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ABSTRACT Serratia marcescens is a ubiquitous Gram-negative bacterium that is
linked with emerging opportunistic infections. In this report, we describe the isola-
tion and annotation of an S. marcescens myophage called Muldoon. Related to T4-
like phages, such as Serratia phage PS2, Muldoon contains 257 predicted protein-
coding genes and 4 tRNA genes.

Serratia marcescens is an often pigmented Gram-negative member of the Enterobac-
teriaceae family (1). An increasing incidence of human disease caused by this

pathogen is linked with multidrug resistance (2). Here, we describe the isolation,
genome sequencing, and annotation of bacteriophage Muldoon, which targets S.
marcescens.

Phage Muldoon was isolated from filtered (0.2-�m pore size) wastewater treatment
plant samples collected in College Station, TX, by growth on Serratia marcescens D1
(catalog no. 8887172; Ward’s Science). The host was cultivated aerobically in LB (BD) at
30°C and 37°C. Muldoon was propagated by the soft-agar overlay method (3). Illumina
TruSeq libraries were generated with a Nano low-throughput kit after DNA was purified,
as described in the shotgun library preparation protocol by Summer (4), and phage
Muldoon was sequenced on an Illumina MiSeq platform with paired-end 250-bp reads
using v2 500-cycle chemistry. FastQC was used to control the quality of 565,076 total
sequence reads (www.bioinformatics.babraham.ac.uk/projects/fastqc). The FastX Tool-
kit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) was used for trimming before
assembly with default parameters using SPAdes v.3.5.0 (5). The result was a contig with
69.2� coverage. To ensure that the complete termini were present, PCR products
(forward, 5=-GTCACGATTTCCCTGCTATCT-3=; reverse, 5=-GCCGAATTTGCGTACGTTTAC-
3=) amplified off the contig ends were Sanger sequenced. Structural annotation was
carried out with GLIMMER v3.0 and MetaGeneAnnotator v1.0 for protein-coding genes
and with ARAGORN v2.36 for tRNA genes (6–8). Rho-independent termination sites
were annotated using TransTermHP v2.09 (9). Functional annotations were guided by
results from InterProScan v5.33-72, BLAST v2.2.31, and TMHMM v2.0 analyses (10–12).
BLAST searches were conducted with the NCBI nonredundant, UniProtKB Swiss-Prot,
and UniProtKB TrEMBL databases at a maximum expectation value of 0.001 (13).
Whole-genome comparisons were performed by the progressiveMauve v2.4.0 algo-
rithm (14). Genomic terminus type was predicted with PhageTerm (15). All of the
annotation tools listed above are in the Galaxy and Web Apollo instances hosted by the
Center for Phage Technology at https://cpt.tamu.edu/galaxy-pub/ (16, 17). To deter-
mine morphology, Muldoon samples were negatively stained with 2% (wt/vol) uranyl
acetate and viewed by transmission electron microscopy at the Texas A&M Microscopy
and Imaging Center (18).

Myophage Muldoon has a 167,457-bp genome with a G�C content of 42%. With
257 predicted protein-coding genes and 4 tRNA genes, Muldoon has a 93% coding
density. The genome was predicted to have permuted termini, indicating that this
phage uses a T4-like packaging mechanism, and it was therefore reopened at the
junction between its equivalents of the rIIA and rIIB genes to be syntenic with phage
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T4 (GenBank accession no. NC_000866). Unlike the T4 genome, Muldoon has no
detectable introns. Phage Muldoon has its highest identity with Serratia phage PS2
(GenBank accession no. KJ025957), with 77.91% nucleotide identity and 253 similar
proteins. Phage PS2 has a similarly large genome of 167,276 bp and has an identical
number of tRNAs (19).

Data availability. The genome sequence and associated data for phage Muldoon
were deposited under GenBank accession no. MN095771, BioProject accession
no. PRJNA222858, SRA accession no. SRR8893603, and BioSample accession no.
SAMN11414488.
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