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Abstract

Background: Continuous storage root formation and bulking (CSRFAB) in sweetpotato is an important trait from
agronomic and biological perspectives. Information about the molecular mechanisms underlying CSRFAB traits is
lacking.

Results: Here, as a first step toward understanding the genetic basis of CSRFAB in sweetpotato, we performed a
genome-wide association study (GWAS) using phenotypic data from four distinct developmental stages and 33,068
single nucleotide polymorphism (SNP) and insertion-deletion (indel) markers. Based on Bonferroni threshold (p-
value < 5 × 10− 7), we identified 34 unique SNPs that were significantly associated with the complex trait of CSRFAB
at 150 days after planting (DAP) and seven unique SNPs associated with discontinuous storage root formation and
bulking (DCSRFAB) at 90 DAP. Importantly, most of the loci associated with these identified SNPs were located
within genomic regions (using Ipomoea trifida reference genome) previously reported for quantitative trait loci
(QTL) controlling similar traits. Based on these trait-associated SNPs, 12 and seven candidate genes were
respectively annotated for CSRFAB and DCSRFAB traits. Congruent with the contrasting and inverse relationship
between discontinuous and continuous storage root formation and bulking, a DCSRFAB-associated candidate gene
regulates redox signaling, involved in auxin-mediated lateral root formation, while CSRFAB is enriched for genes
controlling growth and senescence.

Conclusion: Candidate genes identified in this study have potential roles in cell wall remodeling, plant growth,
senescence, stress, root development and redox signaling. These findings provide valuable insights into
understanding the functional networks to develop strategies for sweetpotato yield improvement. The markers as
well as candidate genes identified in this pioneering research for CSRFAB provide important genomic resources for
sweetpotato and other root crops.
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Background
Perennial plants, species that live for more than 2 years,
account for 13% of food crops and provide advantages
over annual crops because they increase the carbon of
storage organs [1] and reduce soil erosion due to their
longer growing seasons [2]. While there is increasing
interest in perennializing annual grains [1], sweetpotato
is cultivated as an annual. It is perennial in nature with
varying degrees of maturation and senescence that lead
to short and long growing periods. The genetic variation
underlying this trait makes it amenable to breeding
sweetpotato for commercial and subsistence farming sys-
tems. Commercial farming requires synchronized matur-
ity or discontinuous storage root formation and bulking
(DCSRFAB) at harvest. Subsistence agricultural systems
use piecemeal/multiple harvesting strategies to increase
profitability by ensuring availability of their product over
a longer growing season due to continuous storage root
formation and bulking (CSRFAB). Perenniality in sweet-
potato is associated with CSRFAB [3] due to its capacity
to keep vegetative growth overtime that leads to in-
creased photosynthetic activity and continuous dry mat-
ter partitioning into the storage root organ [4]. CSRFAB
genotypes primarily invest in vegetative growth and
later change to a reproduction phase by enhanced
carbon partitioning to storage root development while
continuing vegetative growth [5, 4]. This drastically
increases productivity due to increased photosynthe-
sizing green materials in CSRFAB genotypes com-
pared to DCSRFAB genotypes [6]. Sweetpotato
cultivars are capable of delaying senescence and
maintaining carbon assimilation due to persistent
photosynthetic activity over longer periods [7].
Sweetpotato is an important food crop in sub-Saharan

Africa (SSA). Its production continues to increase in east
and central Africa due to recent interests in the crop for
its unsurpassed healthy promoting values and being
staple food crop in the region. High production in the
region is recorded in Uganda and Tanzania [8], however,
based on per capita production, Rwanda, Tanzania and
Burundi are the top sweetpotato consumers with 80.6,
64.1 and 56.9 kg per capita, respectively. In east African
countries, piecemeal harvesting is the predominant har-
vesting practice among small and medium scale sweet-
potato farmers. This practice consists of sequentially
uprooting matured storage roots from the same sweet-
potato plants on a mound, ridge or portion of the field
for one or several meal(s), or for a ready market. The
method is also applied in other root and tuber crops in-
cluding potato [9] and cassava. While the practice keeps
the storage roots in-ground and provides possibilities for
continuous market along the cropping season, it also
creates room for extended storage root initiation and
bulking allowing increased production for the next

harvest [7]. Breeding and selection have been based on
one-time harvesting (DCSRFAB) and there has been no
direct effort to understand the genetics underlying traits
associated with these common harvesting practices in
sweetpotato farming systems. Although piecemeal har-
vesting is recognized as important in sub-Saharan Africa
(SSA), it can also be applied in temperate regions for
small gardeners or for providing fundamental under-
standing of genetic basis for perenniality.
Through various research networks, sweetpotato

breeders across countries and continents have shown
outstanding consistency in the general areas of priority
for breeding, most of which point to the need for in-
creased yield potential and resistance to biotic and abi-
otic stresses. Frequently mentioned breeding objectives,
targeting increased sweetpotato adoption and wide
utilization, revolve around improvement of fresh storage
root yield, storage root dry matter content (DMC), re-
sistance to principal local pests and diseases, tolerance
to adverse soil and climatic conditions, good plant habit,
ornamental quality and other quality traits [10]. Consid-
erable research is now directed to enhance traits of nu-
tritional value (such as provitamin A carotenoid, micro-
nutrients) and industrial use (such as starch). The bio-
fortification is envisioned to overcome vitamin A defi-
ciencies common among resource-poor peasants, while
increased yields will enhance commercial production of
the crop [11].
Several reports have described the anatomy and

physiological processes of storage root formation and
development in sweetpotato under controlled conditions
[12–15] and field experiments [16–18], however, the
genetic and molecular basis of CSRFAB for breeding
purposes remains largely unknown. Understanding the
genetic mechanisms underlying these variations, as well
as the trait’s fitness are important to inform future selec-
tion practices, while taking various sweetpotato farming
systems into consideration.
DNA-based genetic markers can provide great poten-

tial to assist plant breeders in the identification of genes
of interest and detecting markers tightly linked to traits
for the development of new cultivars. Tanaka et al.
(2016) [19] reviewed molecular studies in storage root
formation and identified numerous genes showing differ-
ential expression between developmental stages relative
to the formation of storage roots. The formation of stor-
age roots appears to be a default process in sweetpotato
storage root development making it unclear whether a
specific signal exists to initiate storage root development.
Nonetheless, genetic differences should exist between
sweetpotato and related plant species that do not pro-
duce storage roots. The recent whole-genome sequences
of two diploid species, Ipomoea trifida and I. triloba
[20], are useful resources for investigating the hexaploid
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sweetpotato. It is now possible to use high-density
genome-wide SNP markers [21] and the robust reference
genomes of the ancestral diploid progenitors [20] to
understand the genetic basis of most important traits in
the complex hexaploid sweetpotato genome.
In this study, we evaluated a diverse set of 358 sweet-

potato breeding accessions for CSRFAB and DCSRFAB
under field conditions. We genotyped this diversity panel
and analyzed it for quantitative trait nucleotides (QTNs)
using SNP and indel markers to identify genomic re-
gions and polymorphisms associated with CSRFAB and
DCSRFAB traits.

