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Abstract

Introduction—Reliable in situ diagnosis of diminutive (≤ 5 mm) colorectal polyps could allow 

for “resect and discard” and “diagnose and leave” strategies resulting in one billion dollars in cost 

savings per year in the U.S. alone. Current methodologies have failed to consistently meet the 

Preservation and Incorporation of Valuable endoscopic Innovations (PIVI) initiative thresholds. 

Convolutional neural networks (CNN) have the potential to predict polyp pathology and achieve 

PIVI thresholds in real-time.

Methods—We developed a CNN-based optical pathology (OP) model using Tensorflow and pre-

trained on ImageNet, capable of operating at 77 frames per second. 6223 images of unique 

colorectal polyps of known pathology, location, size, and light source (white light [WL] or narrow 

band imaging [NBI]) underwent 5-fold cross training (80%) and validation (20%). Separate fresh 

validation was performed on 634 polyp images. Surveillance intervals were calculated, comparing 

OP vs. true pathology (TP).

Results—In the original validation set, the negative predictive value (NPV) for adenomas was 

97% among diminutive rectum/rectosigmoid polyps. Results were independent of use of NBI or 

WL. Surveillance interval concordance comparing OP and TP was 93%. In the fresh validation set, 

NPV was 97% among diminutive polyps in the rectum and rectosigmoid and surveillance 

concordance was 94%.

Conclusion: This study demonstrates the feasibility of in situ diagnosis of colorectal polyps 

using CNN. Our model exceeds PIVI thresholds for both “resect and discard” and “diagnose and 
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leave” strategies independent of NBI use. Point-of-care adenoma detection rate and surveillance 

recommendations are potential added benefits.
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INTRODUCTION

Colorectal cancer (CRC) is the 2nd leading cause of cancer deaths in the United States [1]. 

The majority of colorectal cancers start as benign precancerous polyps, such as adenomas 

[2]. Colonoscopy remains the gold standard for finding adenomas and is the only 

intervention capable of removing adenomas short of surgery. The National Polyp Study 

(NPS) showed that 70%-90% of colorectal cancers are preventable with polyp removal [3]. 

The same NPS colonoscopy cohort had a 53% decrease in CRC mortality compared to the 

SEER population, in whom an unknown percentage had colonoscopy [2].

Approximately 80% of polyps removed during colonoscopy are diminutive (≤ 5 mm) and 

rarely demonstrate advanced pathology [4]. Among 36,107 diminutive polyps in a large 

prospective database, only 0.3% of colonic polyps demonstrate high grade dysplasia and 

none were cancers [5][6]. Pathologic analysis of diminutive polyps contributes $1 billion 

annually to colonoscopy costs in the United States [7]. A reliable means to ‘optically’ 

diagnose diminutive polyps in situ could allow for “resect and discard” and “diagnose and 

leave” strategies resulting in significant cost savings, while also providing surveillance 

interval recommendations and calculation of adenoma detection rate (ADR) at point of care.

In 2011, the American Society for Gastrointestinal Endoscopy (ASGE) initiative titled 

“Preservation and Incorporation of Valuable endoscopic Innovations” (PIVI), developed 

performance thresholds required to “resect and discard” and/or “diagnose and leave” 

diminutive polyps [8]. “Resect and discard” requires an optical biopsy system with >90% 

concordance in recommended surveillance intervals compared to true histology for all 

diminutive polyps throughout the colon [8]. “Diagnose and leave” applies to diminutive non-

adenomatous polyps in the rectosigmoid and requires > 90% negative predictive value 

(NPV) for adenomas. Numerous attempts have been made to reach both PIVI thresholds 

however these studies have had a number of limitations.

Deep machine learning has the potential to diagnose colorectal polyps in situ and meet 

optical biopsy PIVI criteria independent of setting, operator motivation, skill or training. Our 

goal was to create a deep learning algorithm capable of in situ diagnosis of diminutive 

colorectal polyps and to test its performance against PIVI thresholds under both NBI and 

white light (WL) without uninterpretable “low confidence” polyps.

