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Forecasting tumor and vasculature
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Abstract

Background: Intra-and inter-tumoral heterogeneity in growth dynamics and vascularity influence tumor response
to radiation therapy. Quantitative imaging techniques capture these dynamics non-invasively, and these data can
initialize and constrain predictive models of response on an individual basis.

Methods: We have developed a family of 10 biologically-based mathematical models describing the spatiotemporal
dynamics of tumor volume fraction, blood volume fraction, and response to radiation therapy. To evaluate this family of
models, rats (n= 13) with C6 gliomas were imaged with magnetic resonance imaging (MRI) three times before, and four
times following a single fraction of 20 Gy or 40 Gy whole brain irradiation. The first five 3D time series data of tumor volume
fraction, estimated from diffusion-weighted (DW-) MRI, and blood volume fraction, estimated from dynamic contrast-
enhanced (DCE-) MRI, were used to calibrate tumor-specific model parameters. The most parsimonious and well calibrated
of the 10 models, selected using the Akaike information criterion, was then utilized to predict future growth and response at
the final two imaging time points. Model predictions were compared at the global level (percent error in tumor volume, and
Dice coefficient) as well as at the local or voxel level (concordance correlation coefficient).

Result: The selected model resulted in < 12% error in tumor volume predictions, strong spatial agreement
between predicted and observed tumor volumes (Dice coefficient > 0.74), and high level of agreement at the
voxel level between the predicted and observed tumor volume fraction and blood volume fraction (concordance
correlation coefficient > 0.77 and > 0.65, respectively).

Conclusions: This study demonstrates that serial quantitative MRI data collected before and following radiation
therapy can be used to accurately predict tumor and vasculature response with a biologically-based mathematical
model that is calibrated on an individual basis. To the best of our knowledge, this is the first effort to characterize the
tumor and vasculature response to radiation therapy temporally and spatially using imaging-driven mathematical
models.
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Background
Radiation therapy has been a nearly ubiquitous treatment
option for cancers for over a century [1]. During that time,
there has been steady improvements in treatment delivery
driven by increased understanding of radiation biology

and engineering advancements in delivery technology. A
prime example is for the treatment of gliomas, where
complete resection is often practically impossible [2, 3]—
necessitating adjuvant radiation (and/or chemo-) therapy
to treat residual disease. In this setting, developments in
radiation therapy technology has facilitated the delivery of
more precise irradiation techniques to optimize the dose
delivered to the tumor while simultaneously minimizing
exposure to healthy tissue. Even with these advances,
prognosis for malignant gliomas is overwhelming poor
with response to standard therapies typically resulting in
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disease progression in 7 to 10months [2]. Emerging im-
aging [4] and modeling approaches [5–8], however, may
facilitate the improvement of radiation therapy through
the assessment of intratumoral heterogeneity, the identifi-
cation of tumor radiosensitivity, and through in silico tri-
als to optimize therapeutic regimens (e.g., dosing and
scheduling) for an individual subject.
Anatomical imaging approaches such as contrast-

enhanced magnetic resonance imaging (MRI), play a
crucial role in identification of treatment volumes and the
assessment of response [9]. However, anatomical imaging
does not assess physiological or functional properties of
the tissue that might be relevant to tumor and radiation
biology. Quantitative imaging techniques such as diffusion
weighted (DW-) MRI and dynamic contrast enhanced
(DCE-) MRI can provide functional information charac-
terizing changes in tumor cellularity and tissue perfusion,
respectively [10]. Both DW-MRI and DCE-MRI have
shown promising potential by providing early imaging bio-
markers of response in glioblastoma [11, 12] and have
been widely used in other cancers [13–15]. The quantita-
tive and non-invasive nature of both DW-MRI and DCE-
MRI makes these techniques well-suited for mathematical
modeling of tumor growth as they can provide the 3D dis-
tribution of the tumor cells and vasculature before, during,
and after treatment. These temporally defined data sets
allow for model initialization and calibration, both of
which are required for making tumor specific predictions.
We (and others [6, 16–22];) have developed a series of

increasingly comprehensive biophysical mathematical
models of tumor and vasculature growth [5, 23–25] to
provide individualized forecasts of response to radiation
therapy using non-invasive quantitative imaging data. Our
overall hypothesis, is that biologically-relevant models,
informed and calibrated from tumor-specific imaging
data, may lead to the early prediction of response, signifi-
cant improvements in tumor control through the pre-
treatment optimization of therapy regimens, and the
adaptation of treatment regimens by accounting for the
spatiotemporal variations in tumor response [26]. Thus,
we seek to incorporate the effects of radiation therapy
spatially on cellularity and vascularity.
Historically, the linear quadratic [27] (LQ) model has

played a fundamental role in the design and delivery of radi-
ation therapy plans. More recently, there has been an in-
creased interest in the development of tumor (or patient)
specific approaches to characterize and/or predict response
to radiation therapy [8, 28–31]. In the pre-clinical setting, we
previously developed [5] a model of response to radiation
therapy consisting of immediate (i.e., instantaneous reduction
in tumor cells) and long-term (reduced proliferation) effects
of radiation therapy. In that study, we demonstrated that
combining both immediate and long-term effects outper-
formed models consisting of single effects. Additionally, we

