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PGxCorpus, a manually annotated 
corpus for pharmacogenomics
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Pharmacogenomics (PGx) studies how individual gene variations impact drug response phenotypes, 
which makes PGx-related knowledge a key component towards precision medicine. A significant part 
of the state-of-the-art knowledge in PGx is accumulated in scientific publications, where it is hardly 
reusable by humans or software. Natural language processing techniques have been developed to 
guide experts who curate this amount of knowledge. But existing works are limited by the absence 
of a high quality annotated corpus focusing on PGx domain. In particular, this absence restricts the 
use of supervised machine learning. This article introduces PGxCorpus, a manually annotated corpus, 
designed to fill this gap and to enable the automatic extraction of PGx relationships from text. It 
comprises 945 sentences from 911 PubMed abstracts, annotated with PGx entities of interest (mainly 
gene variations, genes, drugs and phenotypes), and relationships between those. In this article, we 
present the corpus itself, its construction and a baseline experiment that illustrates how it may be 
leveraged to synthesize and summarize PGx knowledge.

Background & Summary
Pharmacogenomics (or PGx) studies how individual gene variations impact drug response phenotypes1. This is 
of particular interest for the implementation of precision medicine, i.e. a medicine that tailors treatments (e.g. 
chosen drugs and dosages) to every patient, in order to reduce the risk of adverse effects and optimize bene-
fits. Indeed, examples of PGx knowledge have already yielded clinical guidelines and practices2,3 that recom-
mend considering individual genotypes when prescribing some particular drugs. For example, patients with the 
allele *57:01 of the HLA gene are at high risk to present a hypersensitivity reaction if treated with abacavir, an 
anti-retroviral, and thus should be genotyped for this gene before prescription4.

Many scientific publications report the impact of gene variants on drug responses, and the size of Medline 
(30 million articles as of Sept. 2019) makes it hard for humans or machines to get a full understanding of the 
state of the art in this domain. NLP (Natural Language Processing) techniques have been consequently devel-
oped and used to structure and synthesize PGx knowledge5,6. Previous works mainly investigated rule-based 
approaches7–9 and unsupervised learning10,11, because of the absence of an annotated corpus. Supervised learning 
has also been experimented12–16, but without appropriate corpora, most studies build train and test sets on the 
basis of PharmGKB, which is the reference database for this domain17. Because it is manually curated, PharmGKB 
provides a high quality referential for such a task. Annotations provided by PharmGKB (i.e. 2 associated entities 
and the identifier of the PubMed article in support) result of the consideration by human curators of various 
knowledge sources: article text; tables and figures; and curator’s own knowledge of the domain. Consequently 
PharmGKB annotations result from a high level process that can hardly be compared to an NLP-only approach. In 
particular, most NLP efforts are restricted to open-access texts only, without considering background knowledge. 
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In this sense, systems evaluated in comparison with PharmGKB are tested on how they may guide the curation 
process, but not on how they can capture what is stated in texts.

In domains close to PGx, corpora have been annotated with biomedical entities of interest for PGx, but never 
with the three PGx key entities (i.e. drugs, genomic variations and phenotypes) in the same portion of text, and 
never with relationships specific to PGx. Hahn et al.6 made a panorama of corpora related to PGx. In the next 
section of this article, we present and compare the most pertinent ones with PGxCorpus. In contrast with exist-
ing corpora PGxCorpus encompasses all three key entities of interest in PGx (i.e. drugs, genomic variations and 
phenotypes) both at the corpus level (the corpus encompasses the three) and at the sentence level (most sentences 
encompass the three). In addition, both entities and relationships are labeled using detailed hierarchies, allowing 
the capture of pharmacogenomic relationships with a finest level of granularity. Finally, PGxCorpus is larger 
than other corpora: it is 2 to 3 times larger in term of annotated relationships than other corpora that include 
genomic entities. Despite the existence of reference resources, in particular PharmGKB, and of alternatives to 
classical supervised learning such as weak supervision or active learning, we believe that a high quality training 
set remains an asset to a domain and that PGxCorpus will serve both the PGx and the Bio-NLP communities.

This manuscript first presents PGxCorpus itself; its construction, in Methods; and a baseline experiment, in 
Technical Validation.

Position in regards to existing corpora.  In domains closely related to PGx, corpora have been annotated 
with biomedical entities, but only few of them include relationships (see Hahn et al.6 for a panorama, plus18–21).  
More relevant corpora are related to pharmacovigilance or genetic traits, and then focus on drug–adverse response 
or SNP–phenotype associations. To our knowledge, no corpus includes annotations of all three PGx key entities, i.e. 
drugs, genomic variations and drug response phenotypes; and no corpus annotates PGx relationships between these 
entities. Developed for pharmacovigilance, EU-ADR22 is a corpus composed of three disjoint subcorpora of 100 
PubMed abstracts each. Sentences are annotated with pairs of entities either drug-disease, drug-target or target-disease. 
In the same vein, ADE-EXT23 consists of 2,972 MEDLINE case reports annotated with drugs, conditions (e.g. diseases, 
signs and symptoms) and their relationships. SNPPhenA24 is a corpus of 360 PubMed abstracts annotated with single 
nucleotide polymorphisms (SNPs), phenotypes and their relationships. Domains covered by EU-ADR, ADE-EXT or 
SNPPhena are related to PGx because they encompass entites of interest in PGx, however they only partially fit the pur-
pose of PGx relation extraction because sentences contains only two types of entities and because their annotated rela-
tions are only rarely related to PGx. In particular, EU-ADR and ADE-EXT annotate drug reactions without considering 
genetic factors. SNPPhena does not focus on drug response phenotypes, but on general phenotype and symptoms, and 
it only considers SNPs whereas other genomic variations are also important in PGx. In addition, the size of EU-ADR 
sub-corpora and SNPPhena are relatively small (with only a few hundred annotated sentences), which limits the use 
of supervised learning approaches that require large train sets such as TreeLSTM25. These elements motivated us to 
construct a new corpus, focused on PGx, and large enough to train deep neural network models.

