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Abstract
Colorectal cancer (CRC) has been designated a major global problem, especially
due to its high prevalence in developed countries. CRC mostly occurs
sporadically (75%-80%), and only 20%-25% of patients have a family history.
Several processes are involved in the development of CRC such as a combination
of genetic and epigenetic alterations. Epigenetic changes, including DNA
methylation play a vital role in the progression of CRC. Complex interactions
between susceptibility genes and environmental factors, such as a diet and
sedentary lifestyle, lead to the development of CRC. Clinical and experimental
studies have confirmed the beneficial effects of dietary polyunsaturated fatty
acids (PUFAs) in preventing CRC. From a mechanistic viewpoint, it has been
suggested that PUFAs are pleiotropic agents that alter chromatin remodeling,
membrane structure and downstream cell signaling. Moreover, PUFAs can alter
the epigenome via modulation of DNA methylation. In this review, we
summarize recent investigations linking PUFAs and DNA methylation-
associated CRC risk.

Key words: Colorectal cancer; Polyunsaturated fatty acids; DNA methylation, Epigenetic;
Docosahexaenoic acid; Eicosapentaenoic acid
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Core tip: Polyunsaturated fatty acids, including ω-3 (eicosapentaenoic acid and
docosahexaenoic acid) may have a potential preventive role in colorectal cancer (CRC)
by changing DNA methylation. In this review after summarizing the latest knowledge
regarding changes in the DNA methylation pattern and its association with CRC, we aim

WJCC https://www.wjgnet.com December 26, 2019 Volume 7 Issue 244172

https://www.wjgnet.com
https://dx.doi.org/10.12998/wjcc.v7.i24.4172
http://orcid.org/0000-0003-3052-6858
http://orcid.org/0000-0002-4743-9390
http://orcid.org/0000-0003-3627-1497
http://orcid.org/0000-0002-4519-0595
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:eftekhar19@gmail.com


First decision: October 14, 2019
Revised: November 27, 2019
Accepted: December 13, 2019
Article in press: December 13, 2019
Published  online:  December  26,
2019

P-Reviewer: Li Y, Qiu YD, Vynios
D
S-Editor: Zhang L
L-Editor: Webster JR
E-Editor: Ma YJ

to highlight the link between polyunsaturated fatty acids and DNA methylation in CRC,
which is currently an interesting field of research.
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INTRODUCTION
Cancer is one of the leading causes of death worldwide, creating a global health
problem[1]. The incidence of colorectal cancer (CRC) ranks third, it is among the most
commonly diagnosed cancers, and the second leading cause of mortality[2]. More than
700000 people die annually due to CRC[3]. The incidence of CRC corresponds with age
and a  high risk  of  CRC is  also  associated with  life  in  developed regions[4].  CRC
develops through the synergistic effect of several genetic and epigenetic changes that
lead  to  transformation  of  the  normal  intestinal  epithelium  into  invasive
adenocarcinoma[5]. Various genetic mechanisms are involved in the development of
CRC. Defective DNA mismatch repair,  presenting with microsatellite  instability
phenotypes and chromosomal instability, are the most important mechanisms. Today,
the role  of  epigenetic  alterations,  such as  the CpG island methylator  phenotype
(CIMP) is an important factor in the development of CRC[6]. Tumor suppressor genes
(TSGs) can be influenced by abnormal de novo methylation in CRC, which is identified
as  a  major  epigenetic  mechanism[7].  Aberrant  hypermethylation,  usually  affects
multiple loci in colorectal tumors, and it is referred to as the CIMP[8]. The correlations
between  CIMP  status,  clinical  outcome  and  response  to  chemotherapy  in  CRC
patients, have been documented[9,10]. In addition, several other molecular mechanisms
for the resistance of CRC to chemotherapy have been reported[11,12]. Three active forms
of DNA methyltransferases (DNMTs) including DNMT1, DNMT3A, and DNMT3B
are responsible  for  the generation and maintenance of  DNA methylation[13].  The
functions  of  DNMT3A  and  DNMT3B  enzymes  are  known  as  de  novo
methyltransferases[14].  However,  DNMT1,  is  responsible  for  the  maintenance  of
methyltransferase activity, which plays a role in the transmission of methylation
patterns to daughter cells through cell divisions[15]. It is reported that various tumor
tissues,  such as  breast  and hepatocellular  carcinomas,  as  well  as  cell  lines,  have
elevated levels  of  DNMTs expression[16,17].  Various studies have documented the
correlation between elevated expression of DNMTs in aberrant DNA methylation,
and  CIMP-associated  colon  cancer.  Moreover,  there  is  a  significant  association
between DNMTs overexpression and CpG island hypermethylation, in CRC[15,18,19].
Unhealthy  diet  is  an  important  environmental  risk  factor,  which  is  involved  in
different  types  of  cancers,  especially  the  development  of  CRC[20].  Different  food
groups,  including  high  meat  consumption  are  associated  with  CRC  incidence.
Numerous studies have documented that high meat intake can increase the risk of
CRC[21-23]. In contrast, a large body of evidence supports the protective effect of fish
consumption against CRC risk. This is due to high levels of vitamin D and ω-3 fatty
acids. Moreover, the positive role of other food groups, such as fruits and vegetables
against CRC has been reported. Various studies show that this protective effect is
related to the presence of polyphenolic compounds, such as flavonoids, and fiber[4].
Dietary fatty acids are important nutrients, which participate in human health and the
prevention of diseases[24]. Polyunsaturated fatty acids (PUFAs) are a small group of
dietary unsaturated fatty acids[25].  The role  of  PUFAs in the alleviation of  tumor
progression and cancer outcomes, especially CRC has been documented[26]. Recent
evidence indicates that PUFAs, such as docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19),
and eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) can significantly affect the epigenome
status of cells[27]. It was also established that in CRC cells, PUFAs affect the activity of
certain microRNAs via the associated alteration in promoter DNA methylation[28,29].
The exact mechanisms, explaining the effect of PUFAs on epigenetic modifications,
and gene expression in human normal and cancer cells, are not well understood. In
this review, after a brief description of the biology of DNA methylation, and the
structure and metabolic  role  of  PUFAs,  we will  focus on the pathophysiological
mechanisms of DNA methylation involved in CRC, as well as linking PUFAs with
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DNA methylation in CRC, which is currently an interesting field of research.

