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Abstract

Machine learning has been used in NMR in for decades, but recent developments signal explosive 

growth is on the horizon. An obstacle to the application of machine learning in NMR is the relative 

paucity of available training data, despite the existence of numerous public NMR data repositories. 

Other challenges include the problem of interpreting the results of a machine learning algorithm, 

and incorporating machine learning into hypothesis-driven research. This perspective imagines the 

potential of machine learning in NMR and speculates on possible approaches to the hurdles.

Machine Learning (ML) is here, and it has captured the public’s attention. News worthy 

examples are algorithms that beat the best human experts at ancient games like chess and 

Go, but also modern computer games like Starcraft (Fig. 1). More utilitarian and industrial 

applications abound, notably for autonomous vehicles but also financial engineering (e.g. 

dynamic pricing), drug design, and of course image classification. Large Internet companies 

(Google, Apple, Microsoft, Facebook) rely heavily on ML for their digital assistants (Siri, 

Google Assistant, Alexa), and have made important developments in the infrastructure, both 

software and hardware, to support large ML applications. The TensorFlow software library 

from Google reduced the computational cost of back-propagation for training neural nets, 

and Google’s Machine Learning Crash Course has proven to be a useful entrée into ML for 

thousands of developers.

Closer to home, the Google Deep Mind team made a recent splash1,2 in the Critical 

Assessment of Structure Prediction (CASP) competition3. This “shared task” competition 

challenges participants to predict protein structures given only the amino acid sequence. 

CASP has been run annually for 25 years, and has played a significant role in advancing the 

field of protein structure prediction. The Google team entered the competition for the first 

time in 2018, and immediately established themselves as the leading performers (Fig. 2). 

Their success no doubt benefitted from Google’s deep pockets and their computational 

resources, nevertheless the results are undeniable. For 43 challenge targets consisting only of 

sequence information, Google’s DeepMind team using their AlphaFold software outscored 

the other 97 competing teams 25 times. The nearest competitor achieved the top score on 

only 3 of these challenge targets.

Even before the recent success of AlphaFold, some commentators were questioning whether 

the advent of ML heralds changes in the way science is conducted, whether it will usurp the 

role of theory4 or upend hypothesis-driven research altogether. Here I explore some of the 

limitations of ML to argue that scientists will remain indispensable, and that ML will not 

supplant established approaches to science but become a powerful new tool in the conduct of 
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hypothesis-driven research. In fact, this role for ML is already firmly established, and we 

need look no further than NMR and the pages of this Journal for evidence.

ML in NMR

A definitive accounting of ML appearing in JMR is complicated by evolving nomenclature, 

but a casual search using the terms “machine learning”, “neural network”, and “artificial 

intelligence” yields more than 50 citations dating from 1988. Broadened to include other 

terms that rightfully represent forms of ML, for example Principle Component Analysis 

(PCA), the count of ML applications in JMR reaches into the hundreds.

Though ML is often described as an approach to “artificial intelligence”, the applications of 

ML in NMR are frequently more prosaic, tending toward utilitarian. Widely-used examples 

in protein NMR are SHIFTX25, used to predict 1H, 13C, and 15N chemical shifts from 

protein structures, and TALOS-N6, which predicts protein backbone conformation from 

chemical shifts. ML has made major inroads in the analysis of NMR metabolomics data7,8. 

More recently ML has been used to recapitulate expensive Density Functional Theory 

calculations9, achieving remarkable accuracy while dramatically reducing the computational 

cost. These examples demonstrate that far from replacing scientists, an important role for 

ML is to provide powerful new tools to scientists.

Interpretability, Inverse vs. Forward Modeling, and Hypothesis Testing

As powerful as ML is proving to be, a weakness is the so-called “interpretability” problem. 

Employing an ANN, for example, results in numerical weights for the nodes and 

connections, and while these values enable the use of ANNs as “black boxes”, they are 

otherwise opaque and don’t provide useful insight into how an ANN “learned”.

ML applications in NMR have demonstrated their use for both inverse modeling (e.g. 

deriving protein conformation from chemical shifts) and forward modeling (predicting 

chemical shifts from structure). Combining the two opens the possibility of adversarial 

training for ML, but also points at a possible approach to hypothesis testing as a means to 

overcome the interpretability problem. Where we have useful theory, predicting expected 

NMR parameters from a model can be used to generate “mock data” that can then be used to 

challenge a ML algorithm, testing both the hypothesis (the model) and the ML algorithm. 

When a ML algorithm that is able to accurately detect/distinguish “ground truth” (e.g. 

empirical data for known, standard samples) is unable to distinguish mock data from 

empirical data, the model/hypothesis is validated.

How much Data?

Years ago we turned to ML for a solution a nonuniform sampling (NUS) problem (K.-B. Li 

and J.C. Hoch, unpublished). The problem we posed was this: given a reference 

multidimensional spectrum computed by conventional discrete Fourier transformation 

(DFT) from a uniformly-sampled data set, what subset of the samples in the indirect 

dimensions (for a given fraction of the original number of samples), when fed to a maximum 

entropy algorithm to compute the spectrum for the NUS data, yields a spectrum closest to 
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the spectrum obtained using uniform sampling and DFT? When trained against a single 

spectrum, the results are excellent, and much better than randomly choosing a subset. 