Table 1 proposes a comparison of PGxCorpus with five related corpora. In contrast with existing corpora 
and in particular those mentioned above, PGxCorpus encompasses all entities of interest in PGx (i.e. drugs, 
genomic variations and phenotypes) both at the corpus level and at the sentence level. Indeed, 47% of its anno-
tated relations (1,353 out of 2,871) involve these three types of entities. The ratio of sentences with no relation 
in PGxCorpus is only 2.7%, which is rather low in comparison with larger corpora such as ADE-EXT where it 
is up to 71.1%. PGxCorpus contains more types of relationships and entities, allowing a finest level of granu-
larity. Indeed, while PGxCorpus uses 10 types of entities and 7 types of relations (all organized in hierarchies), 
SNPhenA, EU-ADE and ADE-EXT only use one type of relation (i.e. the relation occurs or not), but specify 
one of three modalities (positive, hypothetical or negative) in the case of EU-ADR. In the case of SNPPhena 
five modalities (neutral, weak confidence, moderate confidence, strong confidence and negative) are reported. 
In PGxCorpus, relationship modality (one out of the four values: positive, hypothetical, negative or both) is 

Corpus 
name Subcorpus

Corpus size
Sent. w/o 
rel. Key entities #Ent. 

types
#Rel. 
types

# 
Mod.

Nested 
entities

Discont. 
entitiessent. rel. % nb. Dru. Gen. Phe.

SNPPhenA — 483 1300 0 0 ✓ ✓ 2 1 5

EU-ADR

drug-disease 244 176 0 0 ✓ ✓ 2 1 3

drug-target 247 310 0 0 ✓ ✓ 3 1 3

target-disease 355 262 0 0 ✓ ✓ 3 1 3

SemEval DrugBank 5,675 3,805 65.9 3739 ✓ 4 4 1

DDI MEDLINE 1,301 232 87.1 1133 ✓ 4 4 1

ADE-EXT — 5,939 6,701 28.9 1719 ✓ ✓ 2 1 1

PGxCorpus — 945 2,871 2.7 26 ✓ ✓ ✓ 10 7 4 ✓ ✓

Table 1.  Main characteristics of PGxCorpus in comparison with related corpora. Sizes of corpora are reported 
in term of number of sentences (sent.) and annotated relationships (rel.). The number of sentences without any 
annotated relation (Sent. w/o rel.) is reported both as a percentage (%) and an absolute number of sentences 
(nb.). The specific presence of PGx key entities, i.e. drugs (Dru.), genetic factors (Gen.) and phenotypes (Phe.) is 
reported under the Key entities column. Overall numbers of types of entities and relations used in annotations 
are reported as #Ent. and #Rel. types respectively. #Mod. refers to the number of modalities for the annotation 
of relations (e.g. positive, hypothetical, negative).
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also captured and complements the relation type. SemEval DDI uses four types of drug-drug relations; however 
those are specific to drug-drug interactions and thus are irrelevant to PGx. Unlike the other corpora, PGxCorpus 
includes nested and discontiguous entities, which allows the capture of complex entities and their relationships. 
Finally, PGxCorpus is larger than other corpora that include genomic entities (required in PGx): it is 2 to 3 times 
larger in term of annotated relationships than SNPPhena and EU-ADR.

Despite the existence of reference resources, in particular PharmGKB, and of alternative to classical super-
vised learning such as weak supervision or active learning, we believe that a high quality training set remains an 
asset to a domain and thus that the PGx community will benefit from PGxCorpus.

Statistics.  PGxCorpus encompasses 945 sentences, from 911 distinct PubMed abstracts, annotated with 
6,761 PGx entities and 2,871 relationships between them. Detailed statistics on the type of entities and relation-
ships annotated are provided in Tables 2 and 3, respectively. Note that we distinguish two types of particular enti-
ties: nested and discontiguous ones. Nested entities are entities that fully or partially encompass at least one other 
entity in their offset. In Fig. 1, the phenotype “acenocoumarol sensitivity” is an example of nested entity since it 
encompasses the “acenocoumarol” drug. Discontiguous entities are entities with a discontiguous offset, such as 
“VKORC1 genotypes” in Fig. 1. 874 out of the 945 sentences of PGxCorpus (92%) contain the three key entities 
of pharmacogenomic (i.e., drug, genomic factor and phenotype). Figure 2 presents two additional examples of 