AN OVERVIEW OF THE MECHANISM OF DNA
METHYLATION
The enzymatic transfer of a methyl group (CH3) to the 5-position of cytosine is called
DNA methylation. This process is carried out by a family of DNMTs. In eukaryotes,
cytosine residues are the only residues, in which DNA methylation occurs[30]. Five
types of methyltransferases have been recognized: DNMT1, 2, 3A, 3B and DNMT-
related protein (DNMT3L). With the exception of DNMT2 and DNMT3L, all have
enzyme activity[31]. DNMT1, is recognized as a maintenance methyltransferase and
participates in passing the epigenetic information through the exact transmission of
methylation patterns to daughter cells, through cell generations[30].  DNMT3A and
DNMT3B are involved in the maintenance of DNA methylation patterns through de
novo methylation, and participate in various processes, such as correcting errors left
by DNMT1 after DNA replication and dynamic demethylation; thus, DNMTs allow
transient regulation of gene transcription[32-34].

DNMTs  act  on  specified  sequences  of  DNA,  which  are  known  as  CpG
dinucleotides.  Generally,  in  mammalian  cells,  the  DNA  methylation  of  CpG
dinucleotides  occurs  in  normal  cells,  but  the  majority  of  CpGs  are  usually
unmethylated, and designated in clusters known as CpG islands. Approximately, half
of  the  genes  in  mammalian  genomes  consist  of  short  CpG  islands,  which  are
important as they constitute less than 1% of the total genomic DNA[32,35]. CpG islands
may  be  abnormally  methylated  in  different  types  of  cancer  such  as  CRC[36].  In
comparison with normal tissues,  it  has been rigorously established that DNMT1,
DNMT3A, and DNMT3B are misdirected or up-regulated to different degrees in some
malignancies,  and  there  is  a  meaningful  association  between  overexpression  of
DNMTs with CpG island hypermethylation in CRC tumors[16,17]. Conversely, many
studies  have shown the controversial  role  of  increased expression of  DNMTs in
aberrant DNA methylation, and CIMP-associated colon cancer. However, our recent
study indicated that no significant association was found between overexpression of
DNMTs with specific CpG island hypermethylation in CRC cell lines[37].

