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Abstract

A theory for the elastic scattering response from a cylinder insonified by a plane wave was 

previously derived by Faran. In the present paper, the empirical relationship between Faran’s 

theory and measurements of backscatter coefficient from cylindrical targets using focused 

transducers is investigated. Experimental measurements of dependence of backscatter coefficient 

on frequency and diameter for nylon wires are reported. It is found that, under certain conditions 

(including weak, incoherent scattering), backscatter coefficient measurements from collections of 

cylindrical scatterers may be meaningfully compared with Faran’s model predictions. At low 

frequencies, the theory and experimental measurements exhibit similar dependences on frequency 

and diameter, provided that the scatterers are not too densely packed. At higher frequencies, the 

fine structure of Faran’s predictions becomes difficult to reproduce experimentally with a focused 

transducer. Implications regarding applications to characterization of trabecular bone are 

discussed.
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Introduction

Measurements of scattering properties have been demonstrated to be useful for the 

characterization of many biological tissues (Shung, 1993). Many studies have involved 

measurement of the backscatter coefficient, which is defined as the differential scattering 

cross section per unit volume for a scattering angle of 180 degrees (Ishimaru 1978; 

O’Donnell, 1981; Madsen, 1984).

Numerous algorithms for measurement of backscatter coefficient have been reported. These 

techniques often assume point-like scatterers producing quasi-spherical scattered waves 

which may be detected efficiently with spherically-focused transducers. Some techniques 

have been rigorously validated using Faran’s theory of elastic scattering from spherical 

scatterers (Faran, 1951; O’Donnell, 1981; Madsen, 1984). Faran’s theory predicts the 
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magnitude of a spherical wave scattered by a sphere, or a cylindrical wave scattered by a 

cylinder, in response to an incident plane wave. (In the second case, the axis of the cylinder 

is assumed to be perpendicular to the wave propagation direction). Faran’s equations for 

spherical scatterers are consistent with the assumptions underlying many backscatter 

coefficient measurement methods. For example, Faran’s assumption of plane-wave 

insonification is reasonable for small scatterers insonified by focused transducers provided 

that the variation of the amplitude and phase of the interrogating beam is negligible across 

the surface of the scatterer. This is often true when the scatterers are much smaller than the 

beam cross section. Thus, for small spherical scatterers, comparison of experimental 

measurements of backscatter coefficient to Faran’s predictions is relatively straightforward.

The case of cylinders is somewhat more difficult than that for spheres. In Faran’s model, 

cylinders have infinite extent. In practical experiments, the effective scatterer becomes that 

portion of the cylinder for which the transducer is most sensitive (i.e. the intersection of the 

beam cross section with the cylinder). But considerable variation of amplitude and phase of 

the incident beam is likely across the surface of the cylinder, violating Faran’s premise of 

plane wave insonification. Moreover, the differential scattering cross section (upon which 

the backscatter coefficient is based) is defined only under conditions in which a scattered 

field is measured sufficiently distant from the scatterer that it behaves as a spherical wave 

(Ishimaru, 1978). Since the effective scatterer spans the entire resolution volume, the 

distance required so that the scattered wave may be thought of as quasi-spherical is much 

greater for cylinders than for point-like scatterers. Therefore, in the case of interrogating a 

cylindrical scatterer at the focal region of a focused transducer, the scattered wave may not 

closely approximate a quasi-spherical form by the time it is received. Thus, the association 

of Faran’s predictions with measured backscatter coefficients is not as clear as in the case of 

spherical scatterers.

The objective of this paper is to experimentally investigate the correspondence between 

Faran’s theory and backscatter coefficient measurements using focused transducers and 

cylindrical targets. Only the dependences of backscatter coefficient on frequency and 

diameter are considered here, not the more challenging topic of absolute magnitude. This 

subject is particularly relevant for the characterization of trabecular bone. Previous 

measurements of frequency-dependent backscatter from human calcaneus have suggested 

that scatterers from trabecular bone behave more like cylinders than spheres (Wear, 1999; 

Wear, 2000). Trabecular bone is known to contain rod-like trabeculae which could help 

explain this observation. Trabecular bone also contains plate-like structures. The relative 

preponderance of rod-like structures to plate-like structures increases with age.

