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Simple Summary: The use of purple field corn stover contains enriched anthocyanin. Moreover,
the effect of anthocyanin in purple field corn could inhibit methane (CH4) synthesis by changing
hydrogen from the CH4 route to form propionic acid. However, purple field corn was found to
have poor digestibility owing to its fiber linkage structure. Pleurotus ostreatus and Volvarialla volvacea
are species of white-rot fungal mushroom, famous and abundant in tropical regions. These fungi
have potential to decrease indigestion of cell wall contents and increase cell wall digestibility of
rice straw material by secondary metabolites namely lignin peroxidase, manganese peroxidase, and
laccase enzyme, and showed the structural polymer found in rice straw and purple field corn residue.
Accordingly, feeding purple field corn stover fermented with P. ostreatus or V. volvacea will increase
feed utilization and reduce CH4 production in beef cattle.

Abstract: This objective is to elucidate the effect of purple field corn stover treated with Pleurotus
ostreatus and Volvarialla volvacea on feed utilization, ruminal ecology, and CH4 synthesis in tropical
beef cattle. Four male Thai native beef cattle (100 ± 30 kg of body weight (BW) were assigned
randomly as a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. Factor A (roughage sources)
was rice straw and purple field corn stover and factor B was species of white-rot fungi (P. ostreatus
and V. volvacea). After fermentation, crude protein (CP) was increased in rice straw and purple field
corn stover fermented with P. ostreatus and V. volvacea. The unfermented purple field corn stover
contained 11.8% dry matter (DM) of monomeric anthocyanin (MAC), whereas the MAC concentration
decreased when purple field corn stover was fermented with white rot fungi. There were no changes
(p > 0.05) in DM intake of body weight (BW) kg/d and g/kg BW0.75 among the four treatments.
The organic matter (OM), CP, and acid detergent fiber (ADF) intake were different between rice straw
and purple field corn stover and were the greatest in the purple field corn stover group. Moreover,
the current study showed that neutral detergent fiber (NDF) and ADF digestion was higher in purple
field corn stover than in rice straw, but there were no significant differences between P. ostreatus
and V. volvacea. There were significant effects of roughage sources on ammonia nitrogen (NH3-N)
at 4 h after feeding. Bacterial population was changed by feeding with purple field corn stover
fermented with P. ostreatus and V. volvacea. On the other hand, the number of protozoa was reduced
by approximately 33% at 4 h after feeding with purple field corn stover (p < 0.01). Propionic acid
concentration was different between roughage sources (p < 0.01) enhanced with purple field corn
stover fermented with P. ostreatus and V. volvacea. In addition, methane production decreased by 15%
with purple field corn stover fermented with P. ostreatus and V. volvacea compared to rice straw. There
were significant differences on all nitrogen balances parameters (p < 0.05), except the fecal N excretion
(p > 0.05) were not changed. Furthermore, microbial crude protein and efficiency of microbial N
synthesis were enhanced when purple field corn stover fermented with P. ostreatus and V. volvacea
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was fed compared to rice straw group. Base on this study, it could be summarized that P. ostreatus or
V. volvacea can enhance the quality of purple field corn stover and modulate rumen fermentation and
feed digestion in Thai native beef cattle.

Keywords: anthocyanin; white-rot fungi; roughage; ruminant; feeding

1. Introduction

Methane (CH4) is a dynamic greenhouse gas synthesized from methanogenic bacteria in the
rumen of ruminants. Greenhouse gases are produced through the normal process of feed digestion, and
a significant loss of 2 to 12% of feed energy has been reported, which increases feed costs [1]. Scientists
have demonstrated a potential approach to reducing CH4 emissions with secondary metabolite
compounds such as tannins, saponin, or naturally substantive compounds present in some forage
crop [1,2].

Purple field corn contains enriched anthocyanin in the cob, husk, silk, and stover [2]. Anthocyanin
has a high level of a stronger 2,2-diphenyl-1-picrylhydrazyl scavenging activity [3], making it a
beneficial alternative fiber source for ruminant [4]. Moreover, the effect of anthocyanin in purple
field corn could inhibit CH4 synthesis by changing hydrogen from the CH4 route to form propionic
acid [5,6]. However, purple field corn was found to have poor digestibility owing to its fiber linkage
structure [7]. Thereby, feeding low-quality roughage leads to insufficient nutrients for ruminant to
maintain a high production level [8]. Recently, many studies have presented the various biological
treatments to improve low-quality roughage as ruminant feed [7–9]. White-rot fungi-treated roughage
sources are more attractive, particularly in terms of feed utilization, environmentally friendly, exhibit
residual substance affect, and are cost effective [10].