METHODS

Colonoscopy and Polyp Image Dataset

We utilized an anonymized version of our prospectively collected Colonoscopy Quality 

Database inclusive of all GIQuiC quality measures (GI Quality Improvement Consortium, 
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Ltd.), polyp location, size, morphology, and linked images. The database includes over 

180,000 polyp and non-polyp images acquired from Olympus 190 (90%), Olympus 180 

(7%) -and Pentax i10 series colonoscopes (3%). The polyp images are categorized by light 

source (WL vs NBI) and image quality (excellent, adequate, poor). Only adequate-to-

excellent quality polyp images linked to specimens with a single pathology were included. A 

total of 6223 high quality images of unique diminutive polyps (one image per polyp) with 

known unique pathology were identified.

Convolutional Neural Network Architecture

We developed and designed our CNN model architecture from two primary modules: 

Feature Extraction and Classification. The ‘base’ module of our algorithm is responsible for 

automated feature extraction and borrows from the Inception-ResNet-v2 algorithm 

developed by Google AI that achieves “state-of-the-art” accuracy on popular image 

classification benchmarks. The ‘head’ module of our algorithm is designed for transforming 

extracted features from the base layers (50mm+ parameters) into a graded scale that allows 

for pathologic classification. The sigmoid activation function maps the model’s output logits 

into a float value ranging between 0 - 1. An Nvidia Gtx 1070 GPU was used for algorithm 

development. Running inference on a frame requires 13 ms (77 frames per second), 

essentially ‘real time’.

Binary Classification: Adenomatous vs Serrated Lesions

We developed a binary CNN classifier consisting of: 1) adenomatous polyps (tubular 

adenoma, tubulovillous adenomas, villous adenomas and flat adenomas); vs 2) serrated 

polyps (hyperplastic and sessile serrated polyps). Our rationale for using this binary 

classification was based on three factors:

1. the vast majority of colorectal polyps can be categorized as either adenomas or 

serrated lesions [9];

2. pathologists (our “ground truth”) demonstrate excellent agreement distinguishing 

adenomatous versus serrated polyps but have fair to poor agreement separating 

hyperplastic polyps (non-neoplastic/surveillance-irrelevant lesions [SILs]) and 

sessile serrated polyps (precancerous/surveillance-relevant lesions [SRLs]) [10];

3. there were insufficient numbers of other polyp types in our data set to develop a 

robust “multiclass” model.

After excluding 945 images of polyps that did not meet our binary classification, the training 

dataset consisted of 5278 diminutive polyp images (3310 adenomatous polyps and 1968 

serrated polyps).

Convolutional Neural Network Training and Validation

Convolutional neural network (CNN) training and validation proceeded in three stages: pre-

processing, training, and inference. In the pre-processing stage, data was formatted for input 

in the algorithm by resizing images, normalizing pixels, and then using transfer learning to 

help initiate the base layer imaging weights. The base layer imaging weights were pre-

trained on ImageNet, which is a large visual database designed for object recognition 
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software. In the training stage, the CNN was trained with Tensorflow, an open-source 

machine learning framework. 5278 polyp images were partitioned into 5 equal-sized 

subsamples for 5-fold cross validation with training (80%) and validation (20%). Data 

augmentation provided standardization for training data “on-the-fly” including various 

image adjustments. In the Inference stage, the data produced by the training were used to 

generate test set predictions. Various augmentations to the test set generated an additional 

layer of predictions. Predictions are then averaged to create a composite probability, and 

then fed into an Adam optimizer to produce a binary result between 0-0.5 and 0.5-1 for final 

polyp classification data. Any value ≥ 0.5 is classified as adenoma. Any value < 0.5 is 

classified as serrated.

Conditional Validations:

The CNN model was then tested for performance under three separate conditions:

1. NBI vs WL performance: Optical Pathology (OP) was compared to True 

Pathology (TP) for all adenomatous vs serrated polyps of all sizes and locations.

2. “Diagnose and leave” performance: OP compared to TP among all diminutive 

polyps in the rectum and rectosigmoid.