have previously demonstrated that both DW-MRI and DCE-
MRI data could be used to initialize and calibrate a biophys-
ical model of tumor growth and angiogenesis in the absence
of treatment that resulted in accurate volume and voxel-wise
predictions of tumor and blood volume fractions [25]. At the
clinical level, one approach by Rockne et al. [6] leveraged
anatomical MRI and hypoxia-sensitive positron emission
tomography images collected in glioblastoma multiforme
patients to determine patient-specific radiosensitivity para-
meters. Rockne et al. demonstrated that incorporation of
hypoxia-mediated resistance resulted in more accurate pre-
dictions of the bulk tumor volume. Prokopiou et al. [8] pro-
posed the use of the proliferation saturation index or simply
the ratio of the pre-treatment tumor volume to a patient-
specific carrying capacity to predict and personalize radio-
therapy fractionation. In an in silico clinical trial, Prokopiou
et al. demonstrated that patients with proliferation saturation
indices ranging from 0.45 to 0.9 were more likely to
benefit from the proposed hyperfractionation protocol
as opposed to the standard fractionation protocol.
These promising approaches represent real progress to-
wards the development of model-based adaptive radi-
ation therapy. However, we posit that tumor cellularity
and volumetric measures alone may be insufficient to
capture the spatially and biologically heterogenous
response to radiation therapy.
In this contribution, we extend our image driven tumor in-

duced angiogenesis model to incorporate the effects of radi-
ation therapy on cell death and the net proliferation rate. We
first develop a family of 10 biologically-relevant models to in-
vestigate different approaches to characterize the response of
the tumor and vasculature to radiation therapy. We then
calibrate all 10 models using quantitative DW-MRI and
DCE-MRI data collected in a murine model of glioma
growth on an animal-specific basis. The most parsimonious
and well calibrated model is then chosen by a statistical
model selection scheme. Finally, we assess the model’s ability
to accurately predict response in volume and voxel-wise
measures of tumor and blood volume fraction as observed in
post-treatment MRI measures.

Methods
Biophysical model of tumor and vasculature growth
Our mathematical model is built upon the well-studied
reaction-diffusion model framework that has been exten-
sively applied to pre-clinical [23, 32, 33] and clinical models
[29] of glioma growth. In a single species model (i.e., consid-
ering only tumor cells of one type) the reaction diffusion
model describes the spatial and temporal change in tumor
cell number due to proliferation (i.e., the reaction term) and
due to the outward movement (i.e., the diffusion term) of
tumor cells. In our previous efforts, we extended the stand-
ard reaction-diffusion model to incorporate the effect of local
tissue stress on tumor cell diffusion [24] as well as
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characterize the spatial-temporal evolution of both tumor
cells and vasculature [25]. We present the salient features of
this model system here, while Table 1 summarizes the model
parameters and variables and their sources. (A more detailed
description can be found elsewhere [24, 25, 34].) The spatial
and temporal evolution of the tumor cell fraction is
given by Eq. (1):

ð1Þ

where ϕT ðx; tÞ is the tumor cell fraction at three-
dimensional position x and time t, DT ðx; tÞ is the tumor

cell diffusion coefficient, θT ;V ðx; tÞ is the summation of
tumor and the blood volume fraction carrying capacities,
ϕV ðx; tÞ is the blood volume fraction, kp,T is the tumor
cell proliferation rate, and θT ðx; tÞ is the tumor cell car-
rying capacity (i.e., the maximum packing fraction that a
voxel can functionally support). Tumor cell diffusion is
affected by both local tissue mechanical properties, via
DT ðx; tÞ, and by the space occupied by tumor associated
vasculature. The effect of local tissue properties is incor-
porated by exponentially dampening DT ðx; tÞ as the local
mechanical stress increases according to:

DT x; tð Þ ¼ DT ;0 exp −λ1 � σvm x; tð Þð Þ; ð2Þ
where DT,0 represents the uninhibited tumor cell diffu-
sion coefficient, λ1 is the stress-tumor cell diffusion
coupling constant, and σvmðx; tÞ is the von Mises stress
which reflects the total stress experienced for a given
section of tissue. The σvmðx; tÞ is determined by solving
for tissue displacement, u! , using the linear elastic,
isotropic equilibrium equation (Eq. (3)):

∇ � G∇ u!þ ∇
G

1−2v
∇ � u!� �

−λ2∇ϕT x; tð Þ ¼ 0; ð3Þ

where G is the shear modulus,ν is the Poisson’s Ratio,
and λ2 is the second coupling constant. Literature values
are used to assign tissue specific [34] G and v. θT ðx; tÞ ,
and θT ;V ðx; tÞ , are temporally and spatially varied in
response to changes in ϕV ðx; tÞ using the following linear
relationship:

θT x; tð Þ ¼ f
θmax ϕV x; tð Þ≥ϕV ;thresh

θmin þ ϕV x; tð Þ θmax−θmin

ϕV ;thresh

 !
ϕV x; tð Þ < ϕV ;thresh;

ð4Þ
where θmin to θmax represents the range of expected

carrying capacity values, and ϕV, thresh represents a crit-
ical value for ϕV ðx; tÞ that would begin to change the
number of cells a voxel can support. θmin is assigned as
the lowest volume fraction within the tumor.
The spatial-temporal evolution of ϕV ðx; tÞ , is de-

scribed with a similar reaction-diffusion model con-
sisting of a diffusion, angiogenesis, and death terms
as shown in Eq. (5):

ð5Þ
where DV ðx; tÞ is the vascular diffusion coefficient, kp,V
is the vascular growth rate, θV is the blood volume

