that altering the gas composition to favor car-
boxylation would result in decreased carbon assimilation. Yet 
data dating back decades show that once at high CO2, increas-
ing CO2 can cause a decrease in net assimilation (Jolliffe and 
Tregunna, 1973; Canvin, 1978; von Caemmerer and Farquhar, 
1981), and increasing O2 can cause an increase in net assimila-
tion (Viil et al., 1977).

Photorespiration was one key to understanding the 
reverse oxygen sensitivity under TPU-limiting conditions. 
Phosphoglycolate is dephosphorylated by phosphoglycolate 
phosphatase before export through PLGG1 or BASS6 (South 
et  al., 2017). Photorespiratory metabolism of two glycolate 
molecules leads to re-import of carbon as glycerate, which is 
phosphorylated to phosphoglyceric acid. The extra phosphate 
released can be used to make ATP that phosphorylates ribu-
lose 5-phosphate to produce RuBP that will be used to accept 
a CO2, balancing the photorespiratory loss of one carbon. 
However, the two amino acid intermediates in the photores-
piratory pathway can be used in the cytosol, resulting in net 
carbon export from the Calvin–Benson cycle. This carbon is 
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effectively lost from RuBP and not directly from CO2 fixed 
from the atmosphere. Photorespiratory carbon that never 
returns to the chloroplast was parameterized as α, the frac-
tion of glycolate carbon that leaves the photorespiratory cycle 
as amino acids (Harley and Sharkey, 1991). The α parameter 
was later refined to αG and αS, the fraction of glycolate car-
bon that leaves as glycine and serine, respectively (Busch et al., 
2018). When glycine is exported instead of serine, no CO2 is 
released. As these amino acids come from phosphorylated plas-
tidic metabolites, and permanently leave the Calvin–Benson 
cycle, they contribute to TPU capacity. Adjusting the gas com-
position to decrease ϕ reduces the export of glycine and serine, 
and therefore reduces TPU capacity, reducing the maximum 
photosynthetic rate. This can explain the reverse sensitivity of 
A to CO2 and O2.

Starch synthesis is also affected by oxygen partial pressure 
and can contribute to severe reverse sensitivity. Beans pho-
tosynthesizing quickly then transferred to low oxygen were 
found to have reduced rates of starch synthesis but a minimal 
change in the rate of sucrose synthesis. A concurrent reduction 
in the ratio of glucose-6-phosphate to fructose-6-phosphate 
indicates inhibition of phosphoglucose isomerase (Dietz, 1985; 
Vassey and Sharkey, 1989). The precise mechanism of this inhi-
bition is unclear.

Modeling

TPU models have seen some recent changes to account for 
our enhanced understanding of the possible role of photores-
piration in nitrogen metabolism. Original models that account 
for TPU relied on simple stoichiometry (Sharkey, 1985b):

 
Wp =

3× TPU
1− 0.5φ (1)

where Wp is the rate of carboxylation when limited by phos-
phate metabolism. Under this model, photosynthetic car-
boxylation would equal the rate of carbon export from the 
Calvin–Benson cycle for starch and sucrose synthesis (numera-
tor) adjusted by the amount of carbon released during pho-
torespiration (denominator). Under TPU limitation, A is 
given by

 
A =Wp × (1− 0.5φ)RL. (2)

When Equation 1 is plugged into Equation 2, the (1–0.5ϕ) 
term cancels out and so A is independent of the rate of pho-
torespiration. This is because Rubisco is not limiting so the 
amount of CO2 released during photorespiration can be com-
pensated by increased Rubisco activity.

However, this model did not account for reverse sensitiv-
ity of assimilation to oxygen or CO2 frequently observed. The 
model also describes all carbon export as TPU, which is not 
directly true. Any carbon that leaves the Calvin–Benson cycle 
and is dephosphorylated will contribute to the maximum TPU 
capacity. While all carbon in the Calvin–Benson cycle derives 
from TP, some of the end products are made from Calvin–
Benson cycle intermediates other than TPs. Despite this, the 
simple model has some advantages. It requires no estimation of 

RL, mesophyll conductance (gm), or Γ*. These three parameters 
are currently impossible to measure directly, and there is some 
debate about our ability to fit them accurately and the con-
stancy of these parameters.