3. “Resect and discard” performance: Surveillance intervals were compared based 

on OP vs TP of all diminutive polyps throughout the colon on a per procedure 

basis.

Surveillance intervals were calculated based on U.S. Multi-Society Task Force guidelines, 

accounting for procedure indication and polyp number, size, location and pathology (OP vs 

TP). We adopted the concept that serrated polyps proximal to the rectosigmoid are 

“surveillance relevant” (see Table 1 for calculations) [9]. The number of cases for which 

surveillance intervals were lengthened, shortened or unchanged by OP were analyzed.

Validations against new polyp images:

To address validity of our model against fresh datasets, we utilized images of polyps with 

known pathology previously unexposed to the CNNs. These included 542 polyp images 

from 286 colonoscopies in our colonoscopy quality database, and 92 polyp images from 50 

colonoscopies performed at an independent ambulatory surgical center (ASC).

RESULTS

CNN-predicted Optical Pathology vs True Pathology

Among the original validation set, the distribution of raw CNN OP outputs vs TP is shown 

in Figure 1. 96% of true adenomas were predicted by OP to be adenomas (prediction bins ≥ 

0.5) and the 90% of true serrated polyps were predicted by OP to be serrated (prediction bins 

<0.5). Figure 1 also shows the distribution of “other” polyps (i.e. non-adenomatous non-

serrated polyps) across raw CNN OP outputs. The majority of surveillance-relevant lesions 

(SRLs) such as traditional serrated adenomas (27/37), hamartomas (9/11), lymphomas (5/5), 

and juvenile polyps (5/6) were predicted by OP to be adenomatous lesions.
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Effect of NBI vs WL on Optical Pathology Performance

Among the original validation set, performance of OP across all polyp sizes and locations 

was compared between NBI and WL. Overall accuracy of OP was 93.6% 

(92.9-94.2%[95%CI])% with an NPV of 92.6% (91.5-93.8%[95%CI]) for adenomatous 

polyps. Positive predictive value was 94.1% (93.3-94.9%[95%CI]); sensitivity was 95.7% 

(95.1-96.4%[95%CI]) and specificity was 89.9% (88.6-91.3%[95%CI]). OP accuracy was 

91.9% (90.2-93.6%[95%CI]) under WL and 94.0% (93.2-94.7%[95%CI]) under NBI 

(Figure 2). Among the fresh set of polyp images, under WL, accuracy was 92.8% 

(91.5-94.1% [95%CI]) and under NBI, accuracy was 93.1% (91.6-94.6% [95%CI]). A 

Pearson’s chi squared test showed that OP performance under WL and NBI was not 

significantly different in the original or fresh validation sets.

Optical Pathology Performance Against “Diagnose and Leave” Strategy

The PIVI threshold to “diagnose and leave” non-adenomatous polyps requires a >90% NPV 

for adenomatous polyps ≤ 5 mm in the rectosigmoid. Under these size and location 

stringencies, OP achieved an NPV for adenomas of 97.3% (95.8-98.8%[95%CI]) under both 

WL and NBI with an overall accuracy of 91.5% (89.3-93.8%[95%CI]) in the original 

validation set (see Table 2). In the fresh set of polyp images, NPV was 96.5% 

(94.8-98.2%[95%CI]) with an accuracy of 88.9%(86.6-91.3%[95%CI]) (see Table 3).

Optical Pathology Performance Against “Resect and Discard” Strategy

The PIVI threshold for “resect and discard” requires 90% concordance for recommended 

surveillance intervals between OP and TP of polyps ≤ 5 mm throughout the colon. Among 

all polyps ≤ 5 mm (regardless of location or use of WL or NBI) surveillance interval 

concordance between TP and OP was 93.4% (92.4-94.4% [95%CI]) in the original 

validation set, and 94.1% (91.3-96.9% [95%CI]) in the fresh set of polyp images. Among 

screening and surveillance cases in the original validation set, surveillance interval 

concordance was 90.8% (89.3-92.3% [95% CI]% and 96.4% (95.3-97.5% [95%CI]) 

respectively, and was 90.8% (86.2-95.4% [95%CI] and 98.3% (96.0-100% [95%CI]), 

respectively in the fresh validation set.