Results
Relationship between yield component traits and CSRFAB
in sweetpotato
Pair-wise correlations provide information on whether
two traits are related. This information about the magni-
tude and direction (negative or positive) of the relation-
ship can assist in breeding selection decisions. Thus,
CSRFAB was highly and positively correlated with stor-
age root number (SRN), storage root yield (SRY) and
harvest index (HI) (Fig. 1). CSRFAB responses at four
harvest times, as well area under growth progress curve
(AUGPC) and slope have variable correlation magni-
tudes (Fig. 1-right). Low to no correlations were ob-
served among the four harvest times (90, 120, 150 and
180 DAP). We observed positive correlations between
AUGPC and yield component traits at each harvest time,
with the highest positive correlation coefficient recorded
at 150 DAP (0.91). Negative (− 0.5) correlation coeffi-
cient between slope and AUGPC was observed. The
least correlation coefficients between AUGCP and other

traits were recorded at 120 DAP and 180 DAP. The
slope was negatively correlated with all the traits (Fig. 1).

Phenotypic variation in CSRFAB
The distribution of genotypic performance across the
four-harvest times (HT) was visualized using a boxplot
(Fig. 2). On average, across the two sites of the experi-
ment, the mean score of CSRFAB was 3.4 with a max-
imum score of 7.8 and a minimum of 1.4. Our results
indicate that the distribution is similar for the first three
time points (90, 120 and 150 DAP) and the genotypes
become much more variable at 180 DAP. The median
score across the three harvest time points is about 4,
while the fourth harvest time point (180 DAP) has a me-
dian score of about 3.
We previously [3] reported changes in genotypic vari-

ation over time. In DCSRFAB genotypes, genotypic vari-
ance increased as plants grew due to the increasing
effect of genotypic factors in the population. The incre-
ment reached maximum at 120 DAP and decreased
thereafter. Figure 2 shows a decrease in population me-
dian at harvest 4 due to high frequency of DCSRFAB ge-
notypes that reduce storage root initiation and bulking.
The drought period, which occurred between season A
and season B (between 4 to 6 months after planting
(MAP) can also partly explain the low population me-
dian. We observed an opposite pattern in which yield in-
creased over time for CSRFAB due to regrowth (after 5
MAP) of CSRFAB genotypes observed after 5 months.
This delayed senescence or stay green phenomena [22]
resulting in high overall phenotypic variation between
CSRFAB and DCSRFAB plants.

Fig. 1 Correlation coefficients showing relationship between yield component traits (left) and CSRFAB-related traits (right). Note: CSRFAB =
Continuous storage root formation and bulking; HI = harvest index; SRN = Storage root number; SRY = Storage root yield; VY = Vine yield; DAP =
Days after planting; AUGPC = Area under growth progress curve
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SNP calls and allele dose-dependent genotypes
The accuracy of the genotype calls has a fundamental
impact on the biological interpretation. We mapped
sweetpotato sample reads to the genome assemblies [20]
of the putative diploid ancestral progenitors (I. trifida
and I. triloba) in order to determine sequences with 2x,
4x, and 6x doses that correspond to diploid, tetraploid,
and hexaploid genotypes in the hexaploid sweetpotato
genome. Based on the distribution of read depth for each
individual in the population (Fig. 3), the median read
depth are about 20x and 40x for before and after apply-
ing a 15x read depth threshold, respectively.
We examined genotype quality of variants with dosage

and diploidization genotypes using the GBSapp bioinfor-
matic pipeline [20]. At about 85% confidence level and
45x read depth threshold, only 5839 SNPs (without maf
filtering) could be called with dosage information, of
which 5.54% were multi-dose (duplex and triplex).
Genotype calling on a larger set of SNPs resulted in low
confidence dosage calls (i.e. about 41,060 SNPs based on
a 65% confidence level, 15x read depth threshold and
without maf filtering). Considering the limited number
of higher confidence dosage-based SNPs, which is sub-
optimal for genome-wide association analysis, the larger
set of dosage-based SNPs with low confidence were
diploidized by only scoring genotypes as heterozygous or
homozygous. To ensure accurate diploidized calls, the
read depth threshold was set to 15x. This resulted in a
total of 33,068 SNPs at a minimum minor allele

frequency (maf) of 0.05 and no more than 20% missing
data.

Linkage disequilibrium in polyploid sweetpotato
The pattern and extent of genome-wide linkage disequi-
librium (LD), which is the non-random association of al-
leles at different loci, is presented in a boxplot that
shows the distribution of LD within a range of distances
between marker pairs (Fig. 4). All pairwise LD (r2) values
were calculated using the diploidized genotypic data.
Overall, based on the I. trifida genome assembly size of
526.4Mb [20] and a total OF 33,068 SNPs (16 Kb
marker interval), the marker resolution in this study re-
vealed LD decayed below this distance of 16 Kb and
probably at distance less than 1 Kb (Fig. 4). This rapid
decay is expected for outcrossing species, especially in
polyploids where recombination is elevated post-
polyploidization [23]. According to Vos et al. [24] rapid
LD decay implies that the resolution for fine mapping
causal genes is high, hence, the need to use a high
marker density in the form of diploidized SNPs for the
genome-wide association analyses.