PGxCorpus entity Simple Nested Discont.
Both 
N&D Total

Chemical 1,512 192 2 12 1,718

Genomic_factor 21 68 7 3 99

↳Gene_or_protein 1,685 20 3 0 1,708

↳Genomic_variation 14 37 3 0 54

    ↳Limited_variation 237 537 98 47 919

    ↳Haplotype 15 112 4 6 137

Phenotype 282 330 60 27 699

↳Disease 460 143 14 18 635

↳Pharmacodynamic_phenotype 157 390 60 25 632

↳Pharmacokinetic_phenotype 31 109 14 6 160

Total 4,414 1,938 265 144 6,761

Table 2.  Numbers of entities annotated in PGxCorpus, by type. Because nested and discontiguous (Discont.) 
entities are dealt with differently in our baseline experiments, we report numbers of “simple” annotations, i.e. 
those that are neither nested nor discontiguous. Nested and Discont. refers to annotations that are either nested 
or discontiguous. “Both N&D” refers to entities both nested and discontiguous. Every entity is only counted 
within its most specific type. An entity that appears several times is counted as many times it appears.

isAssociatedWith 733

↳influences 937

↳causes 168

↳decreases 263

↳increases 243

↳treats 238

isEquivalentTo 293

Total 2,875

Table 3.  Numbers of relations annotated in PGxCorpus, by type. Every relationship is only counted once within 
its most specific type.

Fig. 1  Example of sentence annotated with PGx key and composite entities. The key entities, in red, correspond 
to entities retrieved by PubTator. Composite entities, in green, were obtained using the PHARE ontology. The 
syntactic dependency analysis is presented on the bottom of the figure and the entities on top.
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sentences of PGxCorpus. More examples can be browsed at https://pgxcorpus.loria.fr/. All the corpus abstracts 
were published between 1952 and 2017.

PGxCorpus covers a fair part of the domain of PGx and in particular includes 81.8% of the very important 
pharmacogenes (or “VIP” genes) as listed by PharmGKB at https://www.pharmgkb.org/vips. The detailed number 
of occurrences of each VIP gene is in the Supplementary Table S3.

Methods
In this section, we detail the steps of the construction of PGxCorpus, as overviewed by Fig. 3. This construction 
consists in two main phases: (1) the automatic pre-annotation of named entities and (2) the manual annotation that 
encompasses the correction of the pre-annotation and the addition of typed relationships between named entities.

We followed the good practices proposed in26, as well as practical examples provided by EU-ADR, ADE-EXT, 
SNPPhena and other corpora used in NLP shared tasks such as GENIA27, SemEval DDI28. We considered in particu-
lar reports on the MERLOT corpus, which focuses on its annotation guidelines29,30 and inter-annotator agreement31.

Abstract retrieval and sentence splitting.  The very first step consists in retrieving, from PubMed32, 
abstracts of publications related with PGx. This was performed with the tool EDirect33 queried with:

	
(Box 1)

Fig. 2  Two annotated sentences of PGxCorpus. Sentence (a) encompasses a relationship of type influences and 
of modality hypothetical, denoted by the blue color. Sentence (b) is a title, with two annotated relationships. The 
first is a relationship of type influences and of modality hypothetical. It is hypothetical because the title states that 
the paper studies the relation, but not that it is valid. The second relationship is of type causes and annotates a 
nominal group.

Fig. 3  Overview of the construction of PGxCorpus.
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This query aims at retrieving article abstracts concerned with PGx or containing at least one treatment and 
one genetic factor. It has been built by browsing manually the hierarchy of the MeSH vocabulary, which annotates 
PubMed entries. The use of MeSH terms allows PubMed to retrieve articles using synonyms and descendant 
terms of those used in the query. The query was designed to be general in order to retrieve a large set of abstracts 
that might mention PGx relationships.

Every retrieved abstract is subsequently split into its constitutive sentences, using GeniaSS34.

Automated pre-annotation.  To facilitate the manual annotation of PGx relationships, we automatically 
pre-annotate sentences with various types of entities of interest for PGx. This pre-annotation is performed in two 
steps. First, PGx key entities, i.e. Gene, Mutation, Disease and Chemicals, are recognized and annotated with a 
state-of-the-art Named Entity Recognition (NER) tool. Second, these annotations are extended when they are 
contained in the description of a PGx composite entity, such as a gene expression or a drug response phenotype.

Recognition of key PGx entities.  Pre-annotation is initiated using PubTator35, which recognizes the following bio-
medical entities from PubMed abstracts: chemicals, diseases, genes, mutations and species. PubTator integrates 
multiple challenge-winning text mining algorithms, listed in Table 4 along with their performances on various 
benchmark corpora. Disease recognition is performed with DNorm, which uses BANNER36, a trainable system 
using Conditional Random Fields (CRF) and a rich feature set for disease recognition. For genes, GeneTUKit uses 
a combination of machine learning methods (including CRFs) and dictionary-based approaches. For mutations, 
tmVar also uses a CRF-based model with a set of features including dictionary, linguistic, character, semantic, 
case pattern and contextual features. PubTator was chosen for three reasons: it offers a wide coverage of PGx key 
entities; it provides an easy-to-use API to recover PubMed abstracts along with entity types and their boundaries; 
and it includes high performance NER tools.

Extension of the annotations with the PHARE ontology.  The second phase of the pre-annotation consists in auto-
matically extending key entity annotations, when possible, with the PHARE (PHArmacogenomic RElationships) 
ontology7. This ontology encompasses frequent terms that, associated in nominal structure with PGx key entities, 
form PGx composite entities. These terms were obtained by analyzing dependency graphs of nominal structures in 
which a key entity syntactically modifies another term, and in turn were structured in the PHARE ontology. In the 
example provided in Fig. 1, the drug name acenocoumarol syntactically modifies the term sensitivity. According 
to the PHARE ontology, the term sensitivity, when modified by a drug, forms a composite entity that belongs to 
the DrugSensitivity class. Since this class is a subclass of the Phenotype class, acenocoumarol sensitivity may 
also be typed as a Phenotype. Following this principle, annotations of PGx key entities made by PubTator are 
extended, when possible, to PGx composite entities, then typed with classes of the PHARE ontology. To this end, 
the dependency graph of each sentence is constructed with the Stanford Parser37 and in each graph, the direct 
vicinity of key entities is explored during the search for terms defined in PHARE.