Table 4 shows the effect of OP on recommend surveillance interval based on the 2499 

procedures in our original validation dataset. Among the 192 colonoscopies for which OP 

shortened surveillance intervals, 167 were attributed to right-sided surveillance irrelevant 

polypoid lesions (154 normal, 27 lymphoid aggregates, 12 inflammatory polyps, and 1 

mucosal prolapse) classified by OP as surveillance-relevant serrated polyps (44%) or 

adenomas (56%). The remaining 25 cases for which OP shortened surveillance intervals 

were attributed to OP misclassification of diminutive rectosigmoid hyperplastic polyps as 

adenomas. The 8 cases for which OP produced longer surveillance intervals were attributed 

to rectosigmoid adenomas or SSPs misclassified by OP as surveillance-irrelevant serrated 

polyps. Table 5 shows the effect of OP on recommend surveillance interval based on the 272 

procedures in our fresh validation dataset with similar results.
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DISCUSSION

Reliable in situ diagnosis of polyp pathology could reduce pathology costs, provide patients 

with immediate surveillance recommendations, streamline physician workflow and improve 

cost-effective patient care. We created a CNN-based deep learning model with an overall 

accuracy of 94% for distinguishing adenomas and serrated polyps. Performance was 

unaffected by use of WL or NBI. Among diminutive polyps in the rectum/rectosigmoid, the 

NPV was 97% for adenomas, which is well over the “diagnose and leave” PIVI threshold of 

90%. When considering all diminutive polyps removed throughout the colorectum under the 

indications of screening or surveillance, the surveillance interval concordance between OP 

and TP was 93%, for original data, and 94% for the fresh data, which are greater than the 

“resect and discard” PIVI threshold of 90%. To our knowledge, this methodology is the first 

to successfully achieve and surpass both PIVI thresholds independently of light source, 

human-based visual criteria or expertise.

There have been numerous attempts to achieve PIVI guideline thresholds using different 

optical modalities [11][12]. The NICE Criteria, created by the ‘Colon Tumor NBI Interest 

Group’, separates hyperplastic polyps (Type 1), tubular adenomas (Type 2), and invasive 

carcinoma (Type 3) based on color, vessels, and surface pattern under NBI without 

magnification [13]. In 2015, the ASGE performed a meta-analysis assessing the ability of 

NICE criteria to achieve PIVI standards [7]. Overall an NPV of 91% for adenomas was 

obtained, however post-polypectomy surveillance interval agreement was only 89%. 

Performance depends on the practice setting (community vs. academic), operator experience 

(novice vs. experienced endoscopists), and confidence level. For example, expert 

endoscopists from academic settings with high confidence could obtain an NPV of 95% with 

a post-polypectomy surveillance interval agreement of 93% [7], whereas community 

physicians trained on the NICE criteria were unable to reach PIVI thresholds [11][14].

Other real-time advanced imaging techniques applied to predict polyp histology include 

magnifying NBI, endocytoscopy, and laser-induced autofluorescence spectroscopy [15]. 

These technologies are limited by requirements for specialized training, access to expensive 

equipment, and inability to reach both PIVI thresholds [16][17][18][19]. Failure to 

consistently achieve PIVI thresholds is multifactorial and includes the subjectivity intrinsic 

to human-based criteria, e.g., NICE, and the numerous polyps that do not fit into human-

based criteria [20].

Deep learning provides a new approach to overcome these limitations. CNNs determine their 

own criteria based on training sets of polyp images with known pathology. The resulting 

CNN provides a consistent ‘objective’ output independent of colonoscopist’s training, 

experience, and skill. Fatigue, loss of motivation, and inability to concentrate are not 

problems for a deep learning system.