Genome-wide SNP data
Out of 33,068 SNPs analyzed in this GWAS, based on
Bonferroni correction-based threshold, 34 and seven
SNPs were significantly associated with CSRFAB (150
DAP) and DCSRFAB (90 DAP), respectively. The num-
ber of significant SNPs associated with the other

Fig. 2 Boxplot showing overall variability and dispersion of continuous storage formation and bulking (CSRFAB) over 4 harvest times among
studied cultivars in Uganda. The colors represent different harvest times (1 = 90 days after planting (DAP), 2 = 120 DAP, 3 = 150 DAP, 4 = 180 DAP,
HT = harvest time) and the dot points show the distribution of genotype scores at each scoring time
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CSRFAB-related traits (i.e. 90 DAP, 120 DAP, 150 DAP,
180 DAP, slope, and AUGPC) are shown in Table 1.
The number of significant SNPs associated with the har-
vest times (HTs) ranged between 0 (120 DAP) and 34
SNPs (150 DAP). A high marker effect was observed for
AUGPC (21.45), followed by 150 DAP (1.23). SNPs asso-
ciated with 150 DAP and AUGPC explained more
phenotypic variation (4.3 to 79% and 12.6 to 24.6%, re-
spectively) compared to other time harvests, while the
least phenotypic variation explained was recorded at 120
DAP and 180 DAP (4.4 to 5.3% and 5.3 to 9%,
respectively).
Among the 57 SNPs associated with CSRFAB and

DCSRFAB at different storage root development stages,
some SNPs were shared between 150 DAP, AUGPC and
180 DAP, while other SNPs were simultaneously de-
tected between 90 DAP, 120 DAP and slope. The largest

number of associated SNP markers was detected on
chromosome 1 and the largest number of significant as-
sociations was recorded for 150 DAP followed by the
slope (Table 1). Most of significant SNPs associated with
90 DAP and slope were co-located while significant
SNPs associated with 150 DAP and AUGPC were co-
located (same or close position) on chromosomes.
Thirty-four SNPs (around 60% of the significant SNPs)

were associated with CSRFAB scores collected at 150
DAP and were concentrated on chromosome 1, 6 and 8.
All the minor allele frequencies (MAFs) of the signifi-
cant SNPs at Bonferroni correction rate of 5% were
above 10%, equivalent to recommended strict threshold
for MAFs. All the significant SNPs passing Bonferroni
threshold of 5% scored low adjusted P-values (FDR adj
P-values) ranging from 8.11E-43 to 1.79E-03, implying
that the type I error with false positive SNPs was

Fig. 3 Assessing call coverage quality across clones and loci on raw data. The figure refers to read depth of all reads mapping to all
six homeologs
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minimized. The top four most confident SNPs discoveries
were Chr04_6057850, Chr12_903336, Chr01_30468732,
and Chr09_6258404. Most significant SNPs that passed
the stringent significance threshold of 5% Bonferroni were
also associated with CSRFAB variations at 150 DAP and
R2 were greater than 9% and the majority explained more
than 15% of the variation. In the previous study, 150 DAP
and 90 DAP were proposed to predict CSRFAB and
DCSRFAB traits and further investigation in this study will
be only focused on these two times [3].

Significantly associated SNPs
The GWAS results were visually examined using Man-
hattan plots and quantile-quantile (QQ) plots [25]. The
Manhattan plots (Figs. 5 and 6) show on the y-axis the
negative log-base-10 of the P value for each of the SNPs
in the genome (along the x-axis), when tested for differ-
ences in frequency between trait and markers. The line
shows the threshold for genome-wide significance (P-
value < 5 × 10− 7). Each dot is a SNP laid out across the
sweetpotato chromosomes from left to right, and the
heights correspond to the strength of the association to

traits under study (150 DAP and AUGPC see Fig. 2; 90
DAP and slope see Fig. 6). Large peaks in the Manhattan
plot were observed at 150 DAP and 90 DAP. The lines
show that most of the significant SNPs at 150 DAP and
AUGCP are on the same chromosomes, although the
strength of the association signal is different. The signifi-
cant SNPs at 90 DAP and slope are consistently on the
same chromosomes with consistent reduced -log10 of P-
value for slope. Our results show a major locus on
chromosome 1 (GAPIT output https://data.cipotato.org/
dataset.xhtml?persistentId=doi%3A10.21223%2FKM16
BH). Chromosomes 1, 3, 4, 6, 8 and 12 had a high num-
ber of the associations over the four harvest times form-
ing clusters where multiple traits were associated due to
probably a set of linked genes. These regions include:
chromosome 1 (six traits), chromosome 3 (4 traits),
chromosome 4 (4 traits), and chromosome 12 (four
traits). On a multiple plot, we placed vertical lines at
specific positions along the x-axis to identify consistently
associated QTNs (Figs. 5 and 6). The Q-Q plot was used
to evaluate the false positive rate (spurious association
due to confounding factors) and to compute adjusted p-

Fig. 4 Pattern and extent of genome-wide linkage disequilibrium (LD): boxplots showing the distribution of LD within a range of distances

Table 1 Summary of the SNPs significantly associated with continuous storage root formation and bulking
Trait Chr SNPs p-value Range maf Range R2 range Effect range

90 DAP 6 7 2.25E− 14 to 1.01 E−6 0.03 to 0.49 8.2 to 19.0 − 0.23 to 0.19

150 DAP 14 34 3.75E−47 to 9.9 E−5 0.02 to 0.49 4.3 to 79 −0.90 to 1.23

180 DAP 1 1 1.12 E−7 to 7.2 E−5 0.065 to 0.49 5.3 to 9 0.03 to 0.20

Slope 8 9 2.5 E−10 to 9.9 E−5 0.028 to 0.49 7.6 to 15 −0.52 to 0.55

AUGCP 6 6 1.7E−14 to 3.8 E−5 0.03 to 0.49 12.6 to 24.6 −15.20 to 21.4

Total 14 57 3.75E-47 to 3.8 E-5 0.02 to 0.49 4.3 to 79 −15.20 to 21.45

Chr Chromosome, SNPs Number of single nucleotide polymorphisms, PV p-value, maf minor allele frequency, R2 percentage of phenotypic variation explained
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values. The observed –log10 P-values which indicate the
significance level of association statistics are displayed in
Figs. 5 and 6 and are ranked from the smallest to the lar-
gest on the y-axis. The corresponding SNP markers are
plotted against the distribution that would be expected
to have no association on the x-axis under the null hy-
pothesis. It is expected that the deviations from the iden-
tity line observed values contain potential true
associations. The strength of the association signal is dis-
played in two ways. One indicator of strength is the
height on the vertical axis for –log10 P-values; the
greater the height, the stronger the association. The
height on the vertical axis for –log10 P-values was high
for 150 DAP followed by 90 DAP and AUGPC.