DNA HYPERMETHYLATION AND COLORECTAL CANCER
Many studies have indicated that promoter-specific DNA hypermethylation of TSGs,
and genomic global DNA hypomethylation, occur early in malignant, premalignant
or  precursor  lesions.  These  gene  modifications  have  potential  clinical  use  as
biomarkers, especially for the detection and screening of CRC[38]. For example, LINE-1
hypomethylation, as well as hypermethylation of TSGs, such as Vimentin and SEPT9
are the best hypermethylation DNA signatures for recognition of CRC[39-42].  These
findings,  including  specific  promoter  hypermethylation  and  global  DNA
hypomethylation, are usual features, and help in understanding the importance of
these abnormalities in cancer pathogenesis[43]. It has been established that epigenetic
alteration  machinery  such  as  regional  hypermethylation  and  global  DNA
hypomethylation, are accepted processes and hallmarks of cancer cells that may lead
to modifications, including loss of imprinting, and are antecedents to the classical
primary transforming events  such as  chromosomal instability,  and mutations in
tumor suppressors and proto-oncogenes[44].  Moreover, DNA hypermethylation of
TSGs,  involved  in  cell-cycle  regulation,  DNA  repair,  apoptosis,  angiogenesis,
adhesion, and invasion, is the most common change in tumorigenesis, causing gene
silencing at the transcription level, and a failure of typical cellular functions[13,45-48]. On
the other hand, DNA hypermethylation of CpG islands often affects transcriptional
silencing  of  tumor  suppressor  or  DNA  repair  genes,  although  there  are
exceptions[49-51].  Hypermethylation of TSGs is introduced as a general mechanism,
which participates in tumor suppressor inactivation in cancer,  and loss of tumor
suppressor protein function has been reported in many tumor types[52,53]. Although
methylation of CpG islands, adjacent to the transcription start sites of TSGs, is related
to gene silencing, methylation of gene bodies is associated with activation of gene
expression[52]. Furthermore, gene expression is not associated with methylation of the
downstream gene sequences[54]. Recently, the role of epigenetic changes in cancer has
been fully established.  Cancer epigenome studies indicated that 1%-10% of CpG
islands are abnormally methylated,  suggesting that  hundreds of  genes might be
aberrantly methylated in the CRC genome[35].  For  example,  hypermethylation of
diverse TSGs, such as CDKN2A/p16, MLH1 and CDH1 (E-cadherin) and p14ARF, has
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been documented in the pathogenesis of CRC[37,55,56].

DNA HYPOMETHYLATION AND COLORECTAL CANCER
Global genomic DNA hypomethylation refers to loss of DNA methylation in various
regions of the whole genome[57]. DNA hypomethylation is a hallmark, and one of the
important  features  of  cancer  cell  lines,  such  that  85%  of  cell  lines  are  globally
hypomethylated in different types of cancer, including CRC[57,58]. The significant role
of global DNA hypomethylation in tumorigenesis is established, and it can occur at
various genomic sequences, including repetitive elements, retrotransposons, CpG
poor promoters, introns, and gene deserts[59]. In addition, growth stimulating genes,
including R-Ras and MAPSIN in gastric cancer, S-100, IGF2, and repetitive sequences
in CRC, and MAGE  in melanoma can be activated by DNA hypomethylation[60-62].
Moreover,  in  colorectal  tumors  an  increase,  decrease  or  no  change  in  global
methylation status was reported, in comparison with their adjacent normal tissues.
Alternative epigenetic progression pathways in tumors are controversial, as global
hypomethylation is highly variable in tumor cells, and partially inversely correlated
with  microsatellite  instability[58,63].  Furthermore,  the  carcinogenic  effect  of  DNA
hypomethylation may involve genomic instability, up-regulation of particular genes
such as  oncogenic  microRNAs,  translocations,  facilitation of  illegitimate  mitotic
recombination,  and  may  also  permit  the  transcription  of  parasitic  sequences,
including virus  DNA and transposon elements  that  have been merged with  the
DNA[64,65].

POLYUNSATURATED FATTY ACIDS: STRUCTURE AND
DIETARY SOURCES
Fatty acids are recognized as hydrocarbon chains with a methyl group at one end, and
a carboxyl group at the other end. In saturated fatty acids, the carbon atoms connect
with each other only by carbon-carbon single bonds. While, unsaturated fatty acids
(UFAs) have one (monounsaturated fatty acid) or two or more (PUFAs) double bonds
in their chain in the cis configuration.