A recent model for TPU incorporates parameters for glycine 
or serine exit from the photorespiratory cycle. The glycine and 
serine need not accumulate and could have a range of meta-
bolic fates, as long as the carbon does not re-enter the Calvin–
Benson cycle. From Busch et al. (2018):

 
(3)Wp =

3× TPU
1− 0.5(1+ 3αG + 4αS)φ

The denominator in the equation has three terms to account 
for carbon that exits photorespiration as glycine (αG) or serine  
(αS). As one carbon out of four is lost as CO2 in the formation 
of serine, αS cannot be greater than 0.75. If αG and αS are zero, 
Equations 1 and 3 are identical. Unlike the simple model of 
Equation 1, Equation 3 requires knowledge of the relative rate 
of photorespiration, and therefore relies on fitting for Γ*. There 
is little signal to differentiate αS and αG by gas exchange, which 
can make fitting these two parameters challenging. For conver-
sion of Equation 3 to assimilation as would be measured by gas 
exchange, Wp must be adjusted for respiratory carbon loss:

 
A =Wp ×

Å
1− Γ∗αG

Cc

ã
− RL (4)

where Γ*αG is the Rubisco–Cc compensation point given the 
reduced rate of photorespiratory CO2 release due to export of 
glycine. Γ*αG/Cc is equivalent to 0.5ϕ if αG=0.

Current modeling software is available with varying num-
bers of parameters to fit. Sharkey (2016) presented an Excel 
tool which allows picking of points from A/Ci curves, with 
options to fit RL, gm, αG, and αS. Bellasio et al. (2016) provide 
a highly detailed Excel tool that uses combined gas exchange 
and fluorescence to fit RL, gm, Jmax, Vcmax, Γ*, and Rubisco 
specificity for CO2 versus oxygen (Sc/o), but not α; much of 
the basis of this fitting is also discussed by Yin et  al. (2009). 
Dubois et  al. (2007) provide an SAS program which allows 
fitting of RL, gm, Jmax, Vcmax, Γ*, Sc/o, and α. Moualeu-Ngangue 
et al. (2017) propose to improve the Dubois fitting by reduc-
ing the number of assumptions made, though they do not fit 
α. Gu et al. (2010) provide a website for fully automated leaf 
data analysis called LeafWeb which does not require selecting 
limitations point-wise or specific software. It should be noted 
that no current model attempts to incorporate other carbon 
sinks, and TPU is treated as a single variable.

Temperature sensitivity

Photosynthesis under TPU limitation is highly temperature 
sensitive. Though the other photosynthetic limitations dem-
onstrate temperature sensitivity (Cen and Sage, 2005; Sage 
and Kubien, 2007; Sharkey and Bernacchi, 2012; Busch and 
Sage, 2017), TPU-limiting conditions are the most tem-
perature sensitive (Sharkey and Bernacchi, 2012; Yang et  al., 
2016) perhaps because of the strong temperature sensitivity of 
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sucrose-phosphate synthase (Stitt and Grosse, 1988; Leegood 
and Edwards, 1996) or altered sensitivity of cytosolic FBPase 
to 2,6-fructose bisphosphate (Stitt and Grosse, 1988). Other 
enzymes implicated in TPU limitation are also temperature 
sensitive, such as nitrate reductase (Leegood and Edwards, 1996; 
Busch et  al., 2018). Because of the different ways by which 
temperature affects the three limitations, the conditions in 
which they appear change with temperature. At temperatures 
lower than growth conditions, the plant is significantly more 
likely to become TPU limited (Stitt, 1986; Sage and Sharkey, 
1987; Labate and Leegood, 1988). Labate and Leegood (1988) 
demonstrated a temperature-sensitive increase in photosynthe-
sis from phosphate feeding. Leaf discs floated on a solution 
containing phosphate at 25  °C saw a marginal reduction in 
assimilation. However, discs fed phosphate at 10  °C experi-
enced significant photosynthetic gains, indicating that reduced 
temperatures result in greater limitation of photosynthesis by 
TPU (Fig. 2).