Table 1 Model parameters and variables

Parameter or
variable

Interpretation Source

ϕT ðx; tÞ Tumor cell volume fraction Measured
from DW-MRI

ϕV ð�x; tÞ Blood volume fraction Measured
from DCE-MRI

kp,T Tumor cell proliferation rate Calibrated

θT ;V ðx; tÞ Combined ϕT and ϕV carrying capacity Calculated

θT ðx; tÞ Tumor cell carrying capacity Calculated
Eq. [4]

DT,0,DV,0 ϕT and ϕV diffusion coefficients in
absence of mechanically coupling

Calibrated

G Shear modulus Literature [34]

v Poisson’s Ratio Literature [34]

λ1 Coupling Constants Calibrated

λ2 Coupling Constants Set to 1

ϕV;thresh Threshold on ϕV for carrying capacity to
decrease

Calibrated

θmax Max carrying capacity Calibrated

θmin Minimum value for carrying capacity Assigned from
DW-MRI

kp,V Vasculature proliferation rate Calibrated

kd,V Vasculature death rate Calibrated

d Distance top the periphery of the tumor Calculated

θV Maximum blood volume Assigned from
DCE-MRI

αI Treatment efficacy (immediate effect) Calibrated

αLT Treatment efficacy (long term effect) Calibrated

Dose Treatment dose (in Gy) Assigned

α Radiosensitivity Parameters Calibrated

β Radiosensitivity Parameter Assigned

ϕV;pre−treatment Average pre-treatmentϕV ðx; tÞ Calculated
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fraction carrying capacity, d is a normalized parameter
describing the distance to the periphery of the tumor,
and kd,V is the vascular death rate. DV ðx; tÞ is also
coupled to local tissue stress as in a similar fashion as
DT ðx; tÞ . d ranges from 1 for voxels at the periphery of
the tumor to 0 for voxels furthest from the periphery.

Modeling response to radiation therapy
We assume the response to radiation therapy is observed
over two-time frames: immediate and long term. First,
for the immediate response following radiation therapy,
some cells die instantaneously due to irreparable damage
or early mitotic catastrophe [35, 36]. Second, for long
term response following radiation therapy, some cells
will have a reduced net proliferation rate due to DNA
repair processes or delayed mitotic catastrophe [35, 36].
The immediate effects of radiation therapy are modeled
as a direct reduction of ϕT ðx; tÞ at the time of radiation
therapy:

ϕT ;postRT x; tð Þ ¼ ϕT ;preRT x; tð Þ−αI � CI

� ϕT ;preRT x; tð Þ ð6Þ
where ϕT ;postRT ðx; tÞ is the post-radiation therapy value
of the tumor cell fraction, ϕT ;preRT ðx; tÞ is the pre-
radiation therapy value of the tumor cell fraction, αI is
an treatment efficacy parameter for the immediate ef-
fects, and CI is one of five coupling approaches (de-
scribed below). The post-radiation effects of ϕV ðx; tÞ are
handeled in an identical fashion as Eq. (6). The long
term effects RLT(t) of radiation therapy are incorporated
in an amended Eq. (1):

ð7Þ
Eq. (5) is amended in a similar fashion as Eq. (7). The

term RLT(t) is a piecewise function represented by Eq. (8):

RLT tð Þ ¼ f αLT � CLT t≥ trt
1 t < trt

ð8Þ

where αLT is a treatment efficacy parameter, CLT is one
of five coupling approaches (described below), and trt is
the time that radiation therapy is administered.
To systematically investigate different approaches for

characterizing the efficacy of radiation therapy spatially
or as a function of treatment dose, we implemented five
different coupling approaches as shown in Table 2. The
logistic growth approach, C1, assumes the efficacy of ra-
diation therapy decreases as ϕT ðx; tÞ approaches θT ðx; tÞ
due to a slower proliferation (and thus less susceptible)

cells. The LQ approach, C2, assumes no spatial variance
in treatment efficacy, but relates efficacy to the radiosen-
sitivity parameters (α and β) and the treatment dose
(Dose). The vascular coupled approach, C3, relates the
treatment efficacy spatially to ϕV ðx; tÞ. Here, we assume
areas that are well-vascularized (potentially normoxic)
and have increased radiosensivity relative to poorly-
vascularized (potentially hypoxic) regions. The oxygen
enhanced approach, C4, combines elements from C2 and
C3 to spatially vary treatmenty efficacy as a function of
ϕV ðx; tÞ while also utilizing a common radiobiology
adaptation of the LQ model. While ϕV ðx; tÞ is not a dir-
ect measure of tissue oxygenation, we assume that tissue
oxygenation is proportional to the blood volume frac-
tion; thus, when ϕV ðx; tÞ is greater than the average pre-
treatment ϕV ðx; tÞ , ϕV ;pre−treatment , the oxygen enhance-
ment ratio (OER) will be greater than 1. Finally, the fifth
coupling approach, C5, assumes no spatial variability,
and the effect of radiation therapy is evenly applied.
The spatial-temporal evolution of ϕT ðx; tÞ and ϕV ðx; tÞ

was deterimined using a finite difference approximation
implemented in MATLAB R2018a (Mathworks, Natick,
MA) using a fully explicit in time differentiation (time
step = 0.01 days) and three dimension in space (Δx =
250 μm, Δy = 250 μm, Δz = 1000 μm) central difference
spatial differentiation. No flux (Neumann) boundary con-
ditions were used for ϕT ðx; tÞ and ϕV ðx; tÞ at the skull
boundary. The boundary condition for u! was assumed to
be zero displacement in the normal direction, while it was
assumed that the tissue in the tangential directions was
free to move (i.e., slip condition). Complete numerical de-
tails on the mechanically-coupled model, Eq. (3), can be
found elsewhere [34].