Candidates co-localize with associated SNPs
GWAS are useful for identifying genomic locations re-
lated to a trait of interest, however, the information pro-
vided does not capture the function of genes under the
region of interest. It is therefore of great importance that
putative causal gene functions be determined and inves-
tigated through different functional genomic approaches.
It is well recognized that few of associated markers in-
volve genes previously reported to be related to the trait

of interest, and some are found in genomic locations
harboring no known genes and sometimes regulatory el-
ements [25]. Therefore, the genomic locations of our sig-
nificant SNPs were investigated to identify which
protein-coding genes the SNPs were located in or adja-
cent to, using the online database of I. trifida reference
genome (http://sweetpotato.plantbiology.msu.edu/). Can-
didate genes that are co-located with the top significant
SNPs are listed in Table 2.
Candidate genes that might underlie variation in

CSRFAB were identified based on proximity of the asso-
ciated SNPs with predicted genes (Table 2). The stron-
gest association detected for CSRFAB was observed at
150 DAP (PV = 3.7E-47), on chromosome 4 and was in
strong LD with a cellulose synthase-like D1 gene in-
volved in root hair development [26]. Another highly
significant SNP (PV = 4.8E-33) was located on chr12 and
was in strong LD with a coding region (exon) of a NHH
gene that belongs to the family of nudix hydrolase
homolog having Nudix box-containing proteins previ-
ously reported in plant defense responses against biotic
and abiotic stresses [27].
The associated Chr01_30468732 SNP is co-localized

with P-LNPHP gene encoding a P-loop containing

Fig. 5 Manhattan plots at 150 days after planting and area under growth progress curve (left), and corresponding quantile-quantile plots (right).
Note: CSLD1 = Cellulose synthase-like D1; NHH = Nudix hydrolase homolog; P-LNPHP = P-loop containing nucleoside triphosphate hydrolase
superfamily protein; CmIP = Cam interacting protein; Amp-M1 = Aminopeptidase M1; P-RID = Putative recombination initiation defect; PLLSP =
Pectin lyase-like superfamily protein; HVA22 = HVA22 homologue A; SAG = Senescence-associated gene; NF-Y = Nuclear factor Y, subunit B4;
MAP3K-like = Mitogen-activated protein kinase kinase kinase-like; CLE-related = CLAVATA3/ESR-like
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nucleoside triphosphate hydrolases super family protein
involved in regulation of growth and hormonal signaling
in plants. The gene HVA22 was found to be associated
with Chr02_16003392 locus encoding basic helix-loop-
helix bHLH-DNA-binding superfamily protein and was
previously reported to regulate leaf senescence, cell
death and abscisic acid (ABA) biosynthesis [28]. Anno-
tated SAG gene was found to be associated with Chr03_
18988293 locus and was encoding Transducin/WD40re-
peat-likesuperfamily proteins known as key regulators of
plant-specific events, biologically playing important roles
in development and also during stress signaling [29].
The gene CSLD1 was co-located with SNP Chr04_
2472869 and this gene encodes for cellulose synthase-
like D1 reported to have pleiotropic effects on multiple
agronomic traits that alter plant organ size by changing
the process of cell division [30] and is required for root
hair morphogenesis in Arabidopsis [26]. Other associ-
ated SNPs with CSRFAB including Chr06_13670137,
Chr07_19060345, Chr08_14465821, Chr10_5821301,
Chr11_18261627, Chr12_903336 and Chr12_5341809
were co-located or adjacent to AMP-M1, KAKUA4,
PLLSP, CMmIP, NF-Y, P-RID, NHH, MARP3K-like,
DUF668, CLE-related and hypothetical, respectively.
These genes encode respectively Aminopeptidase M1

that regulate plant growth, leaf longevity and stress re-
sponses, ProteinKAKU4 playing a role in modulating nu-
clear shape and size usually impacting adaptation to
stress, DHHC-typezincfinger family protein regulating
senescence, cell death and shoot branching in Arabidop-
sis [31], HVA22 homologue A having important roles in
plant stress-induced programmed cell death and leaf
senescence [32], terpene synthetase, a precursor of gib-
berellins with essential roles for plant growth and devel-
opment, putative recombination initiation defect protein,
playing important roles throughout plant growth and de-
velopment [33], nudix hydrolase homolog, involved in
resistance to biotic and abiotic stresses [34] and con-
served hypothetical protein found among the top 70 up-
regulated contigs in initiating storage roots compared to
fibrous roots in sweetpotato [35]. All these genes were
associated with 150 DAP and AUGPC and were different
from those observed at 90 DAP and the slope.

Specific genes detected for DCSRFAB during sweetpotato
storage root development
Candidate gene TRO-Z was associated with Chr03_
18599676 SNP marker and this gene encodes thiore-
doxin z previously reported as a facilitator of plants to
cope with fluctuating environments by integrating

Fig. 6 Manhattan plots at 90 days after planting and slope (left), and corresponding quantile-quantile plots (right). Note: TRo-z = Thioredoxin Z;
AGC-kinase = cAMP-dependent, cGMP-dependent and protein kinase C kinase family protein; GBLD = Golgi-body localization protein domain;
ABH = Alpha/beta hydrolase; MFSP =Major facilitator superfamily protein
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energy transduction, metabolism, gene expression,
growth and development [36]. The gene, AGC-kinase,
was adjacent to Chr03_18916775 locus and encodes
Autoinhibited Ca(2+)-ATPase, playing a role in sucrose
signaling during early seedling development by integrat-
ing developmental signals with carbon source availability
[37]. The gene,, GBLD, was associated to Chr06_
22463100 SNP and encods transglutaminase-like super-
family domain containing proteins known to have a
regulation role in defense and stress response systems

across the tree of life [38] and ABH gene was associated
with Chr07_22973475 locus and encodes alfa/beta
hydrolase serving as the core structure for phytohor-
mone and ligand receptors in the gibberellin, strigolac-
tone, and karrikin signaling pathways in plants and has
evolved complex and specialized chemical adaptations
for survival responses to widely varying biotic and abi-
otic ecologies [39]. The gene, DUF803, hypothetical and
MFSP were involved in gibberellic acid (GA) and absci-
sic acid (ABA) signaling in the regulation of growth [40],

Table 2 Significant marker-trait associations, candidate genes and corresponding putative functions for continuous storage
formation and bulking (CSRFAB) and discontinuous storage root formation and bulking (DCSRFAB)

Variants1 P-value R2 Allele
effect

maf3 Orthologs Putative function

Continuous Storage Formation and Bulking (CSRFAB; 150 DAP)

Chr04_
6057850

3.7E-47 0.8 0.14 0.24 Cellulose synthase-like D1 Root hair development.