Previous experiments have offered much validation for Faran’s theory regarding 

measurements made with unfocused transducers. Faran himself reported measurements of 

scattering from metal cylinders at 1 MHz (Faran, 1951). A hydrophone was used to measure 

the angle dependence of scattering. Excellent agreement between theory and experiment was 

reported. Ninety-degree scattering from cylindrical (copper and nylon) targets was reported 

by Lee and co-workers (Lee, 1978), who also found good agreement between their 

measurements and Faran’s theory.
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Faran and Lee et al. used small aperture transducers to insonify cylinders situated in the far 

field. This resulted in relatively uniform insonification over a substantial length of the 

cylinder, and, as far as their experiments were concerned, could be taken to approximate 

plane wave insonification.

Faran’s and Lee et al.’s pioneering work preceded the advent of algorithms for backscatter 

coefficient measurement using focused transducers in the early 1980’s (O’Donnell, 1981; 

Lizzi, 1983; Waag, 1983; Madsen, 1984). Unlike the studies of Faran and Lee et al., the 

present study is based on the measurement of backscatter coefficient using focused (rather 

than planar) transducers. These days, focused transducers are generally preferred for 

imaging applications and for measurements on small samples because of their superior 

lateral resolution. Also, in highly attenuating media, focused transducers are often required 

in order to overcome attenuation in tissue between the transducer and the region of interest.

Another distinction between the present study and that of Lee et al. is that Lee et al. 
examined scattering at 90 degrees instead of backscatter. It will be seen that, in the range of 

frequencies investigated, backscatter from nylon scatterers exhibits a far more complicated 

form than the quasi-Gaussian response (backscattered intensity vs. frequency) Lee et al. 
encountered at 90 degrees, hence making the conformity between theory and experiment 

somewhat more challenging in the present study. (It should be noted however that Lee et al. 
did observe more complex behavior for copper wires). Finally, agreement between theory 

and experiment is investigated in the present study over a greater dynamic range of 

backscatter (two decades) than in Lee’s work (approximately one decade).

Ueda and Akita reported a diffraction correction for backscatter coefficient using echoes 

scattered by a fine wire (Ueda, 1986). Their method showed excellent agreement with 

theoretical predictions. Their analysis was restricted to the case for which the diameter of the 

wire is much smaller than the wavelength of ultrasound. In the present study, the ratio of the 

cylinder diameter to the wavelength ranges from about 0.05 to 0.8.

There have been several other important contributions regarding scattering from cylinders 

that neither involve backscatter coefficient measurement nor offer comparisons to Faran’s 

theory. Li and Ueda have provided a theoretical treatment of scattering of a spherical wave 

by an elastic circular cylinder (Li, 1990a). The same authors subsequently explored the 

measurement of scattering from cylinders using cylindrical shell transducers (Li, 1990b). 

Sheng and Hay investigated backscatter from thin wires situated in the transducer farfield, 

where the incident wave may be modeled as a spherical wave (Sheng, 1993). Raum and 

O’Brien developed a technique for determining the spatial and temporal transmit-receive 

field distributions of a spherically focused high-frequency transducer using a (tungsten) wire 

target (Raum, 1997).

Methods

Backscatter coefficients are generally associated with media that contain multiple individual 

scatterers distributed throughout a volume. Measurement methods usually assume 

incoherent scattering (O’Donnell, 1981; Madsen, 1984). In other words, the phase 
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differences between echoes emanating from scatterer pairs are assumed to be uniformly 

distributed from 0 to 2π. In this case, the expected received power is simply the sum of the 

powers scattered by individual scatterers situated within the resolution volume.

A natural approach for investigating this problem experimentally might be to acquire data 

from phantoms consisting of multiple randomly positioned cylinders per resolution volume. 

However design and construction of such a phantom would represent a substantial challenge. 