In vivo experimental methods
All experimental procedures were approved by our
Institutional Animal Care and Use Committee. Thir-
teen female Wistar rats (weights from 240 to 286 g)
were anesthetized and inoculated intracranially with
105 C6 glioma cells (obtained from Sigma-Aldrich, St.

Table 2 Radiation therapy efficacy coupling approaches

Coupling
approach

Formula

C1 Logistic CI ¼ CLT ¼ 1−ϕT ðx; tÞ=θT ðx; tÞ
C2 Linear

quadratic
(LQ)

CI = 1 − exp(−α ⋅ Dose − β ⋅ Dose2), CLT = 1 − CI

C3 Vascular CI ¼ expð−ðθV−ϕV ðx; tÞÞ : α3Þ; CLT ¼ 1−CI

C4 Oxygen
enhanced

OER ¼ ϕV ðx; tÞ=ϕV;pre−treatment

CI ¼ 1− expðOER � ð−α � Dose−β � Dose2ÞÞ; CLT ¼ 1−CI

C5 None CI = 1, CLT = 1
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Louis, MO, USA). Rats were imaged with MRI on
days 10, 12, 14, 16.5, 18.5, 20.5, and 22.5. A perman-
ent jugular catheter was placed in each rat up to 48 h
prior to their first MRI study. Rats received a single
fraction 20 Gy (n = 5) or 40 Gy (n = 8) of whole brain
radiation therapy on day 14.5 using a Therapax DXT
300 x-ray machine (300 kVp/10 mA, Pantak Inc., East
Haven, CT, USA) at a dose rate of 2.3 Gy/min. Dur-
ing the irradiation procedure, the animals were anes-
thetized with a mixture of 2% isoflurane in 98%
oxygen, and lead shielding was used to minimize radi-
ation exposure outside of the brain.
MRI data was acquired using a 9.4 T horizontal-bore

magnet (Agilent, Santa Clara, CA) with a 38mm diam-
eter Litz quadrature coil (Doty Scientific, Columbia, SC,
USA) over a 32 × 32 × 16 mm3 field of view sampled with
a 128 × 128 × 16 matrix. Figure 1 summarizes the experi-
mental and computational framework used in this study.
Following the initial imaging visit, all subsequent im-
aging visits were registered using a mutual information
based rigid registration algorithm to provide imaging
spatial offsets and rotations to minimize retrospective
registration [23] (Fig. 1a). The same registration algo-
rithm was used to perform retrospective registration as
needed to maximally align the imaging data across time.
DW-MRI and DCE-MRI experiments were performed at
each visit. For the DW-MRI experiment, a pulsed gradi-
ent, fast spin echo sequence with three orthogonal diffu-
sion encoding directions with b-values of 150, 500, 1100
s/mm2, TR = 2000ms, TE = 30 ms, number of excita-
tions = 10, Δ = 25ms, and δ = 2ms. A standard mono-
exponential model was fit to the DW-MRI data to esti-
mate the apparent diffusion coefficient (ADC) voxel-wise
within the tumor. ADC measures (Fig. 1a) at each voxel
were then used to estimate ϕT ðx; tÞ assuming the linear
relationship shown in Eq. (9):

ϕT x; tð Þ ¼ ADCw−ADC x; tð Þ
ADCw−ADCmin

� �
ð9Þ

where ADCw is the ADC of free water at 37 °C [37],
ADCðx; tÞ is the ADC value at position x and time t, and
ADCmin is the minimum ADC observed within the
tumor regions-of-interest (ROIs) across all animals. We
have previously used Eq. (9) to provide non-invasive esti-
mates of tumor cellularity [5, 24, 38–40]; however, we
acknowledge that the assumption that all changes in
ADC are related to changes in cellularity is a simplifica-
tion of the complexity of the cellular (e.g., cell size and
permeability) and tissue properties (e.g., tortuosity) in
the presence and absence of treatment that also contrib-
utes to changes in ADC (see discussion in [5, 25]). For
the DCE-MRI experiment, we first collected a T1 map

using an inversion-recovery snapshot with TR = 5000ms,
TE = 3ms, 8 inversion times logarithmically spaced be-
tween 200 and 4000 ms, and two averaged excitations.
DCE-MRI data was then acquired using a spoiled gradi-
ent echo sequence with TR = 45ms, TE = 1.4 ms, two av-
eraged excitations, and a flip angle of 20°. A 200 μL
bolus (0.05 mmol kg− 1) of Gado-DTPA™ (BioPhysics
Assay Lab, Worcester, MA) was injected after 25 image
sets were acquired. Relative blood volume fraction, ϕV ðx
; tÞ , was calculated by computing the ratio of the area
under the curve for the concentration of the contrast
agent in tissue time course to the arterial input function
[41] over the first 60 s (Fig. 1a). Tumor ROIs were
identified using a relative enhancement map (post-
contrast image divided by pre-contrast image) derived
from DCE-MRI data.

