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Abstract

Secondary analysis solidifies and expands upon scientific knowledge through the re-analysis of existing datasets. However,
researchers performing secondary analyses must develop specific skills to be successful and can benefit from adopting
some computational best practices. Recognizing this work is also key to building and supporting a community of
researchers who contribute to the scientific ecosystem through secondary analyses. The Research Parasite Awards are one
such avenue, celebrating outstanding contributions to the rigorous secondary analysis of data. As the recipient of a 2019
Junior Research Parasite Award, I was asked to provide some perspectives on life as a research parasite, which I share in this

commentary.

Introduction

In sharp contrast with some unfounded fears that open data will
lead to the rise of “research parasites” [1], publicly available raw
data adds substantial value to scientific research, allowing re-
searchers to ask and answer new questions and to test hypothe-
ses in silico without the need for costly new studies. In my PhD
work, I performed a meta-analysis of 28 gut microbiome stud-
ies, where I downloaded and reprocessed raw sequencing data to
look at patterns of associations between the gut microbiome and
10 different diseases [2]. When I first embarked on this project,
I thought it would be straightforward to use existing data to an-
swer some low-hanging-fruit questions in my field. But I soon
learned that performing a meta-analysis is more than a “stamp
collection” endeavor and is rather a unique, difficult, and valu-
able contribution to the field [3]. As the recipient of the 2019 Ju-
nior Research Parasite Award, I was recognized for my contribu-
tion to the rigorous secondary analysis of microbiome data and
given this opportunity to share some of the lessons I learned [4].

Research Parasites Are Data Detectives

First, a research parasite must become a data detective. While
databases and search engines ease the process of finding data,

identifying a comprehensive list of datasets for niche research
questions remains challenging. In my meta-analysis, I learned
to supplement my database searches by chasing down refer-
ences from papers and reviews. I became skilled at scrutiniz-
ing papers to find links to raw data and metadata, information
that was often scattered throughout the paper and supplement.
I eventually gained some intuition: if a ctrl-F for certain data-
related keywords was not fruitful, I knew I should probably go
ahead and email the authors. But even that required detective
work in order to find up-to-date email addresses and, at times,
contact information for the first author, who might be more in-
clined to reply to my email. Through every step of the process,
I learned to notice strategic details and scour available informa-
tion for any clues that might help me find what I needed.

Data Without Metadata Is Useless

Without all of the relevant technical and clinical metadata, it is
impossible to re-analyze data and the entire dataset becomes
useless. As a parasite, I identified 3 broad types of dataset-
related metadata: (i) metadata linking the raw data IDs (e.g.,
file names, SRA run IDs) to their corresponding sample IDs, (ii)
metadata containing technical processing information (e.g., se-
quencing barcodes, sample replicate number, sampling date),
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Figure 1: Timeline of the creation of the Research Parasite Award, which recognizes exemplary data reuse, considering in particular that the ideal parasite does not
kill its host.
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Figure 2: Data and metadata components required for a successful re-analysis. (A) Raw sequencing data are usually labeled with an SRR Run ID or other processing ID.
Raw data rarely contain information about the processing steps applied, and the research parasite must use other information to determine what processing needs to
be done. (B) Technical metadata connect file names to the respective sample ID and may also have other technical information such as primer and barcode sequences.
In cases in which the raw sequencing data have not been separated into sample-wise files, barcodes are required to map sequences to samples. These are often
the most difficult data to find. (C) Finally, study-related metadata are required to re-analyze samples. Metadata directly related to the analysis question are always
necessary (i.e., disease status), but other metadata such as subject ID, sampling day, and replicate may also be required to ensure that proper statistical comparisons
are being made.

and (iii) biological or clinical metadata (e.g., disease status, tis- primers or barcodes, making educated guesses about disease
sue type). Here also, there are many tricks to learn, e.g., look- status from sample IDs, and looking in all the nooks and cran-
ing at raw sequencing data to infer the presence or absence of nies of SRA or ENA sample descriptors.