Deep learning for polyp pathology prediction is rapidly emerging in the literature. In 2017, 

Byrne et al published their CNN deep learning model trained on NICE classification of 

polyps. When tested on 106 polyp videos, they achieved an accuracy of 94%, and NPV of 

97%. Surveillance concordance was not published. Notable limitations included a dataset 

Zachariah et al. Page 6

Am J Gastroenterol. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



collected by one expert endoscopist, dependency on NBI, and exclusion of 19 polyps due to 

lack of high confidence results from their NICE-based deep learning model [21]. In 2018, 

Mori et al. published data on the use of deep learning combined with endocytoscopy and 

reported an NPV >90% for left colon adenomas after exclusion of low confidence polyps 

[22]. Their data was collected by experts in the use of the endocytoscopy which limits 

applicability in the community setting and bypasses the cost saving potential of deep 

learning.

We challenged our deep learning algorithm to differentiate adenomatous and serrated polyps 

on unaltered endoscopic images at standard magnification using conventional colonoscopes 

inclusive of WL and NBI imaging. The resulting model performed equally well under both 

light settings, and therefore independent of Olympus NBI technology. Because our data set 

was collected from endoscopists at various levels of training ranging from first year GI 

fellows to endoscopists with 30+ years’ experience, we expect that it’s performance will be 

user-independent as well as applicable in both community and academic settings. Our 

validation subset at a community ASC supports this conjecture.

An optimal OP technology will reliably distinguish surveillance relevant lesions (SRLs) 

from surveillance-irrelevant lesions (SILs). CNNs, however, can only be as good as the 

“ground truth” on which they are trained [23]. Our CNN was based on pathology, derived 

from our academic pathologists who cluster tightly in their classification rates of adenomas 

and serrated polyps but vary widely in their classification rates of the two primary sub-

classifications of serrated polyps (HPs [SILs] and SSPs [SRLs]) [24][25]. This is in line with 

several studies showing poor agreement among pathologists distinguishing hyperplastic 

(SILs) and sessile serrated polyps (SRLs) [26]. This current limitation of pathology coupled 

with data suggesting that diminutive proximal HPs are associated with synchronous 

advanced neoplasia [27], supports suggestions that any serrated polyp proximal to the 

sigmoid should be considered an SRL [28].

We therefore trained our CNN on the best “ground truth” pathology (adenoma vs serrated), 

and adopted the rule that any serrated polyp proximal to the sigmoid is considered a SRL. 

Our binary approach (serrated vs adenoma) and surveillance model means that any polyp, 

including normal and lymphoid aggregates proximal to the sigmoid will be categorized as an 

SRL (serrated vs. adenoma) by our CNN. This strategy therefore biases toward OP-

shortened surveillance intervals and discordance with TP. In fact, 84% of surveillance 

interval discordance by our OP was attributed to 167 SILs classified as SRLs by OP, 154 of 

which were diagnosed as “normal” colonic mucosa by our pathologists. Even so, our CNN 

exceeded the PIVI “resect and discard” threshold of 90% concordance. It is especially 

interesting that this level of concordance is achieved by combining OP for rectosigmoid 

polyps with a simple OP-independent rule: all diminutive polyps proximal to the sigmoid are 

SRLs.

Development of an OP system to further reduce surveillance discordance will require 

separate categories of SILs (HPs, normal, lymphoid aggregates, inflammatory, mucosal 

prolapse). We are currently generating a multiclass CNN to accomplish this, realizing that its 

performance will be limited by poor “ground truth” for separating proximal serrated polyps 
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into HP and SSP categories. Furthermore, the category of “normal” may include a 

significant number of diminutive SRLs, such as adenomas, that were missed on tissue 

sectioning [23].

A key limitation of our study is that it is retrospective and based on static images. We 

currently are able to run multiple CNNs in real time during live colonoscopies without 

noticeable frame drops or lag. Additionally, we are optimizing live OP feedback during 

colonoscopy in conjunction with our polyp detection algorithm in real time [29]. Future 

prospective multicenter validation studies during colonoscopy are being planned.

In summary, we demonstrate the promise of real-time in situ diagnosis of colorectal polyps 

using deep learning. We show that in situ diagnosis is possible without dependency on 

specific light source, potentially applicable across multiple scope manufacturers. 