Pleurotus ostreatus and Volvarialla volvacea are species of white-rot fungal mushroom, famous and
abundant in tropical regions. They can grow well on rice straw and decrease its structural fiber [10].
These fungi have potential to decrease indigestion of cell wall contents and increase cell wall digestibility
of rice straw material by secondary metabolites namely lignin peroxidase, manganese peroxidase,
and laccase enzyme, and showed the structural polymer found in rice straw and purple field corn
residue [11]. Moreover, lovastatin can be produced by various white-rot fungi by controlling the
culture conditions. The lovastatin has been demonstrated to effectively inhibit the HMG-CoA reductase
enzyme in methanogenic bacteria by interfering with the assembly of isoprenoid chains needed for
membrane phospholipid synthesis and thus selectively depressing the growth of methanogenic bacteria
without affecting other ruminal microorganism community [12–14]. Our previous work found that
purple field corn stover fermented with P. ostreatus and V. volvacea can be beneficial when fed as an
alternative fiber feed to improve in vitro digestibility, rumen fermentation, and reduction of CH4

production [12]. However, there is a lack of information on whether purple field corn fermented with
P. ostreatus and V. volvacea is effective in beef cattle. The hypothesis is that feeding cattle with purple
field corn stover fermented with P. ostreatus or V. volvacea will increase feed utilization and reduce
CH4 production when compared to rice straw. Thus, our objective is to elucidate the effect of purple
field corn stover treated with P. ostreatus or V. volvacea on feed utilization, ruminal ecology, and CH4

synthesis in tropical beef cattle.

2. Materials and Methods

2.1. Animals Care

The study was done at Tropical Feed Resources Research and Development Center, Khon Kaen
University. All animals were allowed by the Institutional Animal Care and Use Committee of Khon
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Kaen University (Animal Ethics No. ACUC-KKU 99/2560), conditional the Animal Experiment Ethics
of National Research Council, Thailand.

2.2. Animal and Treatments

Four male Thai native beef cattle (100 + 30 kg of body weight (BW) were fed individually in a
pen with clean drinking water. The animals were assigned randomly as a 2 × 2 factorial arrangement
in a 4 × 4 Latin square design. All animals were fed a concentrate (Table 1) at 1.0% BW. Factor A
(roughage sources) was rice straw and purple field corn stover and factor B was species of white-rot
fungi (Pleurotus ostreatus and Volvarialla volvacea).
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Table 1. Ingredient and chemical composition and plant secondary metabolites of concentrate, rice straw (RS) and purple field corn stover (PPCS) used in
the experiment.

Parameters Concentrate
Before Fermented After Fermented

RS PPCS
RS PPCS

P. ostreatus V. volvacea P. ostreatus V. volvacea

Ingredients, (%DM)
Cassava chip 55.00

Rice bran 11.00
Palm kernel meal, solvent 13.50

Coconut kernel meal, solvent 12.90
Molasses, liquid 2.00

Urea 2.60
Pure sulfur 1.00

Mineral premix * 1.00
Salt 1.00

Chemical composition
Dry matter, % 87.40 90.10 94.40 55.80 56.23 55.65 56.14

Organic matter, %DM 94.70 91.80 96.50 91.80 91.50 95.39 94.74
Neutral detergent fiber, %DM 12.20 65.40 70.60 61.97 61.32 67.60 64.45

Acid detergent fiber, %DM 8.40 40.20 53.20 37.57 37.22 42.37 43.87
Crude protein, %DM 14.20 2.60 4.90 6.95 7.38 9.47 9.56

Plant secondary metabolites
Anthocyanin, %DM - - 11.8 0.53 0.57 6.25 5.76

Lovastatin, g/kg - - - 33.92 33.96 32.49 34.90

* Minerals and vitamins (each kg contains): Vitamin A: 10,000,000 IU; Vitamin E: 70,000 IU; Vitamin D: 1,600,000 IU; Fe: 50 g; Zn: 40 g; Mn: 40 g; Co: 0.1 g; Cu: 10 g; Se:
0.1 g; I: 0.5 g. * RS = rice straw; PPCS = purple field corn stover. Anthocyanin content (cyanidin-3-glucoside equivalents, mg/L) = (A × MW × DF × 103)/(ε × 1); where A =
(A510 nm–A700 nm)pH1.0–(A510 nm–A700 nm)pH 4.5; MW (molecular weight) = 449.2 g/mol for cyanidin-3-glucoside (cyd-3-glu); DF = dilution factor; 1 = pathlength in cm., ε = 26,900
molar extinction coefficient, in L·mol−1·cm−1, for cyd-3-glu and 103 = factor for conversion from g to mg.
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2.3. Preparation of Rice Straw, Purple Field Corn Residue, and Fungal-Treated Substrates

Rice straw was harvested from around rice fields in the area of Khon Kaen, Thailand. Purple field
corn residue stover was collected from the Plant Breeding Research Center for Sustainable Agriculture,
Faculty of Agriculture, Khon Kaen University. Roughage sources were collected, cut into 2 to 3 cm
lengths, and sun dried for 3 to 5 days, then collected in plastic bag and preserved at 28 to 32 ◦C
until used.