As research parasites, we make mistakes and need to start anal-
yses over from scratch many times. Intentional project and file
organization can ensure that starting over is not a catastrophe
each time. More specifically, separating source code from the
data and producing intermediate files for each step of an analy-
sis is key to unlocking parasitic productivity [5, 6]. Clear project
organization makes it easier to remember what different files
are, to implement automated pipeline workflows, and to write
parallel and modular scripts.

In a way, README files are a research parasite’s lab notebook.
Re-analyzing other people’s datasets often means long and con-
voluted paths from raw data to insight. It is important to docu-
ment every step along this path: how the data were downloaded
and processed, including any strange things that happened and
why certain decisions were made; how the scripts and data are
organized and where all the (raw) data live; and how others can
use or build upon what has been done.

As a research parasite, the most likely beneficiary of thor-
ough documentation is future-you, checking your work before
submission, looking for code to do something you know you
have already figured out, or going back to answer a question
that woke you up in a cold sweat at 2:00 a.m. This was a lesson
learned the hard way for me: I remember going back to finalize
processing on datasets I had downloaded >1 year prior, and not
finding any clues from myself to indicate what I had done. In all
of these cases, it was faster to re-download the data from scratch
than to time-travel into the past and remember what I had been
thinking.

In my opinion, the most revolutionary parasitic tactic of all is
pipelining workflows with Makefiles. Broadly, Makefiles contain
all of the instructions to reproduce every part of an analysis and
are usually paired with a software program that reads the in-
structions in the Makefile to automatically rerun all parts of the
analysis that need to be updated (Figure 4) [7, 8]. Makefiles are
incredibly useful because they enable the remaking of an entire
analysis and—more importantly—they are by definition a docu-
mentation of all the steps taken. They quite literally answer the
question, “wait, how did I do that again?”

Makefiles also make the review process much easier, sav-
ing time and freeing research parasites from tedious time-
consuming details. With a Makefile, it is easy to go back, find,
and double-check individual steps in an entire analysis, as op-
posed to digging through folders of spaghetti code without guid-
ance. Adding new analyses also becomes easier, as new scripts
can be seamlessly plugged into the Makefile, using intermediate
analysis files already created from other steps in the workflow.
And most importantly, Makefiles take care of the details, auto-
matically updating figures and tables when their underlying in-
puts change, saving research parasites many hours of tedious
detail-checking.

Documentation and pipelining are two manifestations of an im-
portant philosophy that is crucial to the research parasite’s suc-

cess: implementing best practices in computational research is
an act of radical self-love. Acting in self-love means approach-
ing all decisions not for current-you, but instead for the person
who will bear the consequences of your decisions: future-you,
long after you have forgotten anything you thought today. It is
not possible to enumerate all of the possible best practices or
even to identify which ones are practical to implement as PhD
students, but I found that as long as I made decisions for future-
me rather than only current-me, my life as a parasite drastically
improved.

Throughout my PhD work, I realized that being a parasite is not
just about data: developing software tools that encourage non-
bioinformaticians to analyze their own datasets is also key to
a future where secondary analyses are the norm. In the micro-
biome field, we have seen a recent development of incredibly ac-
cessible bioinformatics tools that democratize access to compu-
tational analyses [9]. I hypothesize that these easy-to-use analy-
sis tools have contributed to an increase in non-specialists gen-
erating microbiome sequencing data.

For example, many microbiome-related clinical trials now in-
clude microbiome analyses as secondary end points or to raise
the impact of a study. These analyses would be inaccessible
without the easy-to-use software being developed by the com-
putational microbiome community. Interestingly, these studies
rarely dive into the full potential of their data because they are
focused on their primary clinical end points. That leaves a lot of
room for research parasites to come in and ask different ques-
tions of those datasets, which I think is a great by-product of
developing accessible software suites.

Finally, the biggest lesson I learned from my life as a parasitic
PhD student was humility. As a research parasite, I found it easy
to get self-righteous and angry whenever the data or metadata
are not easily accessible, but at the end of the day it is not pro-
ductive. Especially as junior PhD students, we must recognize
that what we view as just additional N’s in our analyses, clin-
icians see as real people who gave their time and samples to
advance research, and in some cases, as patients who can be
deeply suffering.