Chemically, PUFAs are categorized as simple lipids. The ω-3 (EPA and DHA) and
ω-6 linoleic acid (LA) are two main members of essential PUFAs, which have very
different  biochemical  roles.  Mammalian  cells  cannot  synthesize  LA  and  alpha-
linolenic acid (α-LNA), due to the lack of required desaturase enzymes (∆12 and ∆15).
Hence, these two PUFAs are categorized as essential, and need to be ingested via the
diet. LA is present in vegetable seeds and oils, whereas, sources of α-LNA are dark
green leafy plants and blackcurrant seed oils[66]. In addition, cold water-derived oily
fish, particularly mackerel,  salmon and sardines are dietary sources of EPA, and
DHA[67,68].  Production of  EPA and DHA from α-LNA occurs in the human body.
However, endogenous production of the ω-3 PUFAs (EPA and DHA) from α-LNA by
humans is very small, and almost non-significant (< 5%-10% for EPA and 2%-5% for
DHA).

METABOLISM OF POLYUNSATURATED FATTY ACIDS
Dietary  intake  and  various  sources  of  fatty  acids  can  influence  the  complex
metabolism of PUFAs. In addition, in the endoplasmic reticulum, desaturase enzymes
(∆6- and ∆5- desaturase) encoded by fatty acid desaturase 2 (FADS2) and FADS1, as
well as elongase enzymes are encoded by ELOV5 and ELOV2, and are involved in
metabolism[69]. Arachidonic acid and EPA are the first products, which are produced
in the metabolic pathway. In the plasma membranes, PUFAs play a role as substrates
for enzymes, including cyclooxygenase (COX) and lipooxygenase (LOX), and are
converted into an eicosanoid. Irrespective of the mechanism, eicosanoids are highly
biologically active hormone-like compounds that affect numerous metabolic activities
such as inflammation, hemorrhage, blood pressure, platelet aggregation, immune
responses and both vasoconstriction and vasodilatation[70]. It has been suggested that
ingestion of EPA and DHA from fish oil and their metabolites, have a competitive
function and replace arachidonic acid in phospholipids of the cell plasma membrane,
and cause production of prostanoids and leukotrienes with various effects such as
anti-inflammatory, anti-chemotactic and anti-tumor[71]. Moreover, the beneficial roles
of ω-3 PUFAs have been established in cardiovascular diseases, myocardial infarction,
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inflammatory bowel disease, diabetes, rheumatoid arthritis, optimal brain function
and neurodegenerative diseases[72-75].

MECHANISM OF ACTION OF POLYUNSATURATED FATTY
ACIDS
The molecular mechanisms of LA, EPA, and DHA are not fully understood. However,
many studies have indicated that these fatty acids show pleiotropic effects, and are
major modulators of  many genes[76].  It  has been suggested that  PUFAs and their
derivatives change gene expression that leads to changes in membrane composition
by precisely governing the activity of nuclear transcription factors such as peroxisome
proliferator-activated receptor (PPAR)α, PPARβ, and PPARγ[77]. In addition to PPARs,
different  transcription  factors  have  been  recognized  as  targets  for  fatty  acid
regulation,  such as  hepatic  nuclear  factor-4α,  sterol  regulatory  element-binding
protein, liver X receptors, retinoid X receptors, thyroid hormone receptors (TR-α, TR-
β) and nuclear factor-kappaB (NF-kB)[78-81].  For example, it is well established that
treatment of human CRC cell lines with ω-3 PUFAs leads to increased membrane
fluidity and lipid peroxidation, by acting as substrates for second messengers. On the
other hand, these PUFAs reduced vascular endothelial cell growth factor (VEGF), β-
catenin,  BCL-2,  and matrix  metalloproteinase  (MMP) gene expression levels,  by
activation  of  transcription  factors  such  as  PPARs.  In  addition,  PUFAs  reduced
extracellular signal-regulated kinase-1/2 (ERK1/2) signaling[82,83].