P. ostreatus and V. volvacea were received from the commercial products and were used to inoculate
the substrates. They were cultured on potato dextrose agar plate at 25 ◦C for 7 days, kept at 4 ◦C, and
sub-cultured every couple of weeks. Spore suspension was performed in 0.1% Tween-80 solution at a
concentration of nearly 107 spores/mL [7].

The white-rot fungi-treated roughages were handled as follows [14]. First, 200 g of roughage
sources were mixed with 200 mL of solution (1% molasses and 1% urea in 200 mL of distilled water) to
provide moisture condition of approximately 50% dry matter (DM). Second, roughage, solution and
white rot fungi were mixed for around 30 min in TMR machine. After that, the substrates were packed
in plastic bags, and kept at room temperature (28 ◦C to 32 ◦C) until the mushroom mycelia grew to full
colonization and figured on the roughages (about 21 days). Roughages were fed to animals ad libitum.
Clean water and mineral block were provided at all times for the whole study. Feeds were fed twice
daily at 6:00 am and 4:00 pm.

2.4. Feed, Feces, Urine, Rumen Fluid, and Blood Sample Collections

Feed intake was determined daily by weighing the provided and refused feeds before morning
feeding. The study was separated into four periods, which each consisted of 21 days. The animals were
in an adjusting dietary phase for the first 14 days, and the last 7 days of each phase were for feces and
urine sampling as cattle were transferred to metabolic stalls for determination of feed digestion and
nitrogen balance by using for total collection method. The fecal samples were sampled about 5% of total
fresh weight and divided into two parts; first part for DM analysis every day and second part was kept
in refrigerator. Urine was sampled in 10-L vessels containing 10% H2SO4, to ensure that the pH was
decreased below 3.0 in order to prevent the bacterial destruction of purine derivative and creatinine.
Urine vessels were replaced every 24 h, the volume of acidified urine was measured and a subsample
of 100 mL per animal and was immediately frozen at −20 ◦C. Feces and urine were pooled by cattle
at the end of each period for chemical analysis. During the last 7 days of each period, feed samples
(offered and refused) and feces were collected for chemical composition analysis and estimation of feed
digestion abilities. The 5% of total fresh weight of fecal matter was collected and separated into two
portions: the first portion was analyzed for DM daily, and the latter portion was frozen in a refrigerator
and mixed by animals on the last day of each period for nutritional content determination.

The DM of the diets and feces was measured by drying samples at 100 ◦C for 24 h. The feed
and feces samples were incubated by drying in a 60 ◦C hot air oven. Those samples were ground
to 1-mm size. The organic matter (OM) of the samples was analyzed by burning samples at 550 ◦C.
The crude protein (CP) and crude ash of the diet and fecal samples were determined by the protocols
of Association of Official Agricultural Chemists (AOAC) [15]. The neutral detergent fiber (NDF)
and acid detergent fiber (ADF) were measured by ANKOM200 Fiber Analyzer (ANKOM Technology
Corporation, Fairport, NY, USA) according to Van Soest et al. [16] methods. The ruminal fluid was
sucked by a vacuum pump from the rumen on the last day of each period and approximately 55 mL
at 0 and 4 h post morning feeding and divided into three portions. The first part was evaluated
for ruminal pH and temperature using a pH meter (Hanna Instruments HI 8424 microcomputer,
Singapore). The second portion was examined for rumen ammonia nitrogen (NH3-N) concentration
using Kjeltech Auto 1030 Analyzer [15] and volatile fatty acids (VFA) using high-performance liquid
chromatography (HPLC) [17]. The CH4 concentration was run on the equation of Moss et al. [18] based
on VFA concentration profiles.
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In the final portion, 1 mL ruminal fluid was added to a 9-mL solution of formaldehyde and
analyzed for direct counts of total bacteria and the protozoal population using a hemocytometer [19].

Blood samples were taken from the jugular vein (0 and 4 h post feeding on the last day of each
period) into tubes with 12 mg of ethylenediaminetetraacetic acid (EDTA). Then, they were put on ice
for 30 min, centrifuged at 1500× g at 4 ◦C for 15 min to separate the plasma, and kept at −20 ◦C until
used to determine blood urea nitrogen (BUN) [20].

Nitrogen balance and purine derivative were measured using the AOAC method [15], although
allantoin concentration was evaluated using HPLC. The efficiency of microbial N synthesis (EMNS)
concentration was calculated from purine derivative excretions using the equation provided by Chen
and Gomes [21]. Microbial crude protein (MCP) was determined using the method proposed by
Cherdthong et al. [22].