Model parameter calibration
In addition to the five coupling scenarios described
above (i.e., C1 to C5), we considered two additional
parameterization approaches. First, we assumed kp,V was
assigned as a global parameter (uniform throughout the
domain). In a previous study, this model was selected as
the model that best balances model fit and model com-
plexity [25]. Second, we considered the case where kp,V
was assigned locally within the tumor. With these two
additional parameterization approaches, we generated a
total of 10 models to calibrate per animal. For the locally
varying approach, parameter values were calibrated
within the tumor at a subset of the points and then in-
terpolated elsewhere. For example, for a given 3 × 3
voxel sub-region within the tumor ROI, the parameter
values were calibrated at the corner and center positions,
while the remaining four points were interpolated from
the nearest calibrated values. This parameter calibration
approach both significantly reduced the number of indi-
vidual parameters that needed to be calibrated while also
smoothing or regularizing the parameter field spatially.
For models C2 and C4, which incorporate the LQ model
of response to radiation therapy, αI and αLT are both
assigned to 1 and the LQ parameter α is calibrated. The
parameter β is calculated assuming an α/β ratio of 14
(assigned from literature values [42]). While the calibra-
tion approach (Fig. 1b) is briefly discussed here, the in-
terested reader is referred to previous studies [25, 34]
for a more complete description on the algorithm used.
To personalize model predictions for individual animals,
model parameters were calibrated on an animal specific
basis using data from time points 2 to 5 via a hybrid
simulated-annealing Levenberg-Marquardt algorithm
[25]. Briefly, an initial guess of model parameters and
the initial conditions at t1, ϕT ðx; t1Þ and ϕV ðx; t1Þ, are used
to return estimates of ϕT ðx; t2→t5Þ and ϕV ðx; t2→t5Þ via
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a finite difference simulation of the model system.
Then, a Jacobian is numerically determined and
used to determine the appropriate change in model
parameters to decrease the objective function (sim-
ply, the sum of the squared errors between each of
the measured and simulated ϕT ðx; tÞ and ϕV ðx; tÞ
values). A standard Levenberg-Marquardt algorithm
typically only accepts changes in model parameters
that result in a decrease in the objective function.
Here, we use a simulated-annealing approach to
accept changes in model parameters that result in a
decrease in the objective function value and occasionally

accept increases in the objective function based off of the
simulated annealing criterion. By incorporating a stochas-
tic element, this hybrid algorithm allows this approach to
escape potential local minimum and find the global
minimum. The algorithm ceases when either the error
in the objective function stagnates (less than 0.5%
change in successive iterations) or when 1000 iterations
are reached.

Model selection
We utilized the Akaike Information criterion (AIC [43])
to select the model (Fig. 1c) that optimally balances

Fig. 1 Schematic of experimental and computational methods. Panel a shows our model pre-processing work flow. Images are first registered
using a rigid registration algorithm. DW- and DCE-MRI are then used to estimate ϕT ðx; tÞ and ϕV ðx; tÞ at each time point. Using data from t1
through t5, all 10 models are calibrated (panel b) to return estimates of the model parameters that minimize the error between the measurement
and model. The AIC is then calculated and used to select the most appropriate model (panel c) that balances model complexity and model fit.
The selected model is then used in a forward evaluation to provide a “forecast” (panel d) of future ϕT ðx; tÞ and ϕV ðx; tÞ at t6 and t7. The predicted
ϕT ðx; tÞ and ϕV ðx; tÞ are then compared directly back to the measurement obtained from DW- and DCE-MRI
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model complexity and model-data agreement. The AIC
is defined as:

AIC ¼ 2k þ n ln
RSS
n

� �
þ 2k

k þ 1
n−k−1

� �
ð10Þ

where k is equal to the number of parameters calibrated
for a given model, n is the number of data points used
to calibrate the model, and RSS is the residual sum
squares between the measured and model ϕT ðx; tÞ and
ϕV ðx; tÞ . For each animal, we calculated the AIC for
each model and ranked the models from 1 to 10. We
then calculated the average rank for each model and se-
lected the model with the lowest average rank.

Model prediction and error analysis
The model prediction step is summarized in Fig. 1d. We
considered two models in the prediction stage: (1) the
lowest ranked model and (2) the highest ranked model.
The calibrated model parameters were used to simulate
each model forward in time to predict tumor growth at
the remaining time points not used in the model calibra-
tion (t6 and t7). The model predicted ϕT ðx; tÞ and ϕV ðx;
tÞ were compared directly to the measured ϕT ;measðx; tÞ
and ϕV ;measðx; tÞ at the global and local levels. At the
global level, we calculated the percent error in predicted
tumor volume and the Dice coefficient. The Dice coeffi-
cient describes the degree of overlap of the predicted
and measured tumor volumes with a Dice value of 1 in-
dicating perfect overlap. At the local level we calculated
the concordance correlation coefficient (CCC) which de-
scribes the level of agreement between the predicted and
measured values at each voxel location.
The Lilliefors test (‘lillietest’ function in MATLAB) was

used to determine if the set of error observations from
each time point, model, and error metric comes from a
distribution in the normal family. No signficant p values
(at a 5% significance level) were observed; thus we are un-
able to reject the null hypothesis that the observations
come from a distribution in the normal family. All results
are presented as the mean and 95% confidence interval
when appropriate. A two-sample t-test for distrubutions
with equal means and variances was used to evaluate the
differences between the two separate model predictions. A
p-value of < 0.05 was considered significant.