Acclimation of TPU

The capacity for TPU is not immutable. Plants grown under 
poor conditions are highly adaptive, and those grown under 
low temperature tend to have greatly elevated TPU capacity 
(Guy et al., 1992; Holaday et al., 1992; Sage and Kubien, 2007). 

This acclimation largely comes from increased expression of 
sucrose biosynthesis enzymes (Guy et al., 1992; Holaday et al., 
1992; Strand et al., 1999; Hurry et al., 2000), and it has been 
proposed that this acclimation is signaled by low phosphate 
levels (Hurry et al., 2000). This increased capacity offsets the 
decreased activity of starch synthase and sucrose-phosphate 
synthase at low temperature and makes it less likely that the 
plant will be TPU limited (Cornic and Louason, 1980; Sage 
and Sharkey, 1987). Plants transferred to an elevated CO2 
environment developed increased phosphate regeneration 
capacity, demonstrating acclimation (Sharkey et al., 1988; Sage 
et al., 1989).

Plants experiencing water stress reduce their TPU capac-
ity, possibly reflecting the reduced internal CO2 partial pres-
sure that results from stomatal closure (von Caemmerer and 
Farquhar, 1984; Vassey and Sharkey, 1989; Cornic et al., 1992). 
Transgenic plants overexpressing alternative oxidase cope bet-
ter with water stress (Dahal et al., 2014, 2015) and experience 
reduced negative effects on assimilation from TPU capacity. 
The reduced occurrence of TPU limitation in plants over-
expressing the alternative oxidase was correlated with higher 
amounts of chloroplast ATP synthase, which might allow ATP 
synthesis at lower phosphate concentration. This adaptability 
shows that TPU will influence the metabolic investments of 
the plant; it will enhance the ability to handle high TP produc-
tion, but only when it is required for the current output of 
photosynthesis.

The adaptability of TPU is important for fulfilling the role 
of stromal phosphate in balancing starch synthesis and ATP 
synthesis (Fig. 3). Starch synthesis is highly sensitive to phos-
phate due to inhibition of ADP-glucose pyrophosphorylase 
(Preiss, 1982), and ATP synthase is kinetically (Takizawa 
et  al., 2007) and thermodynamically sensitive to phosphate. 
This relationship can help explain the very low partitioning 
of carbon into starch at a low photosynthetic rate (Escobar-
Gutiérrez and Gaudillère, 1997), which is exacerbated by 
reduced levels of PGA which would otherwise stimulate 
starch production (Heldt et al., 1977). If sucrose synthesis is 

Fig. 2. Rate of CO2 assimilation of barley versus Ci at 10 °C (top) and 
25 °C (bottom) with and without the addition of phosphate. A temperature-
dependent increase in photosynthetic assimilation is observed upon 
addition of phosphate. Adapted by permission from Springer: Springer 
Planta. Limitation of photosynthesis by changes in temperature, Labate, 
CA, Leegood, RC, Copyright 1988.