To homogenize the types of entities in PGxCorpus, we first defined a reduced set of entities of interest, listed 
in Fig. 4 and then defined mappings from PubTator entities and PHARE classes on one side to the types allowed 
in PGxCorpus on the other side. These mappings are reported in Table 5. Note that we decided to use a type 
Chemical, instead of Drug: first because we rely on PubTator that recognizes chemicals (without distinguishing 
them from drugs), second because it allows to broadly include more candidate entities that may be involved in 
PGx relationships, such as drug metabolites or not yet approved drugs. Furthermore, we decided on a type named 
Gene_or_protein, broader than Gene, because it is hard to disambiguate between gene and protein names in NLP, 
and because it is commonly assumed that the task of gene name recognition is indeed a gene-or-protein name 
recognition38.

Manual annotations.  Before the manual annotation itself, malformed sentences (sentence tokenization 
errors) and sentences that did not contain at least one drug and one genetic factor, according to PubTator or 
PHARE are filtered out.

Out of the remaining sentences, we randomly select 1,897 of them to be manually annotated. The annota-
tion process is realized by 11 annotators, out of which 5 are considered senior annotators. Annotators are either 

Entity type Tool Evaluated on

Performance

P R F1

Chemicals Dictionary-based49 n/a n/a n/a 53.82

Disease DNorm50
NCBI Disease

82.8 81.9 80.9
Corpus

Gene GeneTUKit51
n/a n/a n/a 82.97

GNAT-100 43.0 56.7 48.9

Mutation tmVar52
MutationFinder

98.80 89.62 93.98
Corpus

Table 4.  Performances reported for PubTator. PubTator is the NER tool used during the pre-annotation step of 
PGxCorpus. P, R and F1 stand for Precision, Recall and F1-score, respectively. n/a denotes we were not able to 
find information to fill the cell.
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pharmacists (3), biologists (3) or bioinformaticians (5). Each sentence is annotated in three phases: first, it is 
independently annotated by two annotators (senior or not); second, their annotations are, in turn, compared and 
revised by a third, senior annotator; last, a homogenization phase ends the process.

During the first phase, annotators are provided with sentences and entity pre-annotations. At this stage, they 
correct pre-annotations, add potential relationships between them, and discard sentences which are ambiguous 
or not related to PGx domain. Sentences discarded by at least one annotator are not considered for the second 
phase. During both first and second phases, sentences are randomly assigned to annotators, but we ensure that 
senior annotators only revise sentences they did not annotate in the first phase.

In order to ensure the consistency of the manual annotations, annotators are provided with detailed guide-
lines39. Those describe the type of entities and relationships to annotate (given in Figs. 4 and 5), relationship 
modality (affirmed, negated, hypothetical), the main rules to follow, along with examples. Entity and relationship 
types are organized in simple hierarchies. Some of the relationship types are directly related to PGx (denoted 
by Δ in Fig. 5), whereas some have a broader scope (i.e. isEquivalentTo and treats). Guidelines also provide an 
how-to-use guide for the annotation tool and answers frequently-asked questions. The first version of the guide-
lines was written before the first phase of the annotation. Examples and clarifications were regularly added to the 
document during the first phase of the annotation. Guidelines were subject to an important revision between the 
two first annotation phases, to clarify how to annotate ambiguous cases, which had been raised by annotators or 
by the evaluation of an agreement score between annotators (see Section Inter-annotator agreement).

The final phase of homogenization ends the corpus construction process to reduce the heterogeneity that 
remains in the annotations after the second phase. Two expert annotators review together sentences in two times: 
the first time is a complete pass on all annotated sentences to identify sources of heterogeneity. The second time 
consists in (a) listing sentences associated with each source of heterogeneity using programmatic scripts and 
keywords, (b) reaching a consensus for their annotation, and (c) modifying the annotations accordingly. Sources 
of heterogeneity identified at this stage include: the annotation of drug combinations, of dose-related pheno-
types, of mutation-related cancer types (e.g. p53-positive breast cancer), of behavior-related phenotypes (e.g. drug 
abuse, drug dependence), of genomic factors (e.g. exons, promoters, regulatory regions), of treated conditions 
(e.g. transplantations or post-surgery treatments) and uncommon types of relationships. To address the latter, 
annotations made with uncommon types (i.e. ‘metabolizes’ and ‘transports’) are turned into their upper-level 
type of annotations (i.e. ‘influences’). This explains why ‘metabolizes’ and ‘transports’ types are present in Fig. 5, 
but not in Table 3. We explain the heterogeneity in annotations by the fact that, in some cases, guidelines were 
specific but disregarded by annotators; in other cases they were caused by unexpected examples that were absent 
from the guidelines.

ChemicalGenomic factor Phenotype

Gene/Protein

Haplotype Limited variation

Pharmacokinetic
phenotype

Genomic variation Pharmacodynamic
phenotype Disease

Fig. 4  Types of entities annotated in PGxCorpus and their hierarchy.