In the present study, an alternative but essentially equivalent approach was adopted for 

expediency. Signals were acquired from single cylinders placed at the focus of the 

transducer. Under the assumptions of weak, incoherent scattering, the dependence of 

backscatter on cylinder diameter would be expected to be the same for a single scatterer as 

for a volume containing randomly distributed scatterers. However, the dependence of 

backscatter on frequency would be expected to be different in the two cases since the size of 

the resolution volume is frequency-dependent, and therefore the effective number of 

scatterers contained within the resolution volume is frequency-dependent. In order to 

account for this effect, measured signal power spectra may be multiplied by a presumed 

frequency-dependent number of scatterers per resolution cell (see below for details). This 

approach is consistent with the underlying assumptions for backscatter coefficient 

measurement and avoids the arduous task of designing and building a phantom containing 

randomly positioned cylinders. This approach also assumes that the system point spread 

function is shift-invariant throughout the measurement volume. Backscatter coefficients 

compensated in this way are referred to below as “expected backscatter coefficients.”

Nylon fishing lines of various diameters (nominally 0.006”, 0.008”, 0.010”, 0.011”, 0.012”, 

0.014”, 0.016”, and 0.018”) were interrogated in a water tank in pulse-echo mode. Actual 

diameters were measured using calipers. Each line had a fishing weight attached to the 

bottom so that it could be hung vertically. The ultrasound beam propagation direction was 

perpendicular to the nylon line. In order to compute the predicted backscatter according to 

Faran’s theory, assumed values for Poisson’s ratio, density (ρ) and longitudinal velocity (cl) 

for the scattering target were required. Poisson’s ratio for nylon was assumed to be 0.39 and 

cl was taken to be 2600 m/s (Ondacorp, 2003). Density (ρ) was obtained from measured 

masses (m) of the spools of fishing line. The measured mass of each spool of fishing line 

was the sum of the mass of the plastic spool (ms) plus that of the nylon line (ρv) wound 

around it: m = ms + ρv where the nylon wire volume v was πr2h, r was the nylon line radius, 

and h was the length. Since r (measured with calipers) and h (specified by manufacturer) 

were known, ms and ρ could be estimated from a linear regression to measurements of m 
and v from the eight spools. The density estimated in this way was 1.3 g/cc. The square of 

the correlation coefficient for the linear fit was 0.98 (95% confidence interval: 0.96 – 1.00), 

indicating a high uniformity of densities among the eight nylon lines. The theoretical 

predictions for scattering from a cylindrical nylon target was generated numerically 

(MATLAB) using Faran’s theory (Faran, 1951) and these material values.

Three different Panametrics (Waltham, MA) ultrasound transducers, with center frequencies 

ranging from 500 kHz to 2.25 MHz, were used. See Table 1. For low frequency 

measurements (500 kHz), a Panametrics model 5077 PR pulser/receiver was used. For 

higher frequencies, a Panametrics model 5800 PR was used. Received ultrasound signals 

Wear Page 4

J Acoust Soc Am. Author manuscript; available in PMC 2020 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were digitized (8 bit, 10 MHz) using a LeCroy (Chestnut Ridge, NY) 9310C Dual 400 MHz 

oscilloscope and stored on computer (via GPIB) for off-line analysis. In order to ensure 

consistent alignment of nylon lines, the transducer orientation was always adjusted so as to 

maximize the amplitude of the received time-domain signal.

Backscatter coefficients were measured using a reference phantom method (Zagzebski et al., 
1993) as described previously (Wear, 1999). This method assumes that the location, size, 

and shape of the region of interest (defined by the gate duration in the axial dimension and 

the beam width in the lateral dimension) are identical for the specimen for which backscatter 

coefficient is to be measured and the reference phantom (for which the backscatter 

coefficient is presumed to be known a priori). In this case, the effects of frequency-

dependent diffraction are the same for both measurements and therefore cancel out when the 

ratio of power spectra is taken. A gate length of 1 cm was used for the reference phantom 

measurements.