ASSOCIATION BETWEEN POLYUNSATURATED FATTY
ACIDS AND CANCER RISK
Different  mechanisms  are  involved  in  the  beneficial  effects  of  ω-3  PUFAs  in
cancer[84,85].  In vivo  model  experiments  showed that  low consumption of  marine-
derived ω-3 PUFAs and high intake of ω-6 PUFAs, elevate the risk of breast cancer in
women[86,87]. Other studies indicated the crucial role of saturated fat from animal food
sources in the increased risk of pancreatic cancer[88]. There is substantial evidence that
ω-3 PUFAs (usually a mix of EPA and DHA as fish oil) have a potential role in the
treatment and prevention of CRC, and it has been established that there is an inverse
association between consumption of ω-3 PUFAs and the risk of CRC[89]. As mentioned
above,  sufficient consumption of  PUFAs play a role as structural  constituents of
cellular membranes, and are involved in metabolism, inflammation, cell signaling,
and regulation of gene expression[90]. Moreover, both EPA and DHA participate in the
suppression of angiogenesis and the antineoplastic activity of ω-3 PUFAs is associated
with negative regulation of  stromal-epithelial  cell  signaling[91].  Single nucleotide
polymorphisms (SNPs) are involved in the metabolism of PUFAs, and abnormal
PUFA metabolism due to genetic variation plays a role in increasing cancer risk. It is
possible that personalized-diets may be a therapeutic approach to provide specified
intakes of PUFAs, based on an individual’s metabolic capability and physiological
needs[92].  In  FADS1  and  FADS2,  330  and  942  identified  SNPs  have  been  found,
respectively. According to these results, it has been suggested that these SNPs are
related  to  the  physiological  levels  of  PUFAs,  proposing  that  genetic  variation
participates in PUFA metabolism and is probably a cancer risk[69].

POLYUNSATURATED FATTY ACIDS AND COLORECTAL
CANCER
A large body of evidence supports the beneficial effects of dietary PUFAs, including
EPA and DHA, for  reducing cell  proliferation and angiogenesis,  and increasing
apoptosis,  which lead to a  reduction in CRC risk.  As shown in Figure 1,  PUFAs
induce an antineoplastic  effect  against  CRC via  four general  mechanisms:  (1)  By
increasing oxidative stress in colon cancer cells. Increased reactive oxygen species and
malondialdehyde level, as end-products of PUFA peroxidation may be related to the
progression and pathogenesis of CRC. From a mechanistic viewpoint, it has been
suggested  that  increased  reactive  oxygen  species  and  malondialdehyde  level
consequently  leads  to  CRC  cell  growth  inhibition  through  mitochondrial
dysfunction[93]; (2) By changing the biochemical properties of cancer cell membranes
such as  fluidity,  compressibility,  fusion and protein function[94].  For  example,  in
mammalian cells,  PUFAs by interfering with membrane-associated Ras signaling
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could  modulate  gene  expression,  as  well  as  DNA  methylation.  Another  study
indicated that in rats fed with a high-fat ω-3 PUFA diet, the total Ras protein and
membrane-bound  Ras  levels  decreased,  but  the  protein  levels  of  cytosolic  Ras
increased in colon tumors, in comparison with rats fed with a high-fat corn oil diet[95].
This shows that ω-3 PUFAs interfere with Ras activation by reducing its membrane
localization. In addition, ω-3 PUFAs can protect against both the initiation and post-
initiation stages of carcinogenesis. Davidson et al[96] concluded that consumption of ω-
3 PUFAs has a protective effect on the initiation of CRC, and has a promotional effect
on  apoptosis  and  aberrant  crypt  foci  levels.  Furthermore,  the  role  of  fish  oil
supplementation  in  colonic  apoptosis  in  rats  has  been  established,  conferring
resistance to alkylation and oxidation-induced DNA damage[97].  Calviello et  al[98]

showed a more obvious reduction in cell number with EPA than with DHA, and
indicated  that  both  EPA  and  DHA  reduced  VEGF  and  COX-2  expression  and
prostaglandin  E2  (PGE2)  levels  in  CRC  cells.  (3)  By  reducing  inflammation.
Inflammation is one of the hallmarks of tumorigenesis[99]. Various investigations have
revealed the anti- and pro-inflammatory mechanisms of PUFAs in cancer promotion
and  progression.  For  example,  the  anti-inflammatory  mechanism  of  EPA  is  in
competition with its ω-6 isomer for metabolism by COX and LOX enzymes, thus
reducing the synthesis  of  pro-inflammatory PGE2 and LTB4.  Subsequently,  EPA
metabolism by the COX pathway gives rise to PGE3, while the LOX pathway results
in LTB5. Unlike the actions of PGE2, PGE3 is not involved in cancer cell proliferation,
and instead down-regulates the expression of COX-2[100]. Moreover, EPA and DHA
play an important role in the suppression of inflammatory transcription factors such
as NF-kB; and (4) By modulation of DNA methylation. Many studies have confirmed
the role of PUFAs in promoter methylation of different genes. It has been suggested
that PGE2 modulates cancer progression via epigenetic modification. In CRC cells,
PGE2,  which  acts  in  part  via  the  PG  receptor  EP4,  was  found  to  increase  the
expression of DNMT1 and DNMT3, which led to hypermethylation of the promoter
regions, and reduced the mRNA and protein expression levels of TSGs[101].