Origin Initial type Type in PGxCorpus

PubTator

Chemical Chemical

Disease Disease

Gene Gene_or_protein

Mutation Limited_variation

PHARE

Drug Chemical

DrugMetabolite Chemical

Gene Gene_or_protein

GenomicRegion Genomic_factor

GenomicVariation Genomic_variation

GeneProduct Gene_or_protein

Mutation Limited_variation

Phenotype Phenotype

Table 5.  Mapping between PubTator entities types, PHARE classes and PGxCorpus entity types.
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Data Records
Statistics on the preparation of PGxCorpus.  PubMed has been queried with our initial query (Box 1) 
in July 2017, to retrieve 86,520 distinct abstracts, split out in 657,538 sentences. Statistics of pre-annotations 
obtained with PubTator and PHARE on these sentences are provided in Tables 6 and 7, respectively. After filter-
ing malformed sentences and sentences that do not contain at least one genomic factor and one drug, we obtain 
176,704 sentences, out of which we randomly pick 1,897 sentences that are subsequently manually annotated. 
This number of sentences is chosen in regards to constraints of the distribution of the annotation task. These 
sentences come from 1,813 distinct abstracts.

The first phase of manual annotation, by 11 annotators, took roughly four months. The mean number of sen-
tences annotated by an annotator is 344.73 (standard deviation = 126.33) sentences for this phase. The second 
phase, by 5 senior annotators, took four other months. Each senior annotator revised 258.6 (sd = 0.54) sentences. 
Annotations were made on a voluntary basis, which explains the relatively long length of this process.

Sentences that were clearly not about PGx or that presented obvious problems such as incompleteness, typos 
or ambiguity were asked to be discarded. Accordingly, annotators discarded 952 sentences out of the 1,897 ran-
domly picked, leaving 945 sentences. The main reason for those discards was the scope of sentences. A typical 
example is the large number of sentences about genetic therapies annotators had to discard, since those also con-
tain both a drug and a gene name and then were selected according to our filtering criteria.

Technical Validation
In this section we present an inter-annotator agreement analysis and results of a baseline experiment of relation 
extraction where PGxCorpus is used as the training set of a neural network model.

Inter-annotator agreement.  Metrics.  The annotation task considered for PGxCorpus is particularly rich: 
it employs 10 entity types, 9 relation types and 3 relation modalities (sometimes named attributes); in addition, 
entities may be nested or discontiguous. Given this richness, metrics to control the variability of the annotations 

increases

influences

decreasescauses metabolises

isEquivalentToisAssociatedWith

transports

treats

Fig. 5  Types of relationships annotated in PGxCorpus and their hierarchy. Types directly related to PGx are 
marked with Δ, wheras isEquivalentTo and treats have a broader scope.

PubTator entity Number recognized

Chemical 90,816

Disease 125,487

Gene 196,460

Mutation 25,417

Table 6.  Type and number of entities recognized by PubTator in the pre-annotation.

PHARE entity Discontiguous All

Chemical 430 87,764

Disease 0 29,589

Gene_or_protein 4,690 10,1326

Genomic_variation 8,698 13,601

Phenotype 10,935 16,770

Table 7.  Number of entities pre-annotated after extending PubTator annotation with the PHARE ontology. 
Because discontiguous entities are excluded from our baseline experiments (see Section Technical Validation), 
their number is specified. No disease entity is discontiguously annotated first because PubTator is not 
generating discontiguous annotation, and second because the extension of annotations with PHARE (which 
may be discontiguous) is not producing disease annotations, but phenotype annotations.
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have been evaluated, in particular at the end of the first phase of the manual annotation, when each sentence has 
been annotated independently by two annotators. We compute an agreement score that evaluates how much 
annotators agreed with each others using the F1-score, following40,41. In this case, the agreement or F1-score, is 
measured using one annotator as a reference and the other as a prediction. Note that inverting the reference and 
the prediction only inverts the precision and the recall but has no effect on the F1-score itself. We preferred the 
F1-score instead of other conventional measures such as the kappa coefficient42 because of the complexity of our 
annotation task. Kappa coefficient is designed to evaluate inter-annotator agreements while taking into account 
the probability that the agreement might be due to random guess. It is adapted when annotators select a category, 
out of a set, to annotate already marked-up entities. Then, the larger the set is, the less probable an agreement 
occurs by chance. In our case, the annotators not only need to select a category, but also to identify the boundaries 
of these potential entities. In this setting, the probability of a by-chance agreement within the kappa coefficient is 
low and unadapted. The F1-score is defined as the harmonic mean of the precision 

+( )true positive
true positive false positive

 and 

recall 
+( )true positive

true positive false negative
, i.e. = × ×

+
‐F1 score 2 precision recall

precision recall
.

Entity agreement.  Agreement on entity annotations is determined in four ways, in regards to two parameters: 
(a) using exact or partial match; (b) considering the entity hierarchy or not.

	(a)	 An exact match occurs when two annotators agree on both the entity type and their boundaries. A partial 
match is more flexible since it occurs when two annotators agree on the entity type, but annotation bound-
aries only overlap. Note that an annotation from the first annotator may overlap with multiple annotations 
from the second annotator, and vice versa. Considering every overlapping entities as a match would arti-
ficially increase the recall and the precision because only one can indeed reflect an agreement between the 
two annotators. We ensure in this case that an entity from the first annotator is matched with at most one 
entity from the second annotator using the Hopcroft-Karp algorithm43. In this case, the problem is seen as 
a maximum matching problem in a bipartite graph, where each set of annotations, one for each annotator, 
represents a sub-graph. The edges between the two sets represent possible overlaps between one annotation 
from the first annotator and another from the second.