As mentioned above, for the investigation of the expected dependence of backscatter 

coefficient on frequency, received power spectra from the nylon cylinders were multiplied by 

a frequency-dependent factor in order to simulate the situation in which numerous cylinders 

exist within a resolution cell. It is assumed here that all the hypothetical cylinders are 

oriented parallel to each other and perpendicular to the ultrasound propagation direction. 

Since the beam width is frequency-dependent, the resolution cell size is frequency-

dependent. The effective number of cylinders per resolution cell N is given by

N = nxnz (1)

where nx = effective number of scatterers contained across the lateral dimension of the 

resolution cell and nz = effective number of scatterers contained across the depth dimension 

of the resolution cell. The latter quantity is given by

nz = 1 + Δz/s (2)

where Δz is the length of the rectangular range gate, Δz = cτ/2, c is the speed of sound, τ is 

the duration of the range gate, and s is the mean scatterer spacing. This factor (nz) does not 

depend on frequency.

An expression for nx may be obtained as follows. The intensity of the Franhofer diffraction 

pattern for a circular aperture (the so-called “Airy pattern”) is given by (Goodman, 1968)

I(x) = kl2
8z

2
2

J1(klx/2z)
klx/2z

2
(3)

where J1 is a Bessel function of the first kind, order one, k = 2π / λ, λ is the wavelength, l is 

the aperture diameter, x is the lateral dimension, and z is the distance from the aperture to 

the scatterer. This same intensity distribution has been derived for acoustic radiation. (See 

Kinsler et al., 1982, equation 8.35, and substitute a=l/2, sinθ=x/z). The effect of focusing is 

to bring the Franhofer pattern from the far field to the focal plane of the transducer. From the 
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principle of reciprocity, the overall system sensitivity, as a function of scatterer position, is 

the square of the focal plane intensity distribution.

I2(x) = kl2
8z

4
2

J1(klx/2z)
klx/2z

4
(4)

For the purpose of estimating nx, it was assumed that the effective number of scatterers 

across the lateral direction could be taken to be equal to one (the wire at the focal point) plus 

the expected number of scatterers to the left plus the expected number of scatterers to the 

right, given by

nx = 1 + 2Δx/s (5)

where the half width half maximum (HWHM) of I2(x) is denoted by Δx ≈ 0.37zc / (lf) and f 
is frequency.

Two limitations to this approach should be acknowledged. First, it does not explicitly 

account for the fact that cylinders near the periphery of the beam are insonified with lower 

intensities than centrally-positioned cylinders. However it has previously been shown that, 

for the purpose of measuring backscatter coefficients, the effective number of scatterers may 

be accurately approximated simply by counting those scatterers included within the 3-dB 

beam cross section, (O’Donnell and Miller, 1981, equation 15). This approximation is 

especially valid in the present application as the parameter of interest is only the frequency 
dependence (rather than the absolute magnitude) of the scatterer number. A second 

limitation to this approach is that it does not account for the fact that cylinders near the 

periphery of the beam will have diminished effective heights (i.e. intersections between 

beam cross section and cylinder) and therefore potentially altered frequency-dependent 

backscattering properties. Again, it is assumed here that, for the purpose of estimating 

frequency dependence of scatterer number, the present approach is adequate. An 

experimental test of this assumption is given in the next section.

In Figure 1, nx is plotted as a function of frequency for four choices of assumed mean 

scatterer spacing for an f2 transducer and an assumed sound speed of 1480 m/s (water). It 

can be seen that for mean scatterer spacings greater than or equal to about 0.8 mm, the 

approximate mean trabecular spacing for human calcaneus (Ulrich, 1999), and frequencies 

greater than 1 MHz, the frequency dependence of nx is relatively gradual (especially when 

compared to Faran’s frequency response from a single cylinder, as will be seen in the next 

section). Under these conditions, any conclusions regarding the frequency-dependence of 

backscatter coefficient will not depend critically on the assumed value for mean scatterer 

spacing.