Fig. 3. As the photosynthetic rate increases, the gap between the 
phosphate concentration required by the ATP synthase and the phosphate 
concentration to inhibit starch synthesis narrows. The shapes of the 
responses are represented by straight lines only for simplicity. When 
TPU limits the photosynthetic rate, any increase in phosphate required 
for higher ATP synthase activity would inhibit starch synthesis, restricting 
phosphate release.
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in excess, the balance of starch versus sucrose synthesis dur-
ing the day could become unfavorable for growth, and the 
extra phosphate could even collapse the Calvin–Benson cycle 
by driving export of too much TP out of the chloroplast. 
This has been reported in isolated chloroplasts (Leegood and 
Walker, 1983) but not in intact leaves. High phosphate out-
side of chloroplasts has also been shown to result in starch 
breakdown in the light (Stitt and Heldt, 1981). The highest 
rate of photosynthesis will be achieved with a fine balance of 
phosphate usage and phosphate release. In an environment 
where expected photosynthetic rates are lower, the plant will 
benefit from reduced TPU capacity. This allows phosphate to 
fall, correcting several issues with starch and sucrose metabo-
lism and reducing the risk of overconsumption of TPs. When 
expected photosynthetic rates are higher, the plant will ben-
efit from increased TPU capacity allowing better recycling 
of phosphate and improved ATP synthase throughput, and 
alleviating the potential for photodamage due to feedback 
conditions.

Effects on the light reactions

Elevating CO2 partial pressure when photosynthesis is limited 
by TPU will cause a decrease in ΦPSII. Rubisco binds CO2 
and O2 competitively, meaning that an increase in CO2 par-
tial pressure reduces the rate of use of RuBP for oxygena-
tion. This does not lead to an increase in assimilation when 
TPU is controlling. Rather, it reduces the rate of carboxylation 
because less carbon is lost through photorespiration, result-
ing in reduced total Rubisco activity. Both carboxylation and 
oxygenation require ATP and NADPH, which come from 

electron transport. Therefore, increasing CO2 partial pressures 
over TPU-limited leaves results in an overall reduction in elec-
tron transport requirements (Stitt, 1986; Sharkey et  al., 1988; 
Stitt and Grosse, 1988). Regulatory processes lead to reduced 
ΦPSII, a phenomenon which can be useful in discriminating 
TPU limitation using combined gas exchange and fluores-
cence data (Fig. 4).

There are effects on the kinetics of the light reactions that 
happen concurrently with reduction of electron transport rate. 
Proton conductivity across the thylakoid membrane goes down 
under TPU limitation (Takizawa et al., 2008; Kiirats et al., 2009; 
Yang et al., 2016). It is proposed that this kinetic change occurs 
because of a reduced pool of available phosphate in the stroma, 
which reduces the rate of ATP synthase. The Km of chloroplast 
ATP synthase for phosphate has been measured at 0.2–1 mM 
(Selman-Reimer et  al., 1981; Grotjohann and Gräber, 2002). 
Stromal phosphate concentration during feedback conditions 
is estimated to be between 0  mM and 1.7  mM depending 
on how much phosphate is assumed to be free (Sharkey and 
Vanderveer, 1989), so it is reasonable to suggest that the phos-
phate concentration may drop below the Km of ATP synthase. 
Co-occurring with a decrease in ATP synthase conductivity is 
an increase in proton-motive force (PMF). The energy needed 
to make ATP will depend on the concentration of phosphate.

 
∆GATP = ∆G′0

ATP + R × T × ln
[ATP]

[ADP]× [Pi] 
(5)

As the effective [Pi] declines, ∆GATP will increase, requiring 
a greater PMF for ATP synthesis. Increased PMF leads to 
controls on electron transport through qE, reducing energy 
arrival at P680 or reduction in the rate of electron flow at the 
cytochrome b6f complex, leading to reduced electron transport 
rates (ETRs) (Kramer and Crofts, 1996; Owens, 1996). While 
phosphate seems to play a role in linking the light reactions and 
the Calvin–Benson cycle, it is less clear what other molecu-
lar mechanisms may be important. It is likely that we do not 
yet know some important regulatory components that control 
ETR when TPU limits the rate of photosynthesis.