	(b)	 We also consider a more flexible setting where the agreement takes into account upper hierarchies of 
entities and relationships, as defined in Figs. 4 and 5. For instance, if a first annotator annotates an entity 
as Pharmacokinetic phenotype (PK) and a second as Pharmacodynamic phenotype (PD), we consider they 
agreed to some extent, since both are subtype of Phenotype. In this setting, it can be considered that an 
entity (or relationship) is indeed annotated with several types: the one specified by an annotator and its 
parents in the hierarchy. In practice, if we consider the first annotator as the reference and the second as 
the prediction, we can distinguish three cases: (1) The prediction is more specific than the reference. In this 
case, common annotations shared by reference and prediction are counted as true positives, while anno-
tations of the prediction that are too specific are false positives. For instance if the reference is Phenotype 
and the prediction is PD; we count one false positive in the evaluation of PD predictions, but the addi-
tional Phenotype annotation, inferred from the hierarchy, enables to count one true positive for Phenotype 
predictions. (2) The prediction is less specific than the reference. In this case, common annotations shared 
by reference and prediction are counted as true positives, while classes from the reference that are missed 
by the prediction are false negative. For instance if the reference is PD and the prediction is Phenotype, we 
count one true positive for Phenotype prediction, but one false negative in the prediction of PD. (3) The 
reference and the prediction do not have a direct hierarchy relationships, but a common ancestor (like PD 
and PK). In this case classes that are shared by the prediction and reference (i.e. the common ancestors) are 
counted as true positive, but too specific predictions are counted as false positives and missed predictions 
are counted as false negatives. For instance if the reference is PD and the prediction is PK, we count one true 
positive for the prediction of Phenotype (i.e. the only common ancestor), one false positive for the predic-
tion of PK and one false negative for the prediction of PD.

Table 8 presents the inter-annotator entity agreement scores, obtained after the first phase of manual anno-
tation, depending on settings (a) and (b). We observe that for relatively simple entities such as chemicals, genes, 
haplotypes or diseases, F1-score overpasses 70%, even on the strictest constraints (exact match, no hierarchy). We 
also observe that for more complex entities such as phenotype or genomic variations, annotators tend to agree on 
the presence of an entity, but not on its offset. This lead to some very low agreement. This motivates us to update 
the annotation guidelines between the two annotation phases, to clarify on how to decide on entity offsets. For 
instance it was clarified that adjective qualifying phenotypes should not be annotated, except if they are part of 
the name of the disease or symptom, but not if they simply qualify its localisation or gravity. Accordingly when 
encountering “acute pain” annotators should not annotate acute but only pain; whereas encountering “Acute 
Myeloid Leukemia”, a specific family of leukemia, annotators have to annotate all three words. When considering 
the hierarchy, the performances for the leaves of the hierarchy should not be affected. However, a slight drop 
is observed due to the use of the Hopcroft-Karp algorithm. Indeed, when using the hierarchy more potential 
matches can be observed between prediction and reference annotations which generate more edges in the asso-
ciated bipartite graph. The Hopcrof-Karp algorithm then removes some of the correct matches between leaves, 
causing a slight drop in the recall.

Relation agreement.  Regarding the inter-annotator agreement on relation annotations, we consider the same 
two settings, plus an additional one: (a) using exact or partial match, which applies in this case to the two entities 
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involved in the relation; (b) the consideration of the hierarchy, which applies in this case to both the hierarchy of 
entities and relations (see Figs. 4 and 5); (c) whether the direction of the relation is considered or not. Resulting 
agreements are presented in Table 9.

Although the agreement on the relations is low, note that a relation can be considered correct only if an initial 
agreement on the two entities in relation has been reached.

Pre-annotation correction.  To evaluate how much annotators had to correct the automatically computed 
pre-annotations, we measured an agreement score between automatic pre-annotations and final annotations. Just 
like for the inter-annotator agreement, this is computed in the form of an F1-score. In this case, the final anno-
tation is considered as the gold standard, and the F1-score measures how automatic pre-annotation performs 
in regards to the final annotation ground truth. Table 10 presents F1-score agreements in four distinct settings, 
which allows to consider how much the boundaries or the type of pre-annotations (or both) needed corrections. 
The precision of 94.1% when boundaries and type are relaxed means that pre-annotations point at offsets where 
something is indeed to annotate (94.1% of the time). The relatively low recall in the relaxed setting (64%) illus-
trates the amount of fully new annotations added by annotators. When considering stricter setting, with an exact 
match or a same type or both we observe that precision is getting lower, illustrating that entity boundaries and 
types frequently require corrections. Note that this agreement is only relevant for named entity, but not for rela-
tions because the latter are not pre-annotated, but fully done manually.

Baseline experiments.  In this section, we report on baseline experiments with PGxCorpus, which quan-
titatively evaluate its usefulness for extracting PGx entities and relations from text. The task evaluated here is 
composed of a first step of named entity recognition (NER) and a second one of relation extraction (RE). The 
NER is achieved with a variant of a Convolutional Neural Network (CNN) model, whereas the RE is processed 
with a multichannel CNN (MCCNN). Both models are detailed in the Supplementary Methods section of the 
Supplementary Material. Source code of the experiments is available at https://github.com/practikpharma/
PGxCorpus/.