Chr12_903336 4.8E-33 0.5 0.35 0.39 Nudix hydrolase Excessive cell stimulation and stress
response.

Chr01_
30468732

1.4E-28 0.41 −0.27 0.37 P-loop containing nucleoside triphosphate
hydrolases

Regulates senescence, cell death and stress.

Chr09_
6258404

8.8E-28 0.4 −0.19 0.15 Calmodulin Interacting protein Regulates plant shoot branching.

Chr02_
16003392

4.8E-20 0.27 0.04 0.49 HVA22 homologue A Stress-induced programmed cell death.

Chr08_
14465821

8.6 E-
06

0.12 0.16 0.03 Pectin lyase-like Cell wall remodeling, growth and
senescence.

Chr06_
13670137

3.2E-10 0.12 0.13 0.49 Aminopeptidase M1 Plant growth, leaf longevity and stress
response.

Chr07_
3326491

3.5E-10 0.12 0.36 0.04 KAKU4 Modulates nuclear morphology

Chr11_
18261627

5.6E-09 0.1 0.10 0.49 Putative recombination initiation defect Meiotic recombination

Chr03_
18988293

1.5E-08 0.09 −0.09 0.50 Senescence-associated gene Programmed cell death

Chr14_
3298542

1.3E-07 0.08 0.27 0.49 CLAVATA3/ESR-RELATED Meristem maintenance

Chr11_
1919638

3.3E-07 0.08 0.16 0.49 MAP 3 K-like Plant growth, development and stress
response.

Chr10_
13852642

3.8E-07 0.08 0.12 0.50 nuclear factor Y, subunit B4 Plant growth, development and stress
response.

Discontinuous Storage Formation and Bulking (DCSRFAB; 90 DAP)

Chr03_
18599676

1.10E-
07

0.1 −0.18 0.14 Thioredoxin z Reduction of oxidative stress.

Chr09_299562 2.30E-
08

0.1 −0.02 0.11 DUF803 Unknown protein

Chr11_
14588348

6.20E-
07

0.09 −0.03 0.17 hypothetical Reduction oxidative stress.

Chr03_
18916775

9.30E-
07

0.08 0.04 0.49 AGC-Kinase auxin-induced lateral root formation.

Chr06_
2448368

4.6 E-
08

0.08 −0.24 0.27 GBLD Stress, signal transduction.

1chromosome and variant position, i.e. SNP and indels (*)
2proportion of phenotypic variation explained
3minor allele frequency
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the MFSP are transporters of small solutes in response
to chemiosmotic ion gradients allowing the uptake of es-
sential nutrients and ions in plants [41]. Most of these
genes are summarized in Table 2 below.

Shared genes detected during sweetpotato storage root
development
The Venn diagrams (Fig. 7) show how traits share SNPs
(Fig. 7a) and associated genes (Fig. 7b). The venn dia-
gram (Fig. 7a) shows that QTNs identified for 90 DAP
and 150 DAP are completely different indicating a differ-
ent gene regulation system for the two phases. The slope
and 90 DAP have common SNPs. However, most of the
common SNPs had reduced P-values for the slope, indi-
cating that slope is not a good predictor of responses at
90 DAP. Five genome wide SNPs hit common chromo-
some region at 150 DAP and AUGPC (Fig. 7a), whereas
seven and two QTNs were unique to 150 DAP and
AUGPC. Four nearest genes were commonly identified
for 150 DAP and AUGPC and none common nearest
genes at 90 DAP and slope, confirming the findings in 7.
A.

Discussion
Correlation and variability analysis
In this study, we showed that CSRFAB, SRN, SRY and
HI were highly correlated, suggesting that their genetic
basis is controlled, in part, pleiotropically (i.e. some al-
leles affect two or all the four traits involved in
CSRFAB). This implies that we can expect positive
changes in the SRN and SRY for varieties whose
CSRFAB expression is increased. In breeding, this means
that when we select for CSRFAB we can get a correlated

response in the SRN and SRY. Further detailed analyses
on the CSRFAB trait responses over the four harvest
times and their respective predictor (AUGPC and slope)
revealed that AUGPC and 150 DAP were highly and
positively correlated (R2 = 0.91). This indicates that
AUGPC and 150 DAP tightly affect the same phenotype.
In a previous study [3], 150 DAP was suggested as the
scoring time for CSRFAB in sweetpotato due to its po-
tential to account for regrowth and growth cessation in
two different environments in Uganda. The genetic cor-
relation between a phenotypic trait implies that indirect
selection is possible and is an attractive alternative to
direct selection and it should not be overlooked in
breeding strategies.
We showed high variability for CSRFAB at the differ-

ent harvest times and this variability has a temporal
growth pattern which was more pronounced at two har-
vest times (90 DAP and 150 DAP). In a previous study
[3] these harvest times were critical for characterizing
the type of growth. For the 150 DAP genotypes, logarith-
mic growth increased the speed of growth and peaked at
90 to 120 DAP and then decreased their growth rates. In
the 90 DAP genotypes, changes in the later phase or
growth were more variable in their growth patterns.
These results indicate that selection aimed at improving
CSRFAB would increase storage root yield in sweetpo-
tato. Previous studies by Egbe et al. (2012) [42], Afuape
et al. (2011) [43], and Thiyagu et al. (2000) [44] concur
with our findings and attributed yield increment to in-
crease in both number of storage roots and weight of in-
dividual storage roots. The correlation between CSRFAB
and 150 DAP indicates that we can select CSRFAB ge-
notypes using score responses at 150 DAP. These

Fig. 7 Venn diagrams showing common loci identified in this study. a. Common locus among four traits. b. Common genes among four traits:
DAP = days after planting, AUGPC = area under growth progress curve
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correlation coefficients are important in breeding and
provide a means to associate characters in breeding and
selection for a given character.