2.5. Measurement of Monomeric Anthocyanin Content (MAC)

The concentration of monomeric anthocyanin (MAC) in the feeds was measured using the method
of Lee [23]. A UV–vis spectrophotometer (GENESYS 10S, Thermo Scientific, Waltham, MA, USA)
was used to determine MAC at 510 and 700 nm of absorbance in a cuvette with a 1-cm path length.
Total MAC per stover DW of one ear (MAC/e) was reported as milligrams of cyanidin-3-glucoside
equivalents per 100 g DW (mg CGE/100 g DW) of samples.

2.6. Measurement of Lovastatin Content

Lovastatin was analyzed by the method used by Pattanagul [24]. In brief, the lovastatin production
is as follows: (i) A total of 1 g sample was extracted with 5 mL of 68% ethanol and shaken at 200 rpm
for 1 h, then left to stand in 40 ◦C for 12 h; (ii) the suspension was centrifuged at 2000× g at room
temperature for 15 min and subsequently filtered with Whatman filter No. 1, and the filtrate was dried
in a vacuum oven at 55 ◦C (16 h) and then dissolved with 1 mL of mobile phase solution by filtering
through a 0.45 µm nylon membrane into a 2-mL vial to be used for lovastatin measurement by HPLC.

2.7. Assay of Statistic

Statistical analyses were performed using a 2 × 2 factorial arrangement in a 4 × 4 Latin square
design by using the PROC GLM [25]. The statistical model included roughage source (rice straw
and purple field corn stover) fermented with white-rot fungi (P. ostreatus and V. volvacea) and their
interactions. The mean differences between treatments were measured using Duncan’s new multiple
range test.

3. Results and Discussion

3.1. Nutrient Content of Feeds

The feed ingredients and nutrient content of rice straw, purple field corn stover, and concentrate
diet are reported in Table 1. The raw rice straw was lower in CP than purple field corn stover, whereas
purple field corn stover had high fiber content. After fermentation, CP was increased in rice straw and
purple field corn stover fermented with P. ostreatus and V. volvacea. On the other hand, NDF and ADF
in purple field corn stover were significantly higher than in rice straw. It could be due to their stronger
fiber linkage structure as lignocellulose. A similar finding was reported by Min [26], who found that
the corn stem had the highest lignin content (20.6%) when compared with cob and leaf.

The unfermented purple field corn stover contained 11.8% DM of MAC, whereas the MAC
concentration decreased when purple field corn stover was fermented with white rot fungi. This was
similar to the finding of a previous study that the MAC in purple field corn stover had a value of 13.49%
DM; its variety had a higher genotype of MAC than normal corn varieties [2]. After fermentation,
the MAC was decreased, probably because of the high temperature, low pH, and fermentation
process [27]. However, the pH condition did not clarify the result of the anthocyanin consistency in the
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treated substrate, which did not continue to decline. To realize MAC stability during roughage-treated
storage, the relationship between MAC stability and lactic fermentation should be explained, because
MAC contains anthocyanidin and sugars, and there is a possibility that sugars from MAC are used as
a substrate for lactic fermentation [28,29]. The lovastatin concentration was 32.49 to 33.96 g/kg DM
when roughages were fermented with P. ostreatus and V. volvacea, closely studied by Khonkhaeng [12].
Lovastatin can be produced by P. ostreatus and V. volvacea by controlling the culture conditions.
The increase in moisture content also reduced the lovastatin production level. This was probably due
to reduced oxygen obtainability caused by redundant substitution of air by water, whereas the low
moisture content led to a decreased metabolic heat in the ensiling processing [30]. The pH optimization
could support the lovastatin synthesis during ensiling processing. Furthermore, temperature is
probably another factor affecting the productivity relating to the stimulation of the enzyme for the
synthesis of lovastatin [31]. The temperature at 30 ◦C revealed that lovastatin could maximize the
production; this was noted to be the optimum temperature [32]. Thus, culturing roughages with
optimum temperature could result in high concentration of lovastatin [33,34].

3.2. Feed Utilization and Nutrient Digestion

The average of roughage, concentrate, and total intake did not change among treatments (p > 0.05)
(Table 2). There were no changes (p > 0.05) in DM intake of BW kg/d and g/kg BW0.75 among the four
treatments. Even though anthocyanins are phenolic compounds that contribute to the characteristic
bitter flavor of plants, results indicated that anthocyanin did not adversely affect cattle palatability [3].
This agreed with the results obtained by Hosoda [35], who reported that feeding with the purple
pigment from anthocyanin-rich corn result in the same DM intake as the rice straw diet. The OM, CP,
and ADF intake were different between rice straw and purple field corn stover and were the greatest
in the purple field corn stover group. This could be because purple field corn stover contains higher
nutritive value than rice straw. The high CP intake could provide N available for rumen microbes to
synthesize their cells with their energy source [36].

