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Abstract

Genome-wide variation data with millions of genetic markers have become commonplace. 

However, the potential for interpretation and application of these data for clinical assessment of 

outcomes of interest, and prediction of disease risk, is currently not fully realized. Many common, 

complex diseases now have numerous, well-established risk loci, and likely harbor many genetic 

determinants with effects too small to be detected at genome-wide levels of statistical significance. 

A simple and intuitive approach for converting genetic data to a predictive measure of disease 

susceptibility is to aggregate the effects of these loci into a single measure, the genetic risk score. 

Here, we describe some common methods and software packages for calculating genetic risk 

scores and polygenic risk scores, with focus on studies of common, complex diseases. We review 

the basic information needed as well as important considerations for constructing genetic risk 

scores, including specific requirements for phenotypic and genetic data, and limitations in their 

application.
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INTRODUCTION

The purpose of this unit is to give an overview of the application of genetic risk scores 

(GRS) while also presenting guidelines for using GRS for disease prediction. While 

genome-wide association studies, which have become routine over the past decade, have 

yielded major genetic loci—mostly single nucleotide polymorphisms (SNPs)—associated 

with common, complex diseases (Beck et al., 2014; Buniello et al., 2019), a great deal of the 

heritability of such diseases remains to be dissected (Manolio et al., 2009). Translating the 

influence of these static loci, which, unlike clinical measures, do not change, to predict 

disease risk is not always straightforward. As a rule, many genetic loci contributing to 

complex, common diseases contribute varying degrees of risk (or protection). Connecting 

these effects, along with demographic, lifestyle, and environmental risk factors, to disease 

risk is a daunting task, but through classical and recently-developed methods of analysis, 

progress is being made toward realizing the potential of this vast body of genetic data. We 

here review methods for translating genetic information into an assessment of disease risk 
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for complex traits whose genetic component cannot be completely explained by one or 

several genetic loci of large effect, with emphasis on potential complications and pitfalls.

The purpose of risk scores is twofold: (1) to predict the likelihood of an individual 

developing disease (or a particular outcome of interest) based on some amount of available 

information, usually genetic, clinical, demographic, or a combination; and (2) to estimate the 

level of predictive power that is captured by associated variants. The goal is to be able to 

predict whether a person is likely to develop disease, a reaction to a drug, etc., based on 

available genetic information. Predicting a greater proportion of the “risk” for the outcome 

of interest indicates the level of success of predictors included in the risk score.

The most common approach to evaluate the cumulative effect of many genetic factors with 

small effect, with or without non-genetic clinical factors, is the genetic risk score (GRS). A 

GRS can estimate the overall probability, or risk, a person has for developing an outcome of 

interest based on their genotypes at variants determined to be associated with risk for that 

outcome. Because an individual’s genetic profile is set at birth, and therefore, because risk 

for disease could theoretically be determined prior to (most) environmental exposures (Wray 

et al., 2010),a great deal of hope has been invested into developing these models as an 

advancement of precision medicine. However, for many complex diseases, it is debatable 

whether genomic profiling is ready for clinical use (e.g., (Cooke Bailey et al., 2016; 

Jakobsdottir et al., 2009; Khawaja and Viswanathan, 2018; Schork et al., 2018)). Family 

history is typically seen as a good proxy for genetic risk as it reflects shared genetic and 

environmental factors and thus is incorporated into clinical history when possible for genetic 

diseases (reviewed in (Wray et al., 2010)). Family history is limited, however, by family 

size, disease prevalence and information available from relatives; and is susceptible to 

confounding by recollection and referral biases. Furthermore, positive family history reflects 

a certain level of disease risk, while negative family history does not imply the opposite 

(Wray et al., 2010). One goal of implementing GRS is to improve upon these factors for a 

more comprehensive and accurate assessment of disease risk beyond what family history can 

estimate.

GRS allow for the evaluation of contributions by multiple factors to disease development 

and outcomes, including, but not limited to, disease susceptibility, progression, and response 

to treatment. GRS can be based solely on available genetic data or can incorporate 

environmental, phenotypic, and/or demographic information. Published GRS results tend to 

vary across studies and are dependent upon the population sample evaluated and the true 

outcome of interest (i.e., progression from early to late stage disease, disease subtypes, or 

general disease risk). These are important factors to keep in mind when constructing and 

evaluating GRS for use in a particular sample.