Results

Figure 2 shows experimental measurements of backscatter coefficient at 500 kHz as a 

function of diameter of nylon line. The solid line shows the theoretical variation predicted 

from Faran’s theory (Faran, 1951). The theoretical curve was multiplied by a single 
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diameter-independent scale factor in order to optimally fit the data. Therefore, only the 

extent of agreement between theory and experiment regarding dependence of backscatter 
coefficient on scatterer diameter may be assessed from Figure 2. No meaningful conclusions 

may be drawn regarding the absolute magnitude of backscatter coefficient. Theory and 

experiment exhibit similar dependences on diameter.

Figure 3 shows expected frequency-dependent backscatter coefficients from the eight nylon 

wires (diameters shown in upper left of each panel). Also shown are the theoretical 

backscattered intensities computed using Faran’s theory (solid line). Each theoretical curve 

was multiplied by a frequency-independent scale factor in order to fit the data. Therefore, 

only the extent of agreement between theory and experiment regarding dependence of 
backscatter coefficient on frequency may be assessed from Figure 3. No meaningful 

conclusions may be drawn regarding the absolute magnitude of backscatter coefficient.

As described in the Methods section, experimental results (but not the theory) shown in 

Figure 3 were scaled by the effective number of scatterers per resolution cell, assuming a 

particular value for scatterer spacing, 0.8 mm, which corresponds to the measurement 

reported by Ulrich et al. (1999) based on their micro computed tomographic analysis of 

human calcaneus samples. (They reported a mean trabecular separation of 684 microns and a 

mean trabecular thickness of 127 microns. Mean scatterer spacing is the sum of these two 

values). Good agreement may be seen in Figure 3 between theory and experiment, especially 

for the thinner diameters and lower frequencies. The experimental measurements do not 

always exhibit sufficient resolution to faithfully reproduce Faran’s theory. In particular, for 

the three thickest diameters, the fine structure of Faran’s predictions at frequencies above 

about 1.5 MHz becomes noticeably difficult to reproduce experimentally.

In Figure 4, the dependence of backscatter coefficient for the 150 micron wire as a function 

of frequency is shown in the low frequency range. This diameter is just slightly larger than 

the mean value for trabecular thickness in human calcaneus reported by Ulrich et al. (1999) 

of 127 microns. Again, experimental results were scaled by the effective number of 

scatterers per resolution cell assuming a scatterer spacing of 0.8 mm (see Figure 1). Also 

shown is a power law fit to the data, backscatter coefficient = Afm where m = 2.84. This 

approximate cubic dependence is similar to theoretical predictions by Lizzi et al. (1996) for 

thin quasi-cylindrical scatterers.

Discussion: Applications in Bone

In a previous study (Wear, 1999), backscatter coefficients were measured from human 

calcaneus in vitro. These frequency dependent backscatter coefficients were compared to 

Faran’s predictions. This analysis was based on the plausible but unproven assumption that 

the two frequency-dependent functions should be roughly proportional to each other. The 

present study offers strong empirical evidence to support this assumption. The present study 

suggests that backscatter coefficient measurements exhibit similar dependences on 

frequency and diameter as Faran’s model predicts, provided that the scatterers are not too 

densely packed. Although the present study neglected attenuation that may arise from a 

hypothetical ensemble of cylinders throughout the range-gate, its results may be extended to 

Wear Page 7

J Acoust Soc Am. Author manuscript; available in PMC 2020 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highly attenuating media such as bone because backscatter coefficient measurements from 

tissues may be accurately compensated for the effects of attenuation (O’Donnell and Miller, 

1981, equation 17).

The reference phantom method for measurement of backscatter coefficient used in this study 

has been experimentally validated using homogeneous phantoms containing spherical or 

quasi-spherical scatterers (Zagzebski, 1993). The present study adds evidence that it is also 

appropriate for media containing cylindrical scatterers.