Nutrient digestibility of DM, OM, CP, NDF, and ADF are shown in Table 2. It was found that all
nutrient digestibility was significant among treatments (p < 0.01). The increase in CP might have an
effect on the high digestibility of purple field corn stover [3]. It could also be due to the high growth
of mycelia in P. ostreatus and V. volvacea, which increased the protein concentration [37]. Purple field
corn stover contains higher anthocyanin concentration, at 2022.1 mg CGE/100g DW, than normal corn
varieties [2], which may support rumen bacterial activity to break down feed. High feed digestibility
is associated with great bacterial activity. Low rumen protozoa (Table 3) when animals received
anthocyanin from purple field corn stover fermented with P. ostreatus and V. volvacea led to increased
cellulolytic bacteria, which appeared to increase feed digestion of DM and OM [38]. Moreover,
the current study showed that NDF and ADF digestion was higher in purple field corn stover than in
rice straw, but there were no significant differences between P. ostreatus and V. volvacea. This could be
due to reduced lignin indigestible cell wall contents and enhancement of the digestibility of roughage
has been elucidated [10]. This could be due the potential of these fungi to reduce indigestible cell wall
contents and improve cell wall digestion of rice straw by secondary metabolites such as manganese
peroxidase, lignin peroxidase, and laccase enzyme shown in the structural polymer found in rice straw
and purple field corn residue [11]. Furthermore, the difference between NDF and ADF might have
been underestimated due to a portion of monomers and oligomers of hemicellulose liberated by the
fungi being washed out during the NDF analysis [39].
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Table 2. Feed intake and digestibility of cattle feeding rice straw (RS) and purple field corn stove (PPCS) fermented with Pleurotus ostreatus and Volvariella volvacea.

Parameters
RS PPCS

SEM
Contrast

P. ostreatus V. volvacea P. ostreatus V. volvacea R WRF R ×WRF

DM intake
Roughage

kg/d 3.54 3.39 3.23 3.80 0.18 0.80 0.30 0.08
g/kg BW0.75 87.69 83.52 79.27 92.12 5.44 0.98 0.44 0.14
Concentrate

kg/d 1.39 1.40 1.41 1.43 0.04 0.56 0.79 0.95
g/kg BW0.75 34.32 34.38 34.48 34.57 0.27 0.55 0.79 0.95

Total
kg/d 4.93 4.79 4.65 5.23 0.18 0.69 0.27 0.07

g/kg BW0.75 122.01 117.91 113.75 126.69 5.31 0.96 0.42 0.13

Nutrients intake, kg/d
Dry matter 4.93 4.79 4.65 5.23 0.18 0.69 0.27 0.07

Organic matter 4.55 a 4.21 a 4.73 b 4.90 b 0.17 0.02 0.64 0.17
Crude protein 0.39 a 0.38 a 0.49 b 0.51 b 0.02 <0.01 0.75 0.52

Neutral detergent fiber 2.91 2.65 3.14 3.13 0.20 0.11 0.53 0.56
Acid detergent fiber 1.82 a 1.66 a 2.01 b 2.13 b 0.14 0.03 0.91 0.33

Digestibility coefficients, %
Dry matter 60.54 a 60.20 a 64.85 b 65.16 b 0.36 <0.01 0.96 0.39

Organic matter 64.96 a 63.43 a 67.93 b 67.78 b 0.99 <0.01 0.41 0.50
Crude protein 62.55 a 61.23 a 65.21 b 65.36 b 0.88 <0.01 0.52 0.42

Neutral detergent fiber 41.43 a 42.42 a 47.81 b 46.56 b 0.80 <0.01 0.73 0.25
Acid detergent fiber 37.24 a 35.94 a 41.73 b 41.72 b 0.91 <0.01 0.74 0.29

* RS = rice straw; PPCS = purple field corn stover; R = roughage; WRF = white rot fungi; R ×WRF = interaction between roughage and white rot fungi; SEM, standard error of the mean.
a,b Means differing letters across rows indicate significant differences (p < 0.05).
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Table 3. Ruminal ecology, ammonia nitrogen, microorganism, volatile fatty acid profile, and methane estimation of cattle feeding rice straw and purple field corn stove
treated Pleurotus ostreatus and Volvariella volvacea.