TPU and sink strength

TPU limitation is a form of very short-term sink/source dis-
equilibrium, separate from long-term sinks such as fruit or 
root growth, though the two could be related. TPU is con-
cerned with the ability to dephosphorylate and remove car-
bon quickly from the Calvin–Benson cycle. The half-life of 
Calvin–Benson cycle intermediates tends to be very short, 
with many <1  s; some larger pools such as glucose 6-phos-
phate and UDP-glucose have a half-life of <1 min (Stitt et al., 
1980; Arrivault et al., 2009). Pool lifetimes this short mean that 
TPU limitation can build up and diminish very rapidly. Over 
a longer time frame, a greater sink can be important in freeing 
up short-term sinks. It has been reported that defruited wheat 
experiences significant down-regulation of photosynthesis 
(King et al., 1967), though not all plants experience this effect 
(Farquhar and von Caemmerer, 1982). Build up of sucrose 

Fig. 4. The decline in electron transport rate is diagnostic of TPU 
limitation. Combined gas exchange and fluorescence data in A/Ci curves 
of Nicotiana benthamiana at varying light intensity and 35 °C. At low CO2, 
plants are limited by Rubisco activity (C limitation, red), characterized by a 
sharp upwards slope of both A and ETR with increasing CO2. When light 
is insufficient, plants will be limited by the rate of RuBP regeneration (J 
limitation, green), characterized by a flat slope of the ETR with increasing 
CO2. Only when the plant has ample CO2 and electron transport will 
TPU limitation (P, yellow) be seen, characterized by a decline in ETR with 
increasing CO2. ETR is calculated from fluorescence-derived ΦPSII. Light 
intensity (µmol m−2 s−1):  , 250; , 400; , 550; , 750; , 1000;  

 1500.
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in source leaves could result in reduced TPU capacity due to 
reduced sucrose-phosphate synthase activity, as shown in some 
experiments (Huber, 1981; Paul and Foyer, 2001), or increased 
invertase activity (Mengin et al., 2017). In some experiments 
using conditions consistent with TPU limitation, starch builds 
up and causes a decline in photosynthetic rate (Sasek et  al., 
1985; Peet et al., 1986; Ramonell et al., 2001). The source of 
this decline is still to be conclusively determined. A long-term 
sink which can absorb carbon will allow the plant to recover 
(Sasek et al., 1985; Arp, 1991).

TPU and plant nutrition

TPU limitation is often incorrectly interpreted as a nutritional 
deficiency. It is true that plants transferred to media without any 
phosphate experience significant reduction in photosynthetic 
capacity (Brooks, 1986; Foyer and Spencer, 1986). However, less 
dramatic differences in phosphate nutrition result in relatively 
small changes in photosynthetic rate. This is due to the vacu-
ole buffering the phosphate concentration in the rest of the 
cell on a time scale of hours (Rebeille et al., 1983; Woodrow 
et al., 1984). Under increased or decreased phosphate nutrition, 
large changes in vacuolar phosphate concentration are seen, 
but only relatively small changes are seen in plastidic phosphate 
concentration (Rebeille et al., 1983; Foyer and Spencer, 1986). 
Plants grown with different phosphate nutrition are therefore 
not significantly more or less likely to experience TPU limita-
tion. Most phosphate in photosynthesizing cells will be used 
in nucleic acids and phospholipids (Dissanayaka et  al., 2018), 
and growth is more sensitive to phosphate nutrition than is 
photosynthetic rate (Mo et  al., 2018). Ellsworth et  al. (2015) 
showed that Australian plants growing in the wild with varying 
phosphate availability were adapted to their environment, and 
TPU limitation was more likely at high phosphate nutrition. 
Furthermore, TPU limitation can only be seen when the plant 
is photosynthesizing very quickly, which usually cannot occur 
if the plant is nutritionally deprived. Plants with reduced nitro-
gen were not capable of photosynthesizing quickly enough to 
reach TPU limitation (Sage et al., 1990).