Results
Model selection
Table 3 shows the results of the model selection process.
The C3 radiation therapy coupled (or vasculature coupled)
approach with global parameters had the lowest average rank
(2.62) and was tied with the C4 (or OER coupled) approach
as the most frequently selected model (5 out of 13). Add-
itionally, the C2 radiation therapy coupled (or LQ coupled)

approach was selected for 3 out of 13 animals. The C1 radi-
ation therapy coupled (or logistic growth coupled) approach
with local parameters had the highest average rank (9.69). In
the following analysis, model C3 with global parameters
(most selected) was compared to model C1 with local param-
eters (least selected). For the following analysis, we will ab-
breviate these two models as RT1 (most selected model) and
RT2 (least selected model).

Model prediction
Figures 2, 3 and 4 report the results of the model predic-
tion phase. Figure 2 shows both the predicted and mea-
sured ϕT ðx; tÞ and ϕV ðx; tÞ over the entire tumor
volume for a representative animal receiving a single
fraction of 20 Gy. The distributions for ϕT ðx; tÞ and ϕV ð
x; tÞ are also shown for RT1, while the white contours
indicate the RT2 prediction on the ϕT ðx; tÞ images. For
this particular animal, no clear necrosis (low cell density
region) is observed in the post-treatment time points.
High ϕV ðx; tÞ is observed near the brain-skull interface,
while it decreases towards the interior of the brain. Visu-
ally, there appears to be a strong agreement in the over-
all shape and distribution of ϕT ðx; tÞ and ϕV ðx; tÞ at
both t6 and t7. The fused image showing the differences
between the measured and predicted distributions indi-
cate that there are some areas that the model incorrectly
predicts tumor cells where there are none (bright green
regions). Likewise, there are areas where the model fails
to predict tumor cells where they exist in the data
(bright pink regions). These visual observations are con-
firmed through the percent error in tumor volume, Dice
coefficient, and CCC reported below. Both RT1 and RT2
models have less than 6% error in the predicted
tumor volume at t6. A high degree of overlap is
found between the predicted and observed tumor vol-
ume with Dice coefficients of 0.83 and 0.82 for the
RT1 and RT2 models, respectively. However, at the
voxel level, the RT1 model has a strong level of
agreement to the measured tumor cell fraction with a
CCC of 0.76, while the RT2 model has a CCC of
0.54. At t7, less than 20% error is observed in tumor
volume predictions for the RT1 and RT2 models. A
high degree of overlap still exists between the

Table 3 Model selection results

Radiation therapy coupling
model

Global
parameters

Local
parameters

C1 6.85 (0) 9.69 (0)

C2 3.08 (3) 6.77 (0)

C3
α2.62 (5) 6.92 (0)

C4 2.85 (5) 7.38 (0)

C5 3.08 (0) 5.77 (0)

Average rank (number of animals ranked first). α indicates lowest score
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predicted and measured tumor volumes resulting in
Dice correlation coefficients of 0.81 and 0.79 for the
RT1 and RT2 model, respectively. At the local level,
the RT1 and RT2 models have CCCs of 0.70 and 0.44,
respectively. For ϕV ðx; tÞ , CCCs greater than 0.95 are
observed for the RT1 model at both t6 and t7, while CCCs
less than 0.10 are observed for the RT2 model.

Similar to Fig. 2, Fig. 3 depicts a representative animal
receiving a single fraction of 40 Gy. Unlike the animal in
Fig. 2, this animal appears to have developed necrosis
(or low ϕT ðx; tÞ regions) in the prediction time points.
Generally, these low ϕT ðx; tÞ correspond to low ϕV ðx; tÞ
regions in the right hand panels. Both the model predic-
tions for ϕT ðx; tÞ and ϕV ðx; tÞ appear to recapitulate this

Fig. 2 Predicted response to radiation therapy for a representative animal receiving 20 Gy. Results are shown over the entire tumor volume for a
representative animal receiving a single fraction of 20 Gy. The measured and model predicted ϕT ðx; tÞ and ϕV ðx; tÞ are shown for the RT1 model
at t6 and t7, respectively. The fused image depicts areas where there exists perfect agreement between the model and measurement (white areas),
where the model exists where the measurement does not (green areas), and where the measurement exists and the model does not (pink areas). The
blue contours represent the prediction of the RT2 model. The distributions of ϕT ðx; tÞ and ϕV ðx; tÞ are normalized to the maximum value of ϕT ðx; tÞ
and ϕV ðx; tÞ observed in the measurement, and thus share a colorbar ranging from 0 to 1. This particular animal has a relatively spatially homogenous
distribution of tumor cells. That is, it appears that no necrosis or low cell density regions have developed despite, poorly vascularized regions observed
on the measured ϕV ðx; tÞ. The RT2 model overestimates tumor growth most noticeably in slices 1, 5, 6, and 7. Visually, the RT1 model resulted in
accurate predictions of low and high ϕV ðx; tÞ regions at both t6 and t7. The highest level agreement (white areas) was observed for the high ϕV ðx; tÞ
region near the brain-skull boundary. Less agreement regions were observed away from the brain-skull boundary
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Fig. 3 Predicted response to radiation therapy for a representative animal receiving 40 Gy. Results are shown over the entire tumor volume for a
representative animal receiving a single fraction of 40 Gy. (The results are presented in an identical fashion to Fig. 2) The RT1 model is capable of
predicting the spatial heterogeneity (the development of necrosis) observed in the measured ϕT ðx; tÞ. The RT2model overestimates the tumor volume at both
prediction time points. For ϕV ðx; tÞ, the RT1model was able to predict areas of low ϕV ðx; tÞ in the interior and areas of high ϕV ðx; tÞ at the periphery of the
tumor. The model, however, predicts a lower ϕV ðx; tÞ at the interior of the tumor in comparison to the measurement. The fused images demonstrate a high
level of agreement in the tumor (white regions), as well as areas where the model fails to predict future tumor growth extent (pink regions)
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phenonoma resulting in increased ϕT ðx; tÞ and ϕV ðx; tÞ
at the periphery and decreased ϕT ðx; tÞ and ϕV ðx; tÞ to-
wards the interior of the tumor. Additionally, compared
to the 20 Gy animal, the RT2 model seems to have in-
creased overestimation of the future tumor growth.
These qualitative observations are supported by the
quantitative error assessment. For example, the RT1
model resulted in less than 2% error in tumor volume
predictions compared to the RT2 model which has
greater than 113% error in tumor volume predictions.
The high degree of overlap of the predicted and ob-
served tumor volumes for the RT1 model is reflected in
a Dice correlation coefficient of 0.85, while the RT2