Parameters
RS PPCS

SEM
Contrast

P. osteratus V. volvacea P. osteratus V. volvacea R WRF R ×WRF

Rumen ecology
Ruminal temperature, ◦C

0 h post feeding 38.30 38.47 38.55 38.12 0.26 0.85 0.63 0.28
4 h post feeding 39.33 39.36 39.26 38.86 0.28 0.34 0.52 0.46

Mean 38.82 38.91 38.91 38.49 0.24 0.52 0.53 0.32
Ruminal pH

0 h post feeding 7.08 7.19 7.12 6.97 0.18 0.63 0.91 0.51
4 h post feeding 7.06 7.06 6.95 6.52 0.18 0.11 0.26 0.26

Mean 6.95 7.00 7.04 6.75 0.28 0.58 0.43 0.26

Ammonia nitrogen (NH3-N) concentration, mg/dL
0 h post feeding 12.95 12.60 14.36 14.36 1.51 0.31 0.91 0.91
4 h post feeding 14.71 a 14.51 a 16.75 b 17.60 b 0.28 <0.01 0.27 0.08

Mean 14.53 14.43 14.85 15.11 0.80 0.54 0.92 0.83

Volatile fatty acid profile, mol/100 mol
Acetic acid

0 h post feeding 53.52 53.51 55.14 56.63 2.70 0.39 0.78 0.78
4 h post feeding 55.44 a 55.17 a 58.70 b 62.19 b 2.14 0.03 0.46 0.39

Mean 54.48 54.59 56.85 54.59 2.04 0.10 0.57 0.57
Propionic acid

0 h post feeding 28.51 a 28.99 a 33.66 b 32.09 b 1.51 0.03 0.72 0.51
4 h post feeding 32.59 a 32.26 a 36.37 b 35.47 b 1.48 0.01 0.68 0.85

Mean 31.12 a 30.62 a 35.01 b 33.78 b 1.29 0.01 0.51 0.78
Butyric acid

0 h post feeding 12.26 11.10 10.14 11.00 2.00 0.59 0.94 0.62
4 h post feeding 12.78 12.12 10.88 12.72 2.20 0.77 0.79 0.58

Mean 12.52 11.06 10.51 10.72 1.52 0.45 0.69 0.59
Total VFA

0 h post feeding 98.38 96.54 101.66 103.02 3.16 0.14 0.94 0.62
4 h post feeding 96.73 a 96.29 a 103.99 b 107.00 b 1.98 <0.01 0.53 0.40

Mean 98.57 a 95.69 a 101.60 b 102.90 b 1.81 0.01 0.66 0.27
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Table 3. Cont.

Parameters
RS PPCS

SEM
Contrast

P. osteratus V. volvacea P. osteratus V. volvacea R WRF R ×WRF

Blood urea nitrogen, mg/dL
0 h post feeding 16.75 15.00 13.25 14.25 1.63 0.21 0.82 0.41
4 h post feeding 18.25 14.00 16.25 16.50 1.44 0.86 0.19 0.14

Mean 17.50 14.50 14.75 15.37 1.18 0.44 0.33 0.15

Methane estimation *, mM/L
0 h post feeding 20.75 a 21.05 a 18.12 b 18.72 b 1.09 0.04 0.68 0.89
4 h post feeding 23.68 a 25.76 a 20.04 b 19.44 b 1.17 <0.01 0.54 0.27

Mean 22.21 a 23.40 a 19.08 b 18.87 b 1.09 <0.01 0.66 0.53

Microbial populations, cell/mL
Bacteria, ×1010

0 h post feeding 4.27 a 5.00 a 8.25 b 6.53 b 1.11 0.04 0.67 0.31
4 h post feeding 4.87 a 5.15 a 9.65 b 8.84 b 2.02 0.05 0.89 0.79

Mean 5.51 a 5.07 a 8.65 b 7.82 b 1.06 0.01 0.55 0.85
Protozoa, ×106

0 h post feeding 7.20 5.50 3.00 4.83 1.58 0.18 0.91 0.32
4 h post feeding 6.62 a 4.50 a 3.50 b 3.96 b 0.66 0.01 0.25 0.09

Mean 6.91 a 5.00 a 3.25 b 3.73 b 0.78 0.02 0.34 0.16

* RS = rice straw; PPCS = purple field corn stover; R = roughage; WRF = white rot fungi; R ×WRF = interaction between roughage and white rot fungi; CH4 = (0.45 × acetic acid) − (0.275
× propionic acid) + (0.40 × butyric acid) (Moss et al., 2000). SEM, standard error of the mean. a,b Means differing letters across rows indicate significant differences (p < 0.05).
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3.3. Ruminal Characteristics, Microbial Count and Blood Metabolite

The rumen pH, temperature determined via rumen fluid, and average values ranged from 6.75 to
7.04 and 38.49 to 38.91 ◦C (Table 3), which is optimal for microbial digestion in rumen [40]. However,
the ruminal pH was slightly dropped in hour 4 post feeding. This result indicates the possibility that
the microbial digestion of feed could decrease pH value in the rumen. Cherdthong et al. [41] indicated
that the ranges of rumen pH were decreased at 4 h after morning feeding.