Oscillations

Oscillations in carbon assimilation rate are a common side 
effect of TPU limitation (Ogawa, 1982; Sivak and Walker, 1986, 
1987). They are typically seen after a perturbation in the envi-
ronment of a plant that results in high photosynthetic rates, 
such as sharp increases in illumination or CO2. Oscillations 
then continue without further input for a variable amount of 
time. Oscillations include tandem changes in carbon assimi-
lation and fluorescence parameters, indicating simultaneous 
changes in both the light reactions and the Calvin–Benson 
cycle (Ogawa, 1982; Walker et al., 1983; Peterson et al., 1988; 
Stitt and Grosse, 1988). The amplitude of oscillations can 
increase with conditions that further exacerbate TPU limita-
tion, such as low temperature or low O2 (Peterson et al., 1988; 
Stitt and Grosse, 1988). Oscillations showed a significant impact 

on organic phosphates and their relevant ratios, notably large 
initial spikes in PGA, and reduction in RuBP and ATP pools 
(Sharkey et al., 1986b; Sage et al., 1988; Stitt and Grosse, 1988; 
Laisk et al., 1991).

A few models have been produced to explain oscillations. 
The most significant theory is that there is a delay in activa-
tion of sucrose synthesis after a photosynthetic increase that 
causes oscillations (Laisk and Walker, 1986). The delay may also 
originate from cytosolic FBPase inhibition by fructose-2,6-bi-
sphosphate (Stitt et  al., 1984; Laisk and Eichelmann, 1989; 
Laisk et al., 1989) or post-translational regulation (Huber and 
Huber, 1996). An additional interpretation of these oscillations 
has been proposed originating from the light reactions, with 
damping caused by a slow leak of protons across the thylakoid 
membrane (Kocks and Ross, 1995).

Environmental impact

The changing climate, resulting in large measure from increas-
ing CO2, has the potential to affect the frequency and sever-
ity of TPU limitations to photosynthesis. Since this syndrome 
occurs when carbon fixation and light capture have a greater 
capacity than end product synthesis, increasing CO2 should 
increase the occurrence of TPU limitation. However, because 
TPU is stimulated by increasing temperature, there could be a 
reduction in the occurrence of TPU limitation in the future. 
It is hard to predict which effect will dominate, and whether 
TPU limitation will be observed more or less frequently based 
on climate change predictions. However, beyond the short-
term effects of temperature and CO2, it is important to con-
sider how the plant responds when it is TPU limited. Generally, 
plants growing in elevated CO2 show less propensity for TPU 
limitation because they have reduced capacity for other pro-
cesses in photosynthesis (Sage et al., 1989). This suggests that 
plants cannot or do not make full use of the greater poten-
tial for photosynthesis. We hypothesize that understanding 
TPU will help in predicting acclimation responses of plants 
to increasing atmospheric CO2. How plants might acclimate 
could depend on such things as stochasticity of their environ-
ment and the typical day/night change in temperature. If night 
(and dawn) temperature rises more than day temperature, this 
could affect optimal TPU capacity.

It is often found that TPU limitation occurs whenever pho-
tosynthesis is stimulated to be ~20% higher than was occur-
ring in the plant under natural conditions (Yang et al., 2016). 
Increasing CO2, decreasing oxygen, or lowering the tempera-
ture usually allows TPU limitation to be observed. In a large 
study of published A/Ci curves, Wullschleger (1993) found 23 
cases (out of 109) where investigators reported TPU limita-
tions. It is likely that the phenomenon is observed but not 
recognized much more often. For example, a curve presented 
in Wullschleger et al. (Fig. 1B, taken from Ireland et al., 1988), 
shows evidence of TPU limitation but this was not one of the 
26 instances of TPU limitation cited. It is common for the 
TPU limitation to be ignored even when it is evident in data.

Since the components of photosynthesis must all work in 
concert and in strict stoichiometry, it is not surprising that 
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there might be a relationship between Vcmax and TPU capac-
ity. This has been invoked in global models of photosynthe-
sis, although many models do not include TPU. Lombardozzi 
et  al. (2018) used several estimates of the ratio of Vcmax and 
TPU capacity, and concluded that current global models may 
overestimate how much CO2 will be fixed by plants in the 
future because TPU limitations, or adjustments to avoid TPU 
limitation, will reduce photosynthetic capacity. It is important 
to realize that even though plants growing in elevated CO2 do 
not show TPU limitation, TPU may still be setting an upper 
bound and that plants adjust other capacities to keep below the 
upper bound of TPU because TPU can cause damage.