Deployment does not require specialized scopes or processors and only needs an off-the 

shelf computer with standard graphic processing unit with connections to the video source 

and viewing monitor. The future will bring a new deep learning assistant to the endoscopy 

suite to find and diagnose polyps in real time. For the patient, this means that polyps in view 

are found, removed, and diagnosed without unnecessary pathology fees, followed by 

accurate recommendations for follow-up at point-of care. Deep learning cannot replace the 

colonoscopist, who must drive the scope effectively and safely, clean away debris, inspect all 

mucosal surfaces, make sound judgements on what pathologies they find, and apply their 

knowledge and skill during intervention. Deep machine learning technology will continually 

learn from the endoscopists, leading to continual improvements in quality patient care 

delivery.
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Study Highlights

WHAT IS KNOWN:

• The Preservation and Incorporation of Valuable endoscopic Innovations 

(PIVI) guidelines provide criteria for adoption of “resect and discard” and 

“diagnose and leave” strategies for optical pathology.

• Convolutional Neural Networks (CNNs) show promise in achieving accurate 

real-time optical pathology.

WHAT IS NEW HERE:

• We demonstrate that our CNN-based optical pathology exceeds both PIVI 

thresholds when applied to polyp images obtained during colonoscopy.

• Accuracy was achieved using images from standard colonoscopes performed 

by novice and expert colonoscopists using white light or NBI.
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Figure 1. 
Histogram depicting distribution of polyp pathologies by OP Predictions.

Zachariah et al. Page 12

Am J Gastroenterol. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Confusion matrices of adenomas and serrated polyps under WL white light and NBI.
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Table 1.

Surveillance Intervals Calculations Based on US Multi-Society Task Force Guidelines. Final surveillance 

interval was defined as the lowest surveillance number combining personal history and findings at 

colonoscopy, comparing SRL status determined by true path (TP) vs optical path (OP) of polyps ≤ 5 mm. 

SRL: Surveillance Relevant Lesions. FHx: Family History. Hx: History. Lynch: Lynch syndrome. FAP: 

Familial Adenomatous Polyposis Syndrome. PJ: Peutz-Jeghers Syndrome.

Personal History Findings at Colonoscopy

Risk Category Years # of SRLs Years

Avg. Risk 10 0 10

Hx Adenoma(s) 5 1-2 5

FHx CRC 5 3-9 3

Lynch/FAP/PJ 1 >9 1

Size (mm)

1-9 5

10-19 3

>19 1
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Table 2.

Confusion matrix for “diagnose and leave” criteria comparing diminutive adenomas to non-adenomas in the 

rectosigmoid and rectum.

True Path

Adenoma Non-Adenoma

Optical Pathology Adenoma 107 38

Serrated Polyp 12 434

Sensitivity 0.90

Specificity 0.92

PPV 0.74

NPV 0.97

Accuracy 0.92
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Table 3.

Confusion matrix for “diagnose and leave” criteria comparing diminutive adenomas to non-adenomas in the 

rectosigmoid and rectum with fresh data.

True Path

Adenoma Non-Adenoma

Optical Pathology Adenoma 167 60

Serrated Polyp 16 443

Sensitivity 0.91

Specificity 0.88

PPV 0.74

NPV 0.97

Accuracy 0.89
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Table 4.

“Resect and discard” surveillance concordance data.

Entire Colon (All polyps <6mm)

Indications Opath shortens interval Unchanged Opath lengthens interval Totals % Concordance

Screening 151 1223 7 1347 90.8%

Surveillance 41 1110 1 1152 96.4%

Totals 192 2333 8 2499 93.4%
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Table 5.

“Resect and discard” surveillance concordance for fresh data.

Entire Colon (All polyps <6mm)

Indications Opath shortens interval Unchanged Opath lengthens interval Totals % Concordance

Screening 9 139 5 153 90.8%

Surveillance 1 117 1 119 98.3%

Totals 10 256 6 272 94.1%
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