EPIGENETIC MODIFICATION BY POLYUNSATURATED
FATTY ACIDS
Increasing evidence suggests that dietary PUFAs affect cell function by modifying the
epigenome, especially, DNA methylation[27]. There is a two-way correlation between
PUFAs  and  epigenetics.  This  means  that  PUFAs  can  change  the  processes  of
epigenetics, and these epigenetic processes play an important role in the biosynthesis
of PUFAs. For example, Niculescu et al[102]  reported that DNA methylation of the
promoter of the FADS2 gene, increased in the liver of the offspring of mice consuming
a  diet  supplemented  with  α-LNA  during  pregnancy [102].  Furthermore,  DNA
hypermethylation of FADS2, and the levels of histone methylation in placentae, and
in  adipose  tissue,  were  stimulated  after  increased  fish  oil  intake.  Additionally,
nutritional ω-3 PUFA supplementation in pregnant women affected offspring DNA
methylation through induction of genomic global DNA methylation in cord blood
leukocytes, and a high-fat diet altered the DNA methylation status of target genes[103].

Aslibekyan  et  al[104]  showed  an  association  between  numerous  biologically
important epigenetic markers, including regions on chromosomes 3, 10 and 16, and
long-term consumption of seafood-derived ω-3 PUFAs. Another study demonstrated
that treatment of U937 leukemic cells with EPA (100 µmol/L), increased the mRNA
expression  of  CCAAT/enhancer-binding proteins  C/EBP-β,  C/EBP-,  and c-Jun,
which  was  accompanied  by  single  specific  locus  demethylation  of  the  C/EBP-
promoter[105]. Moreover, the addition of DHA diminished the global level of dimethyl
forms of H3K4, H3K9, H3K27, H3K36 and H3K79 in M17 neuroblastoma cells[106].
Furthermore, the beneficial effect of ω-3 PUFAs has been reported in the prevention of
inflammatory  disorders  via  epigenetic  modulation  of  the  immune  system.  For
example,  Lee  et  al[107]  reported  that  ω-3  PUFA  supplementation  may  modulate
methylation levels in LINE1 repetitive elements, IFNγ and IL13, during pregnancy.
Another  investigation  by  Boigues  et  al[28]  showed that  the  role  of  PUFAs  in  the
modulation of gene promoters was linked with lipid metabolism, and regulation of
the activity of specific microRNAs.
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Figure 1

Figure 1  Four general mechanisms by which polyunsaturated fatty acids can induce their antineoplastic
effects in colorectal cancer. PUFA: Polyunsaturated fatty acid; CRC: Colorectal cancer; COX-2; Cyclooxygenase-2:
Mt: Mitochondria.

POLYUNSATURATED FATTY ACIDS AND POSSIBLE DNA
METHYLATION MECHANISMS IN COLORECTAL CANCER
The anti-tumor effects of dietary PUFAs, especially EPA and DHA, on the reduced
risk  of  CRC  has  been  established.  For  advanced  CRC,  5-fluorouracil-based
chemotherapy is the first-line treatment[108]. Vasudevan et al[109] demonstrated that EPA
by itself or in combination with other agents, including 5-fluorouracil could be a
potential preventive strategy for recurring CRC, in both in vitro and in vivo models.
Huang et al[110] demonstrated that treatment of a CRC rat model with ω-3 PUFA was
accompanied by decreased tumor incidence and tumor size and a close correlation
was found between the anticancer effects of ω-3 PUFA, and increased genomic DNA
hydroxymethylation. Moreover,  it  has been suggested that PUFAs have a role in
modulation of gene silencing by affecting gene promoter methylation. For instance,
treatment of colon cancer cells with fish oil and pectin increased apoptosis, which was
accompanied by increased methylation in the Bcl-2 promoter[111]. Ceccarelli et al[112]