Results for ML-optimized and random sampling employing 11% of the uniformly-sampled 

data are shown in Fig. 3(A, B), together with a representative ML-optimized sampling 

schedule (Fig 4). Though the ML-optimized sampling schedule works quite well, better than 

random sampling for recovering this spectrum, it does worse than random sampling when 

used to recover a similar spectrum with some of the peaks located at different frequencies. 

Close inspection of the sampling schedule reveals a level of regularity at long evolution 

times, regularity that will result in sampling artifacts. Apparently what ML learned, in this 

instance, is to place the artifacts where the peaks are located. In contrast, if we train the ML 

algorithm against multiple spectra, we get sampling schedules that exhibit less regularity, 

with a sampling density that mirrors the decay of the signal envelope (so-called envelope-

matched samping) instead of closley hewing to the detailed amplitude changes for a specific 

data set (beat-matched sampling) (Fig. 5). Since exponentially-biased sampling schedules 

are easier and cheaper to compute than ML-optimized schudules that look very similar, we 

didn’t pursue ML as an approach to finding optimal sampling schemes.

This ML exercise did provide a valuable lesson, however, on the importance of training data. 

The poverty of the ML-optimized schedule determined from a single training data set points 

to the need for “coverage” in the training data – the training data should contain examples of 

the full range of possibilities, both to identify features common to data sets as well as to 

ensure detection of specific instances. The results from training against multiple data sets 

reveal that the predominant feature common to possible data sets is the shape of the signal 

envelope. Whether ML algorithms are capable of identifying data types not represented in 

the training data remains somewhat controversial – to do so is considered “innovation”. The 

ability of AlphaGo to discover a novel move10 in the game of Go is cited as an example of 

innovation by ML.

Attention to coverage in the training data has informed a number of applications of ML in 

NMR structural biology. For example, Talos-N6, a neural net for predicting dihedral angles 

and secondary structure from chemical shifts, was trained against a database composed of 

peptide fragments in the Protein Data Bank (PDB) for which chemical shifts are available in 

the Biological Magnetic Resonance Data Bank (BMRB). Though it’s unlikely that all 

possible protein folds are represented in the PDB, it’s very likely that all feasible (thermally 

accessible) conformations of main-chain dihedral angles are represented.

The notion that it is difficult to discern truths from sets of examples that don’t contain 

pertinent examples is not new. The philosopher of science Karl Popper used this as the basis 

of his critique11 of the social sciences when historical records are used to try to predict the 

future. Popper’s argument remains relevant today.

More data!

Access to curated training data represents a significant hurdle to wider application of ML in 

NMR. Commercial NMR databases, mainly for small molecules, are quite extensive, but 

require sometimes expensive subscriptions. Publically accessible databases, notably 
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BMRB12 and The Human Metabolome Database13 (HMDB), are valuable resources but the 

number of entries pales in comparison to the amount of data available in collections such as 

ImageNet (http://www.image-net.org, >107 images), used to train image recognition ML 

algorithms.

Simply put, we need more data. A tremendous amount of NMR data is collected that never 

becomes publicly accessible; precise numbers are elusive, but conservatively it seems safe to 

say that the majority of data collected is unavailable for use by the broader community. 

Where there are relevant existing databases, additional efforts are needed to lower the 

barriers to deposition. Additional incentives in the form of requirements from publishers for 

deposition of primary, derived, and supporting data in public data archives could have a large 

beneficial impact, not only for applications of ML, but also for the reproducibility of 

published studies.

There is also need for new public data repositories for areas not covered by existing 

archives. A new initiative called the “Local Spectroscopy Database Infrastructure” (LSDI), 

housed within The Materials Project (materialsproject.org/) will be launched in summer 

2019. This resource will provide DFT-computed 29Si chemical shielding sensors for 

crystalline materials, with the expectation that the effort will be expanded to encompass 

additional nuclei. The success of LSDI depends on access to abundant empirical data.

Concluding Remarks

Machine Learning is well entrenched in NMR, and recent advances suggest many exciting 

applications lie ahead. The lesson from NMR is that the primary significance of ML will be 

as a source of new tools that scientists will use to accelerate their discovery of knowledge, 

rather than as a replacement for scientists. Furthermore, scientists remain essential as 

curators of the data used to train ML algorithms. Machines can “learn”, but not without 

scientists.
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Figure 1. 
Machine Learning in the news.
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Figure 2. 
CASP scores for Google DeepMind (vertical) vs. the best score for the other competitors 

(horizontal). Adapted from Science online1.
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Figure 3. 
MaxEnt spectral reconstructions using NUS data comprising 11% of the uniform Nyquist 

grid. A. ML-optimized schedule. B. Random schedule.
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Figure 4. 
ML-optimized sampling schedule comprising 11% of the Nyquist grid (used in Fig. 3A).
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Figure 5. 
ML-optimized NUS schedules optimized for a single training data set tend to concentrate at 

the peaks of the time-domain data. Schedules optimized for multiple data sets tend to mirror 

the decay of the signal envelope.
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