Entity matching: (exact or partial) exact exact partial partial

Considering hierarchy: (yes or no) no yes no yes

Chemical 76.8 76.8 82.1 82.1

Genomic_factor 38.6 72.6 38.8 85.7

↳Gene_or_protein 85.3 85.3 90.0 89.4

↳Genomic_variation 32.9 49.3 53.0 76.8

   ↳Limited_variation 50.8 50.8 69.0 66.2

   ↳Haplotype 76.2 76.2 77.2 76.1

Phenotype 30.5 51.0 53.9 72.6

↳Disease 71.3 71.0 80.9 79.1

↳Pharmacokinetic_phenotype 48.2 48.2 57.0 57.0

↳Pharmacodynamic_phenotype 31.7 31.7 47.0 47.0

Macro average 57.4 63.8 68.7 76.1

Table 8.  Inter-annotator agreement (F1-score) for entity annotations. Four different settings enabling more or 
less flexibility are presented. The agreement score is computed after the first phase of manual annotation.

Entity matching: exact exact partial partial partial

Considering hierarchies: none both none both both

Considering direction: yes yes yes yes no

isAssociatedWith 12.6 14.3 13.2 33.3 33.3

↳influences 12.8 12.8 17.7 29.3 29.8

   ↳causes 35.8 35.2 37.6 37.2 39.6

   ↳decreases 25.8 26.8 33.6 36.7 36.7

   ↳increases 14.5 15.6 27.4 30.2 30.2

   ↳metabolizes 59.0 59.0 61.5 61.5 61.5

   ↳transports 83.1 83.1 83.1 83.1 83.1

↳treats 33.2 34.7 36.3 37.3 37.3

isEquivalentTo 39.6 40.2 40.7 41.3 62.5

Macro average 47.3 47.1 50.3 53.8 57.0

Table 9.  Inter-annotator agreement (F1-score) for the annotation of relations. Five different settings are 
presented.
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In a related work44, we used a preliminary, partial and naive set of annotations to test the feasibility of extract-
ing relations and incorporating them in a knowledge network. This included only 307 sentences (out of 945), 
annotated with a simplified schema of only 4 entity types and 2 relation types. The associated model for RE was 
simplistic, since it only aimed at empirically demonstrating feasibility. The baseline experiment reported here 
considers all sentences of PGxCorpus and has been done with more advanced annotation schema and models.

Baseline performances.  The objective of these experiments was not to reach the best performances but rather to 
propose a baseline for future comparisons, as well as to empirically demonstrate the usefulness of PGxCorpus for 
extracting PGx entities and relations from text.

Named entity recognition.  Performances for the named entity recognition experiments, evaluated with a 10-fold 
cross validation, are reported in Table 11. A main limitation of the NER model is that discontiguous entities were 
not considered. This may hurt the performance even for contiguous entities since discontiguous entities were 
considered as negative, even though they might be very similar (from the model point of view) to contiguous 
entities.

Several observations can be made from the results reported in Table 11. First, the best performances were 
obtained for Chemical, Gene_or_protein and Disease types, for which (1) the number of training samples is high, 
(2) PubTator annotations are available and (3) the ratio between normal entities and nested and/or discontig-
uous entities is low (see Table 2). Note that the definition for the Limited_variation entity used in our corpus 
is broader than the Mutations recognized by PubTator. PubTator recognizes precises descriptions of variations 
such as “VKORC1:C > A”, but not general ones such as “a VKORC1 polymorphism”, which we consider. This 
explains why the performances obtained for Limited_variation were lower than those obtained with PubTator 
(see Table 4). Even though the number of training samples for Pharmacokinetic_phenotype and Haplotype is low, 
we obtained reasonable performances. This may be due to a rather homogeneous phrasing and syntax whenever 
these entities are mentioned. Not considering the hierarchy in cases like Genomic_variation or Genomic_factor 
types for which few training samples are available and a high heterogeneity is observed led to poor performances. 
Lastly we note that, as expected, the standard deviation for classes with only few examples annotated was high 
or very high (above 19 for Haplotype and Pharmacokinetic_phenotype). The random distribution of these “rare” 
examples between train and test sets, in the 10-fold cross validation, had a strong impact on performances, and 
explains large standard deviations. Concerning concepts that are leaves of the hierarchy, we observed a slight 
drop in performances when considering the hierarchy. This is due to the use of the Hopcroft-Karp algorithm as 
mentioned in the Entity agreement Subsection.

Relation extraction.  Performances for the relation extraction (RE) experiments, evaluated with a 10-fold cross vali-
dation, are reported in Table 12. The RE model faced several limitations. (1) For a given sentence along with identified 

Entity matching: Exact Exact Partial Partial

Type matching: same type
potentially 
different same type

potentially 
different

F1-Score (P;R) 54.2 (66.9;45.5) 59.0 (72.9;49.6) 64.4 (79.6;54.1) 76.2 (94.1;64.0)

Table 10.  Agreement (F1-score) between pre- and final annotations. This agreement evaluates the amount of 
manual corrections that was required after the automatic pre-annotation phase. Precision (P) and recall (R) are 
given between parenthesis.