indicated that EPA directly regulates and demethylates DNA in hepatocarcinoma cell
lines. Furthermore, Serini et al[94] showed that during treatment of the inflammatory
response of the large bowel with ω-3 PUFAs altered M2 macrophage polarization, and
may exert  beneficial  effects  on gene expression through epigenetic  modification.
Overall, these data suggest that alterations in epigenetic pathways may be involved in
the anticancer properties of ω-3 PUFAs.

To  date,  many  studies  have  demonstrated  the  effects  of  PUFAs  on  the  DNA
methylation processes of CRC in vitro. Our previous investigation showed that PUFA
treatment, caused decreased methylation of COX-2, p16INK4a, PPARγ, CDH1, PTEN
and MMP2 in CRC cell lines[113]. Other studies indicated that treatment of HCT116
colon cancer cells with DHA (50 µmol/L) or LA, was significantly accompanied by a
reduction  of  both  genomic  global  DNA  methylation  and  DNA  methylation  of
apoptosis-related genes,  including Bcl2,  Cideb,  Dapk1,  Ltbr,  and Tnfrsf25[114].  The
mechanism by which PUFAs alter the epigenome is currently unclear. Experimental
studies  revealed  that  there  are  different  possible  mechanisms  (Figure  2)  in  the
reduction  of  DNA  methylation  by  PUFAs,  including:  (1)  Via  the  Ras-signaling
pathway. It has been shown that lipid rafts modulate signals generating from the cell
membrane and linking DNA methylation and chromatin dynamics[115]. Activation of
Ras stimulates DNMT1 mRNA transcription, and increasing levels of DNMT1 can
affect hypermethylation of certain genes[116-118]. In our previous study, we observed
different impacts of PUFAs on DNMT expression levels in five CRC cell lines. We
found that EPA, DHA, and LA significantly reduced the expression levels of DNMT1
and DNMT3B in LS180 and HCT116 CRC cell lines, whereas DNMT1 expression was
significantly induced in SW742 and HT29/29 cell lines. Moreover, with regard to
DNMT3A we found a trend for coordinating a significant decrease in expression in
five CRC cell lines, except the HT29/219 cell line[113]. The results of this study suggest
that  PUFAs can alter  global  and gene-specific  DNA methylation,  as  well  as  the
expression  of  DNMTs  in  a  cell-type  specific  manner  in  CRC  cells[113];  (2)  By
transferring  methyl  groups  from phosphatidylethanolamine-DHA (PE-DHA) to
phosphatidylcholine-DHA[119]. From a mechanistic viewpoint, methyl groups from S-
adenosyl  methionine  are  required  for  the  conversion  of  PE-DHA  to  PC-DHA;
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therefore, a lack of cellular DHA leads to a deficiency of PE-DHA and the resulting
excess of methyl groups will be available for other transmethylation reactions of DNA
by DNMTs[29,119]; (3) By inhibiting COX-2 enzyme. COX-2 inhibition causes aberrant
methylation and disturbs epigenetic regulation. PUFAs affect DNA methylation by
inhibiting COX-2, and by decreasing the production of pro-inflammatory eicosanoids,
and  the  risk  of  colon  cancer [ 8 4 , 1 2 0 ].  Tsujii [ 1 2 1 ]  showed  that  COX-2  induced
hypermethylation of TSGs through increased DNMT expression via the production of
PGE2. In another study by Tsujii[121],  it  was reported that COX-2 reduced DNMT
activity, and increased global hypomethylation through an increase in demethylase
expression and promoter hypomethylation of oncogenes. In addition, COX-2-derived
PGE2  increases  gene-specific  and  global  DNA  methylation  through  increased
DNMT3A expression. These effects of PGE2 are tissue-specific, and enhancement of
DNMT3A expression was facilitated by PGE2 signaling through its E prostanoid 2
receptors. In addition, COX-2-derived PGE2 elevated DNMT1 and DNMT3B protein
expression, upregulated CpG island methylation, and stimulated intestinal tumor
growth in APC -/+ mice. Moreover, it has been observed that DNMT1 and DNMT3B
protein  expression  increased  due  to  administration  of  PGE2  in  colonic  tumor
epithelial  cells,  and elevated the  number  and size  of  intestinal  polyps  via  DNA
methylation[101]; (4) PUFA can bind to intracellular PPAR receptors. PPARs, such as
PPARγ,  bind  as  a  heterodimer  to  the  retinoic  acid  X  receptor  (RXR)  and  after
heterodimerization of PPARγ with RXR, binds to the promoters of different genes and
mediators such as UHRF1, which ultimately binds to the promoter regions of their
target genes, and changes their expression by altering DNA methylation[122,123]. Our
previous study indicated that n-3 PUFAs could modulate the expression of PPARα
and DNMT3b  in  rat  liver  and  colon  tissues[124].  These  findings  suggest  that  this
association  could  be  created due  to  the  interaction  between the  PUFAs and the
epigenome, which causes reprogrammed epigenetic marks; (5) By modulating the
gene  expression  of  microRNAs  (miRNAs).  Zhang  et  al[125]  demonstrated  that  in
pregnant  and  lactating  mice  fed  a  high-fat  diet,  the  expression  of  key  miRNAs
significantly reduced in the adult offspring. It has been documented that miRNAs can
modify  chromatin  remodeling  and DNA methylation  by  altering  the  activity  of
DNMTs, and histone methyltransferase[126,127]. Moreover, our previous study indicated
that DHA (100 µmol/L) decreased DNA methylation of the miR-126 gene promoter,
and inhibited its VEGF protein target level in a cell-type specific manner in CRC cell
lines[29]. Thus, miRNAs represent a possible mechanism by which PUFAs modify the
epigenome.  However,  such  mechanisms  await  empirical  evidence;  and  (6)  By
activation of ten-eleven translocation (TET) proteins. TET proteins are involved in the
demethylation of 5-methylcytosine by sequential  oxidation,  and it  has been well
documented that TET proteins are positively activated by α-ketoglutarate[128].  The
current findings clearly indicate that the activity of TET proteins might be enhanced
by the metabolism of PUFAs. Increased dietary fatty acids may lead to β-oxidation of
fatty acid. Accordingly, increased flux of acetyl-CoA derived from β-oxidation to the
Krebs’s cycle, will give rise to an α-ketoglutarate concentration that may lead to up-
regulation of TET enzymes, and DNA demethylation[129]. Based on these mechanisms,
it has been suggested that PUFAs could induce alterations of DNA methylation by
changing the activities of DNMTs and TET enzymes.