model has a value of 0.50. At the local level, RT1 and
RT2 models have CCCs of 0.68 and 0.01, respectively.
Similarly, for t7, the RT1 model resulted in less than 12%
error in tumor volume predictions compared to the RT2
model which has greater than 193% error in predictions.
A high degree of overlap between the predicted and
observed tumor volume is observed resulting in Dice
correlation coefficients of 0.83 and 0.52 for the RT1 and
RT2 models, respectively. At the local level, the RT1
model has provided accurate descriptions of the intratu-
moral heterogeneity resulting in CCCs of 0.70, while the
RT2 model resulted in CCCs of 0.05. For ϕV ðx; tÞ, CCCs
greater than 0.62 are observed for the RT1 model at

Fig. 4 Summary statistics for the entire animal cohort. The summary statistics for the RT1 (orange bars) and RT2 (blue bars) are shown for both ϕT

ðx; tÞ and ϕV ðx; tÞ predictions. Error bars represent the 95% confidence interval. Panel a shows the percent error in tumor volume at t6 and t7. For
the RT1 and RT2 models error ranged from 6.11 to 80.69%. Dice coefficients (panel b) generally decreased overtime with values ranging from 0.55
to 0.80. At the local level, the agreement was assessed using the CCC, resulting in values ranging from 0.63 to 0.78 for ϕT ðx; tÞ predictions (panel
c), and 0.59 to 0.73 for ϕV ðx; tÞ predictions (panel d). Statistical significance (p < 0.05) between models are indicated by ‘*’
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both t6 and t7, while CCCs less than 0.37 are observed
for the RT2 model for the same time points.
Fig. 4 summarizes global and local error analysis for

the cohort. The RT1 model has less than 12% error in
tumor volume predictions (panel a) at both t6 and t7,
wheras the RT2 model has greater than 32% error. Sta-
tistically significant (p < 0.05) differences are observed
between the RT1 and RT2 model at t6 and t7. A high
level of spatial agreement is observed between the pre-
dicted and observed tumor volumes for the RT1 model
resulting in Dice coefficients (panel b) greater than 0.74
at both timepoints. Lower agreement is observed for the
RT2 model, which resulted in Dice coefficients less than
0.63 at both time points. The RT1 model resulted in sta-
tistically significant (p < 0.05) larger Dice coefficients
compared to the RT2 model. At the local level, the RT1
model has a high level of agreement between the pre-
dicted and measured ϕT ðx; tÞ with CCCs (panel c)
greater than 0.77 for both t6 and t7. Similarily, the RT2
has a modest level of agreemennt with CCCs greater
greater than 0.63 for both t6 and t7. For the blood vol-
ume fraction predictions (panel d), a modest level of
agreement is observed between the predicted and ob-
served ϕV ðx; tÞ for the RT1 model resulting in CCCs
greater than 0.65 at both time points. The RT2 model
performed nearly as well as the RT1 model resulting in
CCCs greater than 0.59.

Discussion
Ten biologically-based models of tumor and vasculature
response to radiation therapy were developed and tested
for their ability to capture variations in the individual
animal responses in radiation response. Each model was
calibrated for individual animals using serial DW- and
DCE-MRI estimates of tumor and blood volume frac-
tions. The model that coupled radiation response to
tumor vascularity using all global model parameters (C3)
was selected as the model that optimally balanced model
complexity and model fit. This selected model was then
used to provide a forecast of the 3D distribution of both
tumor and blood volume fractions for each animal. The
selected model resulted in low global level errors
(percent error in tumor volume < 12%, Dice coefficients
> 0.74) and local level errors (CCCs > 0.65) for tumor and
blood volume fractions predictions. This study illustrates
the ability of this image-driven, subject-specific modeling
framework to capture and describe tumor-specific
response to whole brain radiation therapy. Notably, the
two most selected models (C3 and C4) both coupled
radiation therapy efficacy to vascular distribution.
The varied response of glioma (and other solid tumors)

to radiation therapy is linked to the spatial and biological
heterogeneity unique to each tumor. Notably in the case