Association analysis
We used genome-wide association (GWA) analysis to
identify SNPs associated with CSRFAB and DCSRFAB in
sweetpotato. GWA analysis provides much more precise
physical positioning than the method of QTL mapping
in biparental mapping populations that has been previ-
ously used for complex growth traits in plants. We ob-
served particularly high P-values (ie.3.75E-47, 4.8E-33,
1.39E-28, 8.83E-28) suggesting the presence of some
major to moderate QTL particularly underlying CSRFAB
(the wild type or predominant habit of sweetpotato),
while DCSRFAB (the habit bred for in cultivated sweet-
potato) seems to be controlled by minor alleles. The
rapid decay of LD in the diversity panel breaks the gen-
ome in small LD blocks and provides us with the ability
to fine map QTL, oftentimes to the gene level [45]. In
this set of sweetpotato clones, chromosomes 1, 3, 4, 6
and 12, that harbour CSRFAB loci, were among the five
chromosomes exhibiting the most extensive LD [46].
We detected 34 SNPs mapped on 150 DAP and clusters
of SNPs consistently mapping similar SNPs to 180 DAP
and AUGPC. Most of the SNPs associated with 150
DAP, 180 DAP and AUGPC were in high LD, however,
the P-values recorded on the SNPs associated with 180
DAP and AUGPC were reduced making some of them
not significant at 5% Bonferroni threshold. Thus, it is
possible that SNPs associated with 150 DAP, 180 DAP
and AUGPC are associated with the same underlying
causal variation. Likewise, SNPs associated with
DCSRFAB (90 DAP, 120 DAP and slope) were also in
high LD. However, no overlap was observed between
SNPs of one cluster to the other, suggesting that SNPs
identified for CSRFAB and DCSRFAB are associated
with distinct causal polymorphisms.

Candidate genes
We used the publicly available I. trifida genome se-
quence to identify candidate genes encompassing or ad-
jacent to these SNPs. Several of the candidate genes that
we identified play a role in the plant growth pathways.
Candidate genes can also be identified based on their
positions on quantitative trait locus (QTL) maps or pat-
terns of gene expression [47]. Identified genes were in-
volved in the expression of a phenotype affected by
many genes with small effects. This nature of gene pat-
tern is reported in adaptive complex traits like CSRFAB
[48]. Suzuki (2017) [48] argued that traits are partly de-
composable into an assembly of subcomponents. Inter-
mediate versions of complex traits exist in extant species
like in sweetpotato where Lee et al., 2012 [49] classified

sweetpotato cultivars into wild and modern types based
on the expression of storage root bulking. Interestingly,
such intermediate phenotypes are formed from different
combinations of homologous subcomponents (alleles)
with some modifications or the addition of new compo-
nents. It is known that major genes almost always have
multiple effects (pleiotropism), which can simultaneously
convey separate advantageous traits and disadvantageous
traits upon the same organism [50]. In this instance, the
state of the sweetpotato as hexaploid crop provided se-
lection, with a net effect favoring the genes for CSRFAB
to survive in nature. Most areas of growth follow two
different types of growth: a logarithmic and an exponen-
tial growth curve. The logarithmic growth curves which
characterize DCSRFAB [3] increase quickly in the begin-
ning, but the gains decrease and become more slow as
time goes on, while the exponential growth curves
(CSRFAB) increase slowly in the beginning, but the gains
increase rapidly and become larger as time goes on. This
basic principle in plants is complex and occurs in
CSRFAB in sweetpotato. Identified genes involve growth
hormones such as auxins, gibberellins and ethylene sig-
naling. For instance, Numerous observations suggest a
tight correlation between auxin, ethylene and lateral root
formation. These hormones have been previously re-
ported to be involved in regulation of stay-green pro-
cesses in plants [51] by maintaining greenness of leaf or
by initiation and progression of leaf senescence. At low
levels, ethylene promotes auxin biosynthesis and/or re-
sponse, and promotes lateral root initiation in young
root portions. Upon an increase in the level of ethylene,
ethylene interacts with auxin in the tip of the primary
root and suppresses root growth. This inhibits lateral
root initiation in root regions with inhibited growth.
Simultaneously, ethylene promotes the emergence of
existing lateral root primordia. Ethylene is produced in
all parts of the stressed plant and auxin is formed in ap-
ical meristems and is transported through phloem to
roots [52]. The cluster of SNPs associated with
DCSRFAB were mostly associated with ethylene biosyn-
thesis (i.e. P-loop containing nucleoside, Nudix hydro-
lase, DHHC-type-zinc finger, HVA 22 homolog A, Ca2+

dependent kinase) and stress signaling pathways whereas
the cluster of genes associated with CSRFAB involved
mostly growth hormone signaling such as auxin, ABA,
gibberellins (i.e. Cellulose synthase-like D1, Aminopepti-
dase M1, calmodulin interacting protein, autoinhibited
Ca2+ −ATPase). The former modulate growth that is de-
clining due to senescence, aging, and drought stress.
ABA is reported to be involved in the repression of ger-
mination, drought response, and promotion of leaf sen-
escence [51].
This situation makes continuous storage root growth

regulation a highly complicated process and it seems to
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be controlled at many different levels by complex actions
of gene networks in both time and space. For instance,
SNPs as well as genes involved in storage root formation
and bulking at 90 DAP were completely different from
genes found at 150 DAP implying that the regulation
mechanism of root formation and bulking is time
dependent.
A key contribution of this study is the multipurpose