Faran’s model predicts that, at low frequencies, backscattered intensity is approximately 

proportional to frequency cubed. This effect is seen in the present study in Figure 4, which 

shows the low frequency backscatter coefficient for the 150 micron diameter nylon wire. In 

this case, the exponent of the power law fit was found to be 2.84 (approximately cubic). This 

value is similar to that reported in human calcaneus, 3.26 ± 0.20 (Wear, 1999). Although 

trabeculae in human calcaneus are oriented in a variety of directions, they are all 

approximately perpendicular to the ultrasound propagation direction provided that bones are 

interrogated in the medio-lateral orientation (as is the case in the experiments above and in 

most commercial bone sonometers).

Empirical power law exponents for human calcaneus in the low frequency range are a little 

higher than the approximately cubic variation predicted by the cylinder model - 3.26 (Wear, 

1999) and 3.38 (Chaffai et al., 2000). The difference of 0.3 – 0.4 may be due in part to 

multiple scattering, which would have the effect of applying additional high-pass 

(frequency-cubed) filtering to echoes (via multiple scatters), resulting in measured 

backscatter coefficients with more rapid than cubic frequency dependence (Wear, 1999). 

This effect would be expected to be rather small because multiply scattered waves tend to 

traverse longer path lengths than singly scattered waves and trabecular bone has a very high 

attenuation coefficient. Another potential contribution to the difference between theory and 

measurements results from trabecular bone having a more complex geometry than the 

cylinder model would suggest. Rod-like structures within trabecular bone exhibit a wide 

range of lengths and in some cases will be shorter than a beam width. Moreover, trabeculae 

are not perfectly straight (as assumed in the model) but are somewhat curved and jagged. 

Furthermore, in addition to rod-like structures, trabecular bone also contains plate-like 

components. Nevertheless, cylinder-like objects (trabeculae) are responsible for an 

appreciable fraction of the scattering. In addition, only those plate-like structures oriented 

approximately perpendicular to the ultrasound propagation direction can measurably affect 

the frequency dependence of scattering. Finally, plates are comparatively rare in bones from 

older subjects, upon which the data from the studies mentioned above are based.

Trabecular thickness is an important determinant of osteoporotic fracture risk. Noninvasive 

assessment of trabecular thickness could potentially yield useful diagnostic information. A 

recent study has shown that the dependence of backscatter coefficient measurements from 

human calcaneus samples on trabecular thickness is similar to that predicted using Faran’s 

model (Wear, 2003). The theory predicts that, in the range of morphological and material 

properties expected for trabecular bone, the backscatter coefficient at 500 kHz should be 

approximately proportional to trabecular thickness to the power of 2.9. A power law fit to 
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empirical data suggested that backscatter coefficient measurements (from 43 human 

calcaneus samples) varied as trabecular thickness to the 2.8 power (95% confidence interval: 

1.7 – 3.9).

Conclusion

Under certain conditions (including weak, incoherent scattering), backscatter coefficient 

measurements from collections of cylindrical scatterers may be meaningfully compared with 

Faran’s model predictions of scattered wave intensities resulting from plane wave 

insonification. At low frequencies, the two functions exhibit similar dependences on 

frequency and diameter, provided that the scatterers are not too densely packed. At higher 

frequencies, the fine structure of Faran’s predictions becomes difficult to reproduce 

experimentally.
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Figure 1. 
The expected number of scatterers (nx) across the lateral dimension as a function of 

frequency for four different assumed mean scatterer spacings (s).
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Figure 2. 
Backscattered intensity at 500 kHz as a function of diameter of nylon line.
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Figure 3. 
Backscattered intensity from nylon wires (diameter shown in upper left of each panel). Also 

shown are the theoretical backscattered intensities computed using Faran’s theory (solid 

line)
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Figure 4. 
The dependence of expected backscatter coefficient for the 150 micron (0.006”) wire as a 

function of frequency. Also shown is a power law fit, backscatter coefficient = Afm where m 

= 2.84.
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Table I.

Properties of Panametrics ultrasonic transducers used.

Model Number Center Frequency (MHz) Diameter (inches) Focal Length (inches)

V391 0.5 1.125 2.1

V302 1.0 1.0 2.0

V305 2.25 0.75 1.5
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