Conclusions

TPU is a metabolic condition that incorporates numerous sig-
nals to reflect the state of photosynthesis across the whole cell. 
Most metabolites in the chloroplast are phosphorylated, and 
so phosphate can reflect the metabolic state of the chloroplast. 
Phosphate is linked throughout the cytosol, where sucrose syn-
thesis takes place, and thus phosphate represents the photosyn-
thetic state across all chloroplasts. Phosphate concentrations are 
carefully regulated, and TPU limitation is very unlikely to be 
found at ambient conditions. A low phosphate level naturally 
signals to the other processes that photosynthesis is very fast, 
kinetically controls the ATP synthase, and leads to downstream 
effects on photosynthesis by accumulation of PMF and engag-
ing qE. The reduction in phosphate signals the plant to build 
up starch by relieving phosphate inhibition of ADP-glucose 
pyrophosphorylase (Preiss, 1982). Plants which are photosyn-
thesizing slowly can reduce their TPU capacity, which will 
lower their phosphate regeneration, helping to produce starch 
and prevent cycle collapse from overexport of TPs; conversely, 
increasing TPU capacity in plants which are photosynthesiz-
ing quickly will raise their phosphate regeneration and help 
produce ATP. In this way, TPU sets the span on expected 
photosynthesis. We believe that the gas exchange behavior in 
TPU conditions reflects several important regulatory features. 
Yet, the role of TPU as regulation is relatively unexplored. 
Experimental determination of the molecular mechanisms 
that underpin this system, and ecological studies to examine 
the broader effects of TPU are exciting future directions in 
this field.

A number of misconceptions cloud the field in regards to 
TPU. Even the term ‘TPU’ can now be seen not to be wholly 
accurate. It largely describes phosphate metabolism, but not 
all effects on carbon metabolism related to phosphate can be 
accurately described as TPU. At steady state, there are other 
sources of phosphate release that contribute to the assimilation 
cap. Amino acid release from photorespiration, methyleryth-
ritol 4-phosphate and shikimate pathways, and other carbon 
sinks for Calvin–Benson cycle intermediates will all contrib-
ute to the maximal assimilation rate when photosynthesis is 
TPU limited. An alternative view is that all Calvin–Benson 
cycle exports are downstream of TP, and thus constitute a form 
of TPU. The specific terminology and nuance are less impor-
tant than the total understanding, which is that TPU limitation 

is the result of insufficient capacity for carbon export from 
the Calvin–Benson cycle. Other carbon metabolism pathways 
in the chloroplast that do not immediately originate in the 
Calvin–Benson cycle, while important for the overall phys-
iology of the plant, will not be discernible in gas exchange 
measurements.

Maintaining TPU limitation is unhealthy for the plant due to 
risk of oxidative stress from photosystem oxidation (Pammenter 
et al., 1993). Electron transport regulation as assessed by chlo-
rophyll fluorescence quenching analysis and deactivation of 
Rubisco lead to an overall slowing of photosynthesis lower than 
TPU, eventually reaching a steady state with the assimilation 
rate based on the rate of TPU. Excess assimilation when already 
low on phosphate would further deprive ATP synthase of phos-
phate it needs. Contrary to what one might expect given the 
term ‘TPU limitation’, TPs do not necessarily need to build up, 
though phosphate levels should be low (Sharkey and Vanderveer, 
1989). This is why plants can be drained of phosphate via man-
nose or deoxyglucose feeding and be TPU limited (Herold and 
Lewis, 1977; Herold, 1980; Sivak and Walker, 1986). It is the 
relationship between the need for phosphate for ATP synthase 
and the phosphate sensitivity of starch and sucrose synthesis that 
results in TPU (Herold, 1980).
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