characteristic of the discovered SNPs that can be vali-
dated for early maturing and continuous storage root
formation for commercial storage root production,
piecemeal harvesting and biomass production for animal
feed. At the top of significant and upregulated genes, P-
loop containing nucleoside triphosphate hydrolases
super family protein and DHHC-type zinc finger family
protein were associated with CSRFAB in this study and
these genes generally have a meristem-specific mRNA
expression pattern and KNOX proteins playing central
roles in shoot development by maintaining the apical
meristem activity [53]. Cellulose synthase-like D1 might
be involved in storage root formation. This is because it
has been reported to be implicated in organ size and
root growth regulation [30]. Storage root bulking is a
complex process that consists of cell division and expan-
sion. Having these genes upregulated at 150 DAP is an
indication of continuous biological activity in the plant
having an implication of differentiation of organs in the
plant. Furthermore, our study has identified genes asso-
ciated with CSRFAB that have a prominent role in ABA
biosynthesis and other hormones signaling such as ethyl-
ene, cytokinin, gibberellin and auxin in sweetpotato [54,
55, 19]. Ravi et al., [55] reviewed the molecular physi-
ology of storage root formation and development in
sweetpotato and produced several reports that suggest a
relationship between storage root formation (initiation)
with cytokinins and several cytokinins were involved in
sweetpotato storage root formation by developing and
activating the primary cambium [56]. Our results are
consistent with all these reports, which indicates that the
detected differentially expressed genes during storage
initiation and development would be of great value in
uncovering molecular mechanisms relating to continu-
ous storage root formation, bulking and further
development.

Conclusion
We genotyped 358 sweetpotato genotypes and run the
first GWAS in sweetpotato for CSRFAB. The study iden-
tified 40 unique SNPs significantly associated with
CSRFAB traits and 12 unique SNPs significantly associ-
ated with DCSRFAB. Novel genes including 12 promis-
ing genes for CSRFAB and seven genes for DCSRFAB
were identified in this study. These genes can be used
for sweetpotato genetic improvement of CSRFAB using

maker assisted breeding approaches after marker valid-
ation. To validate these associations and candidate
genes, additional studies will be required (e.g. transcript/
transcriptome analysis, increasing maker density for fine
mapping, and mapping in other mapping populations).
The discovery of the candidate genes has increased our
understanding of the molecular causal mechanisms of
CSRFAB in sweetpotato and may contribute to the basic
knowledge in breeding for CSRFAB in sweetpotato. The
validation of genotypes with excellent haplotypes will
provide valuable breeding materials to improve sweetpo-
tato for CSRFAB through marker-assisted selection in
future breeding efforts.

Methods
Plant materials, field trials and phenotypic evaluation
Parental genotypes were obtained from the National
Crops Resources Research institute (NaCRRI) in
Uganda. The study involved a collection of 358 sweetpo-
tato genotypes including; a set of 130 genetically diverse
genotypes from two contrasting genepools previously
characterized with 31 simple sequence repeat (SSR)
markers [57] and a set of 228 genotypes that were de-
rived from crosses using 20 parents, selected from the
above set of 130 genotypes. The 20 selected parents were
comprised 10 CSRFAB and 10 DSCRFAB genotypes,
while the 228 derived F1 genotypes segregated for the
two traits. The 228 progenies were generated by hand
pollination using North Carolina II mating design [58].
Trials were conducted at NaCRRI (Namulonge, Uganda)
and the National Semi-arid Resources Research Institute
(NaSARRI, Serere, Uganda) during the long rainy season,
starting from March (2017), and the short rainy season
starting from September (2017). The coordinates of
Namulonge site are at latitude 0.5250, longitude
32.6150, at an altitude of 1150m.a.s.l., while the Serere
site is at latitude 1.4970, longitude 33.3935 and at an
altitude of 1140 m.a.s.l.
The experimental design was based on a randomized

complete block design, with a two-row experimental plot
containing 20 plants. A total of 2 replications were sam-
pled even though 4 replicates were planted. Measure-
ments were conducted at one-month intervals starting
from 3months after planting (MAP).

Phenotypic data collection
To identify the patterns of storage root formation and
bulking, storage roots for each plant genotype were de-
structively sampled at 3, 4, 5, and 6 MAP. At each sam-
pling point, data were collected from four plant stands
using above- and below-ground parts. The following
sweetpotato storage root traits were measured for each
of the four harvest times to allow correlation analysis of
CSRFAB and yield component traits and these included:
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(i) number of harvested plants (NPH), allowing calcula-
tion of average values, (ii) total storage root number
(SRN), (iii) total root weight (TRW), and (v) vine weight
(VW). CSRFAB was estimated using a previously devel-
oped scale of 1 to 9, where 1 = no visible storage root
(SR) initiation and no visible bulking; 2 = No visible SR
initiation but bulking is detectable; 3 = No visible SR ini-
tiation; 4 = Distinct SR initiation, with 2 bulking roots;
5 = Distinct SR initiation and 3 bulking roots; 6 = Dis-
tinct SR initiation and 4 bulking roots; 7 = Distinct SR
initiation and 5 bulking roots; 8 = Distinct SR initiation
and 6 bulking roots; 9 = Distinct SR initiation and 7
bulking roots [3].

Predicting growth, growth predictors identification and
estimation
Most growth curves in living organisms follow a loga-
rithmic or exponential growth trend. The logarithmic
growth curves increase quickly in the beginning, but the
gains decrease and become slower as time goes by, while
the exponential growth curves increase slowly in the be-
ginning, but the gains increase rapidly and become lar-
ger as time goes [59]. The increase in growth rate is
described by its slope and a measure of the total growth
is described by the area under the growth progress curve
[60]. These two variables were explored to investigate
the possible indirect selection of the traits associated
with CSRFAB. CSRFAB has previously showed high cor-
relations with yield and yield components such as stor-
age root number and storage root diameter which
indicate that genetic control is tightly linked with those
traits and indirect selection of high yielding varieties can
be based on the CSRFAB trait [3]. Thus, CSRFAB scores
throughout the study were used to estimate such pheno-
type. Overtime, CSRFAB scores were therefore con-
verted to AUGPC and the instantaneous rate of change
or slope of a function underlying the four data points.
These two parameters along with the four harvest time
responses were used to characterize CSRFAB change
over the four harvest times. The formulas used for
AUGPC and slope were as follows:

AUGPC ¼ Pn−1

i¼1

Y iþY iþ1
2 ðTiþ1−TiÞ where Yi is the given

score at harvesting time i and Ti is the harvesting time i
[61].