Prediction accuracy of GRS is most often assessed by measuring the area under the receiver 

operating characteristic (ROC) curve (AUC), an indicator of model accuracy. The AUC 

compares the rates of true positives (sensitivity) and false positives (1 – specificity) and 

indicates the overall performance of predictive models (Janssens et al., 2007). Sensitivity, 

the probability of correctly classifying an affected individual as affected, indicates the ability 

of the model to correctly predict individuals with the outcome of interest; specificity, the 
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probability of correctly classifying an unaffected individual as unaffected, indicates the 

ability of the model to accurately screen out individuals without the outcome of interest. The 

AUC generally varies between 0.5, indicating a model no better than chance, and 1, 

indicating a perfect model (Janssens et al., 2007). Models are expected to have an AUC > 

0.75 for informative screening of individuals who are at increased disease risk, and very high 

AUC (as high as 0.99) for a diagnostic test (Janssens et al., 2007). The higher the AUC, the 

more precise the prediction and thus, the greater the clinical utility of the combination of 

factors included in the model. However, there are limitations to consider. There are two 

components to predictive accuracy: the potential accuracy if all genetic factors were known, 

determined by the trait heritability, and the correlation between the GRS and true genetic 

risk, determined by the quantity of genetic data and selection of genetic variants for 

prediction. The AUC is limited by both of these factors but cannot distinguish between them 

(Wray and Goddard, 2010).

Instead of calculating the AUC, the predictive measure emphasized here, one can also 

estimate the proportion of trait variability explained by one or more genetic markers. One 

measure is the population attributable risk (PAR) or population attributable fraction, which 

in general expresses the fraction of cases attributable to a given exposure (Witte et al., 2014). 

However, the PAR is not additive over multiple markers. In the case of continuous traits, the 

multiple R2 (squared correlation) from linear regression measures the trait variance 

accounted for by the predictors. This may be approximated for binary traits by a pseudo-R2 

measure, derived from the likelihood under the models with and without genetic predictors 

(Menard, 2000; Witte et al., 2014), or by the squared empirical correlation (Tjur, 2009). One 

popular measure, the Nagelkerke R2, is upwardly biased in samples highly enriched for 

cases (Choi et al., 2018); the variation by Lee et al. (2002) attempts to correct for this bias.

Where estimates of risk or predicted continuous trait values are available, they may be 

calibrated to assess agreement of predicted and actual values. One simple calibration 

technique is to regress the phenotype (as outcome) on the GRS (as predictor); the regression 

line should have a slope near 1 and y-intercept near 0. A slope considerably greater than 1 

suggests overfitting (Goldstein et al., 2015). Several statistical analysis software packages 

written in R produce calibration plots, especially the caret package (Kuhn, 2008). The Brier 

Score is a single summary measure of overall prediction performance (i.e., both calibration 

and discrimination). It is calculated as the mean squared difference between the predicted 

probability (or risk) and the actual phenotype, with a score of 0 indicating perfect agreement 

(Steyerberg et al., 2013).

As a practical example of use, GRS have been constructed for many common, complex 

diseases including age-related macular degeneration (AMD). AMD is one of the few 

common and complex diseases for which large-effect loci have been identified: the CFH and 

ARMS2/HTRA1 loci along with ten other loci predict disease risk with an AUC of 0.736 

and it has been shown that adding other low-effect SNPs to a GRS for AMD does not 

significantly strengthen the model (Fritsche et al., 2013). More recent analyses support 52 

independently associated AMD variants in 34 loci that contribute varying degrees of risk for 

advanced AMD and overall explain 27.2% of overall disease risk and more than half of the 

Igo et al. Page 3

Curr Protoc Hum Genet. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heritability, but again, the four loci of greatest effect account for most of the explained risk 

(Fritsche et al., 2016).

An alternative measure of predictive accuracy is based on positive predictive value: the 

probability that an individual labeled “high-risk” is truly affected. One way to estimate this 

is to subdivide the sample into a small number of bins, or quantiles, of the GRS, and to 

estimate predictive value by the proportion of cases and controls in each bin. Fritsche et al. 