There was no interaction effect on NH3-N at 0 h after feeding (p > 0.05). However, there were
significant effect of roughage sources on NH3-N at 4 h after feeding. This may be due to the high CP
intake when the purple field corn stover was fed, leading to a high amount of CP available from corn
for microbial breakdown to NH3-N in the rumen. The ruminal NH3-N is the main product of protein
digestion, which would be utilized by rumen microorganisms in the rumen. Thus, the additional levels
of CP in the feed can provide rumen NH3-N availability. Hristov et al. [42] demonstrated that protein
could degrade into NH3-N by microbial extracellular enzymes and deamination. Likewise, a previous
report indicated that NH3-N was increased by roughage fermented with white rot as compared with
a control in vitro [12]. Moreover, the high NH3-N concentration in the roughage fermented with P.
ostreatus was probably influenced by the high CP level, which is a supplemental source of N. In addition,
P. ostreatus and V. volvacea are composed of CP, and there is a probability of additional protein supply
to the cattle.

Bacterial population was changed by feeding with purple field corn stover fermented with P.
ostreatus and V. volvacea. On the other hand, the number of protozoa was reduced by approximately
33% at 4 h after feeding with purple field corn stover (p < 0.01). There are at least three reasons for
this: (i) the fungi could be promoted by the synergy that occurs with rumen microbes. It can penetrate
the plant tissue as a result of their filamentous growth, have a broad range of highly active enzymes,
and is the only known rumen microorganism with exo-acting cellulase activity. Furthermore, (ii) the
anthocyanin contained in purple field corn stover may inhibit the protozoa activity, likely by binding
to the protozoal membranes as reported by Cieślak [43]. Moreover, (iii) gallic acid in anthocyanin
can bind to the glutamate-gated chloride channels in the nervous system of Caenorhabditis elegans and
initiate the hyperpolarization of the cell membranes and excitation of muscles. These events finally
result in protozoa paralysis and death [44]. Thus, lowering protozoa could result in enhancing the
bacteria population in the rumen [45].

The BUN did not change because of the different diets (p > 0.05) (Table 3). The means of
BUN concentration in cattle fed rice straw and purple field corn stover fermented with P. ostreatus
and V. volvacea were in the comfortable range (12–13 mg/dl), as demonstrated by Cherdthong and
Wanapat [41].

3.4. Volatile Fatty Acid Profile and CH4 Production

Feeding rice straw and purple field corn stover fermented with P. ostreatus and V. volvacea had no
influence on total VFA and butyrate concentration (p > 0.05). The acetic acid concentration at 4 h after
morning feeding was higher in cattle fed purple field corn stover fermented with fungi. This is likely
due to higher NDF and ADF digestion of purple field corn stover. Also, Pino et al. [46] found that the
low feed quality diet containing grass hay had higher acetic acid proportions compared with high
feed quality diets. Nevertheless, propionic acid concentration was different between roughage sources
(p < 0.01) enhanced with purple field corn stover fermented with P. ostreatus and V. volvacea. Ruminal
bacteria ferment carbohydrates and break down into simple sugars. The microbes use these sugars as
an energy source for their own growth and produce propionic acid [47,48]. Moreover, purple field corn
stover had high anthocyanin and gallic acid, which could inhibit CH4 synthesis by changing hydrogen
from the CH4 pathway to propionic acid form [5,36]. An alternative electron sink for a metabolic route
to dispose the reduced power has to happen. Furthermore, Newbold et al. [45] proposed that the
succinate-propionate pathway could possibly lead to propionic acid production.
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In addition, CH4 production decreased by 15% with purple field corn stover fermented with P.
ostreatus and V. volvacea compared to rice straw (Table 3). This was probably because lovastatin might
inhibit the HMG-CoA reductase enzyme in methanogenic bacteria by interfering with the assembly of
isoprenoid chains needed for membrane phospholipid synthesis [49,50]. Moreover, lovastatin might
inhibit the expression of the F420-dependent NADH reductase gene. The gene produces the enzyme
for the transfer of the methyl group from methyl- H4MPT to HS-COM [51]. Methyl coenzyme-M
reductase (mcr) is the key enzyme in the methanogenesis process [5,41]. These results were supported
by our previous in vitro test, which showed that fermenting roughage with P. ostreatus and V. volvacea
significantly reduced CH4 production by approximately 10.83% to 11.32% compared to the untreated
substrates [12]. Likewise, Jahromi [14] reported that lovastatin in fermented rice straw is effective
at suppressing 96.43% of the CH4 emission. In addition, protozoal rumen provides the perfect host
for methanogens to protect their activities (i.e., low O2 pressure and high H2 availability) [52] and to
protect them from oxygen toxicity [53]. This relations is a typical case of interspecies H2 transfer that
favors the methanogenic bacteria and the protozoal populations [54].