Slope: m = f ‘(x) = lim
h→0

R ðxþ hÞ− f ðxÞ
h

where f ‘(x) is

called the derivative of the function f with respect to x; x
is the time of harvest and h is a constant [60].

Statistical analysis of phenotypic data
The analysis of variance was performed for CSRFAB
scores, slope and AUGCP predictors that take into

account all the time harvests at once. R package lme4
[62] was used for statistical analysis. The model for the
phenotypic data analysis was Yijk = μ +Gi + Tj + Ek +
GTij +GEik +GTEijk + Rlk + eijkl; where μ is the total
mean, Gi is the effect of the ith genotype, Tj is the effect
of the jth harvesting time, GTij is the effect of the inter-
action between the ith genotype and the jth harvesting
time, GTEijk is the effect of the interaction between the
ith genotype and the jth harvesting time in the kth envir-
onment, Ek is the effect of the kth environment, GEik is
the interaction effect between the ith genotype and the
kth environment, Rik/ is the effect of the Lth block within
the kth environment, and eijk is a random error .
Correlation analyses between CSRFAB traits were per-

formed using the cor function and Pearson method in R
software.
Boxplots [63] were used to display a five-number data

summary to better describe the variability within the
data. The aesthetics with aes() function together with
the geom_boxplot() layer both in ggplot2 (performed in
Rstudio) provided a visualization of the data variability
and dispersion.

DNA extraction
A total of 5 mg of young leaf tissue was sampled for each
genotype using a polythene sampling bag and then kept
cool under ice. Extraction buffer was prepared (200 mM
Tris-HCl, 50 mM EDTA, 2M NaCl, 2% CTAB, and 3%
β-mercapto ethanol) and placed in a water bath at 65 °C.
Using a FastPrep-24™ 5G tissue homogenizer, leaf tissue
samples in 2 ml tubes were ground for 5 min in liquid
nitrogen using sterile 4 mm stainless steel ball bearings.
To obtain high molecular weight DNA, 1 ml of pre-
warmed (65 °C) CTAB buffer (200 mM Tris-CL, 50 mM
EDTA, 2M NaCl, 2% CTAB and 3% β-mercapto-
ethanol) was added to the ground samples and vortexed
at 3000 rpm for 30 s. Tubes were heated in a water bath
at 65 °C for 30 min and mixed gently at 10 min interval
during incubation. Samples were cooled on ice, 500 μl
chloroform:isoamyl alcohol (24:1) was added, and mixed
by inverting the tubes 20 to 30 times. Samples were then
centrifuged at 15,000 round per minute (rpm) for 15
min and the top layer recovered into a new tube. This
step (chloroform:isoamyl alcohol) was repeated to ensure
purity of extracted DNA. DNA was precipitated with 1/5
volume of 5M NaOAC and 2.5 volume of cold absolute
ethanol (stored at − 20 °C). The samples were gently
inverted to mix and incubated at − 20 °C for 60 min.
Samples were centrifuged and DNA pellet recovered by
decanting the supernatant. The DNA pellet was washed
twice with 500 μl of cold (− 20 °C) 70% (v/v) ethanol and
air dried. The DNA pellet was resuspended in 100 μl
low-EDAT TE buffer (1 mM Tris-Cl, 0.1 mM EDTA)
containing 400 μg RNase-A. The DNA concentration
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and purity were determined using a NanoDrop
spectrophotometer.

Genotyping, SNP calling and haplotype estimation
DNA samples (40 μl each) were sent to the integrated
genotyping services and support (IGSS) at the Biosci-
ences eastern and central Africa - International Live-
stock Research Institute (BecA-ILRI) Hub for
sequencing based on the DArTseq technology. The raw
Fastq files were processed within the GBSapp pipeline
for pre-processing fastq files, variant and dosage calling,
and variant filtering. The pipeline integrates various soft-
ware, including GATK v3.7 [64], optimized for highly
heterozygous and polyploid species [21]. Filtering pa-
rameters included read depth filtering for each data
point (genotypes with read depth less than the threshold
were coded as missing). Also, markers with > 20% miss-
ing data, and minor allele frequency < 5% were removed.
Out of 46,007 diploidized SNPs, 33,068 informative
diploidized SNPs derived from 358 diverse genotypes
were considered after the filtering and data quality con-
trol process. The two physical reference genomes of
sweetpotato’s putative ancestral diploid progenitors, I.
trifida and I. triloba [20] were used for variant calling.

Linkage disequilibrium
Linkage disequilibrium analysis was performed using
GAPIT [65] and implemented in the R-package v3.5.1
using the selected 33,068 SNP markers. Linkage disequi-
librium (LD) was estimated as squared allele frequency
correlations (R2), and only P-values < = 0.01 for each
pair of loci were considered significant. The LD decays
were computed for LD-based genome-wide association
analysis.

Genome-wide association studies
To minimize false positive rates and increase statistical
power, the population structure Q and kinship (K)
matrix were estimated. A compressed mixed linear
model (CMLM) was used, with the kinship or related-
ness (K) matrix as a random effect to account for popu-
lation structure and reduce spurious associations. The
analysis was performed using the R package for Genome
Association Prediction Tool (GAPIT) version 3 [66].
Variance–covariance kinship matrix (K) was calculated
using the VanRaden method [67]. The first three
principle components of the dataset were automatically
calculated in GAPIT to visualize the genetic diversity
across the collection (N = 358). The first three principal
components of the SNP data were included in the
GWAS model. The Bonferroni threshold for P values
was calculated based on the number of markers (P = 1/n,
n = total SNP used) according to the method described
in Li et al., (2013) [68].

Identification of candidate genes
Based on the significant trait-associated SNPs, the phys-
ical genome assembly of the diploid I. trifida (http://
sweetpotato.plantbiology.msu.edu/) was used as the ref-
erence genome for identifying candidate genes. The pu-
tative function candidate genes that co-localized with
associated SNPs were annotated based on similarity to
known annotated genes in other species, particularly,
Arabidopsis thaliana. Independent analyses were per-
formed using the Basic Local Alignment Search Tool
from the National Center for Biotechnology Information
Basic Local Alignment Search Tool (NCBI BLAST) and
the conserved domains database (CDD) resources [69]
for annotation of the sweetpotato genes. Additional an-
notation of the candidate genes was confirmed based on
review of relevant literature.
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