Humility and empathy are also important to recognize that
while we stand on our soapboxes advocating for open and re-
producible science, it is actually really difficult to do well. An
example is data sharing: parasites might like to grumble at how
hard it is to find and download raw data, but depositing data
is itself a complicated process. Data generation is a collabo-
rative, lengthy process, and the person depositing the data is
rarely involved in every step of the data generation. Even af-
ter downloading and processing these 28 datasets, I myself was
incredibly confused when I needed to deposit data for a differ-
ent project that I worked on, and I am sure I missed some impor-
tant information that will make a future parasite grumble her-
self. Thus, not only do we need to require data sharing, but we
also need to make it easier, more accessible, and more amenable
to improvements and feedback, in addition to encouraging and
rewarding those who do share their data (e.g., like the Research
Symbiont Award [10], a partner to the Research Parasite Award).
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Raw data, which should never be
changed, no matter how messy it
is. Raw data = outputs of the
bioinformatics data processing,
e.g. the original OTU table.
Intermediate data that has
been cleaned up, e.g. OTU
table with low QC samples
removed.

analysis Outputs from analyses (e.g.
beta diversity, p-values, etc)

— Makefile
F—— README . md <- Every project must have a README

e

describing what the project is,
and orienting visitors to its
contents.

|
|
|
|
F—— data Input data and intermediate
files (e.g. processing output, data Code used to wrangle and
analysis results, etc) used to clean data.
analyze your data and make your exploration Jumble of iPython notebooks
figures. For a microbiome project, with preliminary work. Label
this might be the OTU tables (if these by date + brief description.
they’ re small enough files), analysis Scripts used to produce files
QIIME 2 outputs, metadata excel in data/analysis/. For the most
files, phylogenetic trees, etc. part, Makefile calls these.
figures Scripts to make figures.
<- All code: scripts, notebooks, etc. wiealdl If you want, files with commonly
re-used functions
<- Final figures, supp files, tables.

F—— final
F—— figures Where you save final png's,
| also pushed to GitHub if you want.
|— tables If you're feeling ambitious,
| markdown versions of tables
L supp files Files that would otherwise be
supplementary Excel files

Figure 3: A sample project structure, adapted from Cookie Cutter Data Science [5] for my meta-analysis. In microbiome projects, operational taxonomic unit (OTU)
tables are the feature tables that result from processing raw sequencing data, and that serve as the input to all analyses. (A) Overall project structure; (B, C, and D)
individual folder structures. QC: quality control.
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Figure 4: Schematic of a subset of the steps involved in the workflow for my meta-analysis. Each box contains a description of the data or analysis at that step,
and arrows indicate progression through the analysis workflow. Box color indicates respective location in the project structure. Dependencies between input data,
intermediate files, and scripts are encoded in the Makefile, which automatically reruns any necessary steps when input data or files are updated. For example, if the
script to perform univariate steps is updated, all steps that depend on that box get rerun and updated; i.e., Figs 1, 2, and 3a are all remade. In contrast, if the code to
run the random forests is updated, only Figs 1 and S1 are updated. AUC: area under the ROC curve; ROC: receiver operating characteristic.



And as we are doing our parasitic research, we need to keep in
mind that we are just one small part of an entire ecosystem, and
that as parasites, we depend on our hosts to survive.

The 2020 Research Parasite Award will again be held at the Pacific
Symposium on Biocomputing and will be presented on 5 January
2020 at the Fairmont Orchid on the Big Island of Hawaii. As pro-
moters of data sharing GigaScience has each year sponsored the
Junior Parasite Award for postdoctoral, graduate, or undergrad-
uate trainees and is again proud to support the award with a
travel grant. For more see the Research Parasite Awards website,
https://researchparasite.com/.

AUC: area under the curve; ENA: European Nucleotide Archive;
ROC: receiver operating characteristic; SRA: Sequence Read
Archive.
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