CONCLUSION
DNA  methylation  is  a  hallmark  of  cancer  cells,  and  plays  a  pivotal  role  in  the
progression of CRC. DNA methylation can influence different pathways such as
chromatin remodeling, gene expression, signaling transduction, and other signaling
pathways,  and  could  be  a  key  step  in  CRC  tumorigenesis.  There  is  substantial
evidence  that  PUFAs  can  modify  the  epigenome,  and  the  beneficial  properties
associated with ω-3 PUFAs might be explained by DNA methylation. It has been
suggested  that  PUFAs  can  induce  alterations  in  DNA  methylation  by  different
mechanisms,  including  modulation  of  cancer  cell  membrane,  and  activities  of
intracellular PPARs, COX-2, noncoding-RNAs, DNMTs and TET proteins. However,
there is a key limitation to progress in this field, which is due to the small changes in
DNA methylation and their effects on gene expression, and the effect of PUFAs on
less accessible tissues, including liver or brain. Further research is needed to provide
potential novel insights into the mechanisms related to the influence of PUFAs on
DNA methylation and CRC risk.
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Figure 2

Figure 2  A model of the possible mechanisms by which polyunsaturated fatty acids can alter DNA methylation in colorectal cancer. DNMTs: DNA
methyltransferases; DHA: Docosahexaenoic acid; PE-DHA: Phosphatidylethanolamine-DHA; PC-DHA: Phosphatidylcholine-DHA; PUFA: Poly unsaturated fatty acid;
COX-2: Cyclooxygenase-2; PGE2: Prostaglandin E2; PPARs: Peroxisome proliferator-activated receptors; RXR: Retinoid X receptor; UHRF1: Ubiquitin-like protein
containing PHD and RING finger domains 1; miRNAs: MicroRNAs; α-KG: α-ketoglutarate; TET: Ten-eleven translocation.
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