(2016) divided samples into deciles of genetic risk based on the calculated GRS and found 

that individuals in the highest decile have a 44-fold increased risk for advanced AMD versus 

individuals in the lowest decile; however, only 22.7% of individuals in the highest decile of 

genetic risk are predicted to actually have AMD. This highlights a challenge of GRS: while 

ideally a GRS would easily distinguish between disease-susceptible individuals, the extant 

understanding of disease pathophysiology and available genetic information must expand 

concurrently with the increase in genetic disease risk knowledge to inform GRS and in turn 

enlighten the process of genetic disease prediction.

It is important to note that significance and effect size of optimal genetic variants from a 

risk-based approach, such as a GWAS by logistic regression, and from a classification-based 

approach, which focuses on accuracy of distinguishing cases from controls, are not always 

strongly correlated: strong risk markers might be poor classifiers while good classifiers 

might not show genome-wide levels of significance (Jakobsdottir et al., 2009; Pepe et al., 

2004). For example, Jakobsdottir and colleagues (Jakobsdottir et al., 2009) constructed a 

three-gene model for AMD risk including variants in CFH and LOC387715 (ARMS2/
HTRA1), each of which had achieved genome-wide significance in a logistic regression 

model (P=9.1×10−13 and 2.3×10−13, respectively), as well as a variant in C2 (P=1.3×10−3). 

This model yielded an AUC of 0.79, exceptionally high for a complex trait. Despite strong 

association, however, they calculated that a risk score threshold with a sensitivity of 74% 

(i.e., that correctly identified 74% of cases) also wrongly classified 31% of controls as cases. 

Thus, the clinical utility of GRS is likely to be quite limited.

GRS Methods

Many approaches are available to generate GRS. A straightforward method to evaluate the 

GRS is to choose a number k of independent genetic variants with strong (i.e., genome-wide 

significance in other studies or datasets) association as risk predictors, and to calculate the 

GRS as the sum of the effect estimates (log odds ratios), βi, from a logistic regression 

analysis with additive genetic effect, multiplied by the number of risk alleles, Ni, for each 

locus:

GRS = ∑
i = 1

k
βiNi Equation 1

This formula is directly related to the estimated risk for disease from the logistic model, 

through the logit (log odds) function, and therefore is statistically intuitive.
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The popular PLINK program for analysis of genome-wide genetic data (Purcell et al., 2007; 

Chang et al., 2015) implements this approach in a profile scoring method for generating a 

marker-based GRS. PLINK generates risk scores (“profile scoring”) by means of the --score 

function, provided binary-format (.bed,.bim,.fam) files from a genetic dataset and a 

myprofile.raw file with the SNP ID, reference allele and score (or weight) for each allele 

(Fig. 1), e.g.:

plink --bfilemydata --score myprofile.raw

This command will generate a file named plink.profile with the following information for 

each individual: family ID, individual ID, phenotype, number of non-missing SNPs used for 

scoring, number of named alleles, and total risk score for the individual, the sum of the 

number of reference alleles (0, 1, or 2) at each SNP multiplied by the (user-defined) ‘score’ 

for that SNP. A logical choice for the score is the estimated log odds ratio associated with 

each copy of the minor allele of each tested marker from a logistic regression analysis, as 

described below.

If a genotype in the score is missing for an individual, the program default is for the value to 

be imputed based on the sample allele frequency. To change this, the --score-no-mean-

imputation flag should be used.

PLINK’s --logistic function for logistic regression covariates reports the odds ratio per copy 

of the minor allele at each marker (Figure1A, column 6). The natural logarithm of this odds 

ratio is the value βI in the GRS equation above and is entered as the score for each marker in 

the myprofile.raw file for PLINK (Figure1B).

A limitation of PLINK’s risk score method is that it calculates the average GRS per non-
missing marker, whereas the typical GRS is the sum over all markers. In the case of no 

missing data, these scores are equivalent; however, a large proportion of missing genotypes 

may result in atypical values of the average GRS. If this is a concern, it is worth considering 

removing individuals without complete data at all markers to be evaluated in the GRS.

From this stage, various programs and approaches can be used; several available programs 

are listed in Table 1. These require varying degrees of analytical and programming 

experience.