of brain tumors [44], heterogeneity in hypoxia status is as-
sociated with tumor progression and overall survival due
to increased resistance to radiation therapy. Several emer-
ging imaging [45, 46] methods such as 18F-fluoromisoni-
dazole positron emission tomography (18F-MISO PET)
and oxygen enhanced MRI can quantify the extent of hyp-
oxia pre-treatment potentially providing the means to
optimize therapy for individual tumors. Using 18F-MISO
PET data, Rockne et al. demonstrated improved
characterization of individual patient radiosensitivity com-
pared to approaches that ignored the effect of hypoxia on
treatment sensitivity. However, the dynamics of hypoxia
(and thus radiosensitivity) is likely to vary during treat-
ment due to the phenomenon of reoxygenation during ra-
diation therapy [47]. A recent modeling study by Alfonso
et al. [48] also demonstrated in silico the importance of
characterizing radiosensitivity dynamics during the course
of fractionated radiation therapy. Specifically, the initial
distribution of intratumoral radiosensitivity and the
fractionation scheme significantly impact the efficacy or
(overall radiosensitivity) during the course of fractionated
therapy. Therefore, to adapt radiation therapy to counter-
act the temporal and spatial variations in radiosensitivity,
characterization of the upstream processes that lead to
hypoxia or changes in radiosensitivity are needed. There
have been several attempts at describing these dynamics
at the volume-level [49, 50] and with cell scale models
[51]; however, to adapt therapy to potentially address
spatial variability in radiosensitivity, a spatially and tem-
porally resolved tumor-specific mathematical description
is required. In this effort, we developed and systematically
characterized a spatiotemporal model of tumor and vascu-
lature response to radiation therapy. It is the inability of
the local vasculature to support local tumor cell growth
that leads to spatial variations in hypoxia. To the best of
our knowledge, this is the first effort to characterize the
tumor and vasculature response to radiation therapy tem-
porally and spatially using imaging driven mathematical
models.
There are several areas for further development of our

experimental-computational approach. First, a limitation
we have previously discussed in detail elsewhere [25] is
the use of DW-MRI to estimate tumor volume fraction.
While the techniques has been well studied in both the
pre-clinical and clinical settings and appears to be well-
suited for characterizing tumor properties [10], the ADC
does provide only a first-order approximation of true cell
density. Second, we acknowledge that the doses of
radiation therapy used in this study exceed what is com-
monly given clinically in a single instance. Nevertheless,
in the pre-clinical setting, large single fraction doses are
commonly used to exhibit a strong distinct response
between treatment groups. Clinically, large doses of
radiation are delivered typically in 2 Gy fractions to
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maximize the therapeutic effect and minimize damage to
healthy tissue. Additionally, fractionated therapy pre-
sents the opportunity to target populations of cells that
have become more radiosensitivity following reoxygena-
tion. Furthermore, ongoing efforts are focused on apply-
ing this modeling approach to more clinically relevant
fractionated therapy in a cohort of animals [52]. Third,
the mechanical tissue properties are temporally invariant
and literature assigned, and the linear relationship be-
tween vascularity and carrying capacity may not reflect
the true in vivo or clinical scenario. Finally, we acknow-
ledge that the current implementation uses more time
points for model calibration than is commonly acquired
in the clinical setting. However, MRI-guided external
beam devices could foreseeably acquire the necessitated
quantitative and anatomical image images before and
during treatment for model calibration [53, 54].
There are several points of consideration for translat-

ing these efforts to the clinical setting. One important
difference in tumor biology between the pre-clinical C6
model and high grade gliomas is the presence of both
enhancing (clinical disease) and non-enhancing (sub-
clinical or invasive disease) tumor regions [55]. Our
current approach could be applied to the enhancing
tumor region as it is most similar to what is observed
in the C6 murine model of glioma. However, it is less
clear how cell density varies throughout the non-
enhancing region, and thus assigning cell density is dif-
ficult. One solution is to apply fixed cell density values
within this region as is done in [56]. Second, high grade
glioma patients typically receive surgery, followed by
fractionated radiation therapy and temozolomide [57],
as opposed to the single fraction radiotherapy used in
this study. As currently formulated, the model does not
consider these elements; however, it could be easily in-
corporated by applying Eq. (6) every time radiation
therapy is delivered or by incorporating the cytotoxic
effects of the systemic therapy into Eq. (7), as we have
done clinical breast cancer setting [39]. Third, there is
the computational intensity of this approach. For a
single subject, calibration of the most-complex model is
feasible on a personal computer. However, for multiple
model calibrations and multiple subjects (in this paper we
had 130 individual calibrations) it is more efficient to
utilize multiple compute nodes on a high-performance
computing system. For reference, a single calibration took
less than 5 h on a personal computer (4 GHz Intel Core
i7-6700K with 4 cores), or less than 3 on a compute node
(2.6 GHz Intel Xeon E5–2690 v3 with 12 cores). A single
simulation time step takes ~ 0.3 s. In the clinical setting,
medical images are typically collected with a larger
sampling matrix (5122 or 2562 vs 1282), thus leading to a
larger simulation domain (and therefore greater computa-
tional intensity). In preliminary clinical efforts, a single

simulation time step on the larger simulation domain now
takes ~ 0.8 s. Finally, at the clinical level there is the add-
itional opportunity to incorporate additional biological in-
formation (e.g., immunohistochemistry analysis, vascular
or cellular density) into the model.

Conclusions
We have developed and applied a biologically-based, math-
ematical model of tumor and vasculature response to
radiation therapy that can be parameterized for individual
tumors using non-invasive quantitative imaging measures.
Importantly, we have demonstrated an experimental-
computational framework to non-invasively and spatially re-
solve response dynamics for individual animals that can be
used to forecast future response. Notably, the most selected
model described the 3D dynamics of tumor and blood
volume fraction and linked tumor vasculature to spatial
radiation response. Future efforts should include expanding
this modeling framework to the setting of fractionated
pre-clinical and clinical data.
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