3.5. Nitrogen Balances and Microbial Protein Synthesis

There were significant differences in all nitrogen balances parameters (p < 0.05), except the fecal N
excretion (p > 0.05) which were not changed (Table 4). N intake, N excretion, and N absorption of purple
field corn stover fermented with P. ostreatus and V. volvacea were greater (p < 0.01) than the fermented
rice straw. However, the allantoin excretion was in general lower compared to those found by other
authors [55,56], even if it is to underline that it is higher in animals fed PPCS compared to rice straw,
according to the higher DM and OM digestibility [39]. Moreover, allantoin excretion and absorption
were higher with the purple field corn stover fermented with P. ostreatus and V. volvacea. Furthermore,
MCP and EMNS were enhanced when purple field corn stover fermented with P. ostreatus and V.
volvacea was fed compared to rice straw group. This might be because the high CP and carbohydrates
in purple field corn stover have the potential to improve the ruminal fermentation toward maximizing
microbial protein production [57]. Furthermore, anthocyanin could support a synchronized release of
nitrogen and carbohydrates from purple field corn stover, which is responsible for microbial efficiency
enhancement [36]. More reasons could be that protozoa engulf other microbes as their main nutrient
source [58] and as a result, defaunation could be more rumen efficient in terms of proteosynthesis
enhancing the duodenal flow of microbe mass. Similarly, defaunation also enhanced the efficiency
of efficiency microbial protein synthesis (EMPS) (+6.8%) as a result of both, and a greater microbial
synthesis was reported [59].
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Table 4. Nitrogen (N) balance and purine derivative of cattle feeding rice straw and purple field corn stove treated Pleurotus ostreatus and Volvariella volvacea.

Parameters
Rice Straw Purple corn stove

SEM
Contrast

P. osteratus V. volvacea P. osteratus V. volvacea R WRF R ×WRF

N intake (NI), g/d 62.91 a 62.77 a 77.93 b 81.90 b 3.84 <0.01 0.62 0.60
Total N excretion, g/d 50.23 a 51.02 a 55.56 b 58.23 b 0.58 0.02 0.88 0.65
Fecal N excretion, g/d 15.07 15.31 16.67 17.47 1.89 0.18 0.68 0.44

Urinary N excretion, g/d 35.16 a 35.71 a 38.89 b 40.76 b 1.35 0.01 0.58 0.71
N absorption, g/d 47.84 a 47.46 a 61.26 b 64.43 b 2.36 <0.01 0.83 0.36
% of N absorption 30.10 a 29.79 a 47.74 b 52.77 b 1.55 0.02 0.65 0.89

N retention, g/d 12.68 a 11.75 a 22.37 b 23.67 b 1.23 0.03 0.33 0.47
% of N retention to N intake 20.16 a 18.72 a 28.71 b 28.90 b 2.19 0.05 0.53 0.77

PD, mmol/d
Allantoin excretion 80.55 80.27 88.17 88.15 0.51 <0.01 0.81 0.84

Allantoin absorption 74.62 a 74.27 a 82.92 b 82.77 b 0.58 <0.01 0.67 0.86
Microbial crude protein, g/d 275.11 a 274.16 a 301.14 b 301.07 b 3.97 <0.01 0.73 0.19

EMPS * 64.16 a 64.50 a 68.20 b 68.34 b 0.92 0.03 0.34 0.06

* RS = rice straw; PPCS = purple field corn stover; R = roughage; WRF = white rot fungi; R ×WRF = interaction between roughage and white rot fungi; EMPS: efficiency of microbial
protein synthesis. N: Nitrogen. Microbial crude protein (g/d) = 3.99 × 0.856 ×mmoles of purine derivatives excreted. Efficiency of microbial N synthesis (EMNS, g/kg of organic matter
(OM) digested in the rumen (OMDR) = ((MCP (g/d) × 1000)/DOMR (g)), assuming that rumen digestion was 650 g/kg OM of digestion in total tract. SEM, standard error of the mean.
a,b Means differing letters across rows indicate significant differences (p < 0.05).
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4. Conclusions

Based on this study, it could be summarized that P. ostreatus or V. volvacea can enhance the
quality of purple field corn stover, modulate rumen fermentation, feed digestion, and efficiency of
microbial N synthesis as well as reduce methane production in Thai native beef cattle. However, these
findings should be further elucidated regarding milk yield to determine the influence of diet on dairy
cow production.
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