Entity matching: (exact or partial) exact exact partial partial

Considering hierarchy: (yes or no) no yes no yes

Chemical 76.07 76.07 82.67 82.67 (7.24)

Genomic_factor 22.86 71.41 27.68 83.19 (5.90)

↳Gene_or_protein 85.72 85.72 90.58 90.05 (3.89)

↳Genomic_variation 2.67 49.13 3.83 71.18 (9.55)

    ↳Limited_variation 47.08 47.02 72.71 71.57 (9.50)

    ↳Haplotype 66.97 66.97 72.47 72.47 (19.34)

Phenotype 31.76 50.80 48.48 69.57 (5.40)

↳Disease 66.90 66.88 75.68 72.59 (7.30)

↳Pharmacokinetic_phenotype 29.30 29.30 36.47 36.27 (19.40)

↳Pharmacodynamic_phenotype 38.54 38.50 58.84 58.18 (10.11)

Macro average 49.15 59.11 59.76 71.93 (5.64)

Table 11.  Performances of the task of named entity recognition in terms of F1-score (and its standard deviation 
in brackets, for the last setting). Balance between precision and recall, as well as details on standard deviations 
are provided in Supplementary Table S1.
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entities, the relation predictions were independent. This is obviously too simplistic and the prediction should be made 
globally. (2) We considered relationships annotated as negated or hypothetical by annotators like regular relationships.

Several observations can be made about the RE results reported in Table 12. First, the fact that the model had 
to deal with multiple, complex and associated classes made the classification problem difficult and the perfor-
mances relatively low. The experiment in which we considered the hierarchy showed that, even if it was difficult to 
identify a specific type of relation, is was easier for the model to determine whether there was a relation between 
two entities or not. In other words, many mis-classifications were in fact predictions for types that belong to the 
same branch of the hierarchy. Like for the NER, types of relations with less examples tended to be associated with 
poorer performances and higher standard deviations (except for the isEquivalentTo relationship, which is very 
homogeneous). To build upon these observations, and particularly to avoid the impact of isEquivalentTo type 
that is not specific to PGx, we evaluated how PGxCorpus can be used to train a model for any relation specific to 
PGx (denoted with Δ in Table 12), without considering sub-types nor the hierarchy. Results of this experiment is 
provided on the last line of Table 12.

Several enhancements could be proposed to improve this baseline model. First, in our implementation, the 
hierarchy was not considered during the training phase. Accordingly, learning to predict a leaf penalized all the 
other categories, even those that were considered correct at test time. This explains why the “PGx Relations only” 
experiment led to better performances than individual classifications with or without hierarchy. On the other 
hand, considering the hierarchy at training would increase the number of examples for the higher categories 
of the hierarchy, potentially harming performances for the leaves. A model enabling multiclass labeling and a 
weighting dependent on the size of classes should balance this bias.

Building upon PGxCorpus.  We assembled a manually annotated corpus for pharmacogenomics, named 
PGxCorpus, and provide an experimental validation of its usefulness for the tasks of NER and RE in this domain.

Unlike existing corpora, PGxCorpus encompasses all three key entities involved in PGx relationships (drugs, 
genomic factors and phenotypes) and provides a fine-grained hierarchical classification for both PGx entities and 
relationships. By making this corpus freely available, our objective is to enable the training of supervised PGx rela-
tion extraction systems and to facilitate the comparison of their performances. Furthermore, the baseline experiment 
illustrates that PGxCorpus allows the study of many challenges inherent with biomedical entities and relationships 
such as discontiguous entities, nested entites, multilabeled relationships, heterogenous distributions, etc. In particu-
lar, PGxCorpus offers both a training resource for supervised approaches and a reference to evaluate and compare to 
future efforts. Out of PGx, such a corpus may serve connected domains by the use of transfer learning approaches, as 
illustrated by45. For all these reasons, we think that the tasks of PGx NER and RE, supported by the novel existence of 
PGxCorpus, are well suited for proposing NLP Challenges and shared tasks. By this mean we expect that PGxCorpus 
will stimulate NLP research as well as facilitate the synthesis of PGx knowledge.

Usage Notes
PGxCorpus is made available under the Creative Commons Attribution 4.0 International Public License 
(CC-BY). The programmatic code of our baseline experiments is available at https://github.com/practikpharma/
PGxCorpus/tree/master/baseline_experiment.

Data availability
PGxCorpus is available in the BioNLP shared task file format46 at three locations:

•	 figshare, an open access data repository47

•	 A BRAT server48, enabling a user friendly online visualization of the annotations: https://pgxcorpus.
loria.fr/

•	 A Git repository of the whole project that also includes the annotation guidelines and programmatic 
code of the baseline experiments presented in Technical Validation https://github.com/practikpharma/
PGxCorpus/.

Considering hierarchies: (yes or no) no yes

is Associated WithΔ 30.89 51.71 (4.02)

↳influencesΔ 36.55 46.45 (5.17)

    ↳causesΔ 41.91 41.91 (13.35)

    ↳decreasesΔ 29.47 29.47 (9.85)

    ↳increasesΔ 17.94 17.94 (15.20)

↳treats 39.97 39.97 (12.60)

isEquivalentTo 79.76 79.76 (7.69)

Macro average 45.67 49.56 (4.51)

PGx relations only(Δ), no hierarchy 54.04 (3.31)

Table 12.  Performances of the task of relation extraction in terms of F1-score (and standard deviation). The last 
line provides results of an experiment for which only one category is considered, merging all the types specific 
to PGx (marked with Δ). For leaves, performances are unchanged when considering the hierarchy. Balance 
between precision and recall, as well as details on standard deviations are provided in Supplementary Table S2.
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Code availability
A Git repository of the project is accessible at https://github.com/practikpharma/PGxCorpus/. It includes the 
annotation guidelines, the corpus itself and the programmatic code of the baseline experiments presented in 
Technical Validation.
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