Polygenic Risk Scores

To capture additional predictive capacity, the GRS may be extended to loci of small effect, 

without genome-wide significant associations, in a polygenic risk score (PRS). This 

approach is particularly valuable for complex traits that lack common risk variants of large 

effect, including schizophrenia (International Schizophrenia Consortium et al., 2009), height 

(Boyle et al., 2017), and primary open-angle glaucoma (Gao et al., 2019). In principle, PRS 

can capture all causal variation measurable from the genotyping panel by single-marker 

association testing (the “chip heritability”; (Yang et al., 2011)). The predictive power of PRS 

is limited by the number of SNPs tested and a trait’s heritability and prevalence, but 
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theoretically can be high (e.g., 0.92 for AMD (Wray and Goddard, 2010)). In practice, in 

some situations a PRS may identify high-risk individuals as if they carried high-impact, 

Mendelian risk loci, (Khera et al., 2018), and can identify risk classes that could inform a 

range of treatment options (Torkamani et al., 2018).

Calculating and testing PRS is computationally demanding, but in recent years has become 

routine (reviewed in (Choi et al., 2018; Maier et al., 2018)). The major obstacle for PRS is 

correlation among neighboring markers in high-density panels due to linkage disequilibrium 

(LD). Standard GRS calculations carry the assumption that all the contributing loci are 

independent, and will be biased in the presence of LD. Current PRS approaches (Table 2) 

differ mainly in how they account for correlations in effect sizes due to LD and in how they 

choose the total number of variants to include in the score.

Pruning and Thresholding (P+T)—A straightforward approach to address LD is to 

choose an independent subset of variants from GWAS to use as a standard GRS; the only 

difference is that here we include variants with modest association not usually highlighted in 

GWAS. This method, called pruning or (more properly) clumping (Goldstein et al., 2015), 

begins by selecting the most significant variant and removing from consideration all markers 

in LD with this index variant greater than a specified r2 cutoff. The most significant 

remaining marker is selected as a second index variant, and the process repeats until all 

index variants are found at a given significance level (International Schizophrenia 

Consortium et al., 2009). Clumping is implemented in PLINK as the --clump command. 

Required parameters for --clump are clump-p1, the significance threshold for markers in the 

final independent set; clump-kb, the maximum distance over which to omit markers in LD; 

and clump-r2, the maximum LD r2 value for “independent” markers (Wray et al., 2014). An 

additional parameter, clump-p2, is a p value under which clumped SNPs are reported and is 

not important for selecting the set of PRS variants. For example, a PLINK command to 

select an independent (r2< 0.1) set of markers with p< 10–4, removing correlated markers up 

to 500 kilobase pairs from the index variant, is

plink --bfile mydata --clump --clump-p1 0.0001 --clump-p2 1 --clump-r2 0.1 --

clump-kb 500

Typically, this procedure is run for several different significance thresholds, and the 

threshold is chosen with the maximum AUC, pseudo-R2, or other measure of predictive 

ability (Wray et al., 2014; Choi et al., 2018). Once an optimal set of PRS markers is 

selected, it is used in the same manner as a GRS.

The R package PRSice-2 (Euesden et al., 2015), built on the PLINK framework, automates 

the pruning and thresholding (P+T) approach, optimizing the p-value threshold by 

maximizing significance of association between the PRS and its target trait. It accepts output 

from PLINK association analyses as summary data and provides fit results across thresholds 

as p values and as variance explained (R2) by the PRS.
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Bayesian and Variable Reduction Models—A second, more advanced class of PRS 

methods are based on approaches typically used either to perform regression with correlated 

data and/or to select an optimal subset of predictors in a regression model. Unlike the P+T 

model, these approaches attempt to model the effects of all markers jointly. Though several 

of these methods are too new to have been extensively used in the literature, we present them 

as possibly useful options. The theoretical aspects of these approaches are discussed in 

greater detail in Choi et al. (2018).

In the Bayesian statistical framework, a prior probability distribution for the parameters of 

interest is combined with data to produce a refined posterior distribution, from which 

inference is made. In general, these models apply shrinkage to marker effects (i.e., summary 

statistics) that incorporates LD information from a reference panel (Choi et al., 2018). Prior 

distributions are selected that most accurately capture the “genetic architecture”, or 

contribution of the entire genome to the trait, that consider the LD structure (estimated from 

genotypes) and overall heritability. The program LDPred (Vilhjálmsson et al., 2015) uses a 

point-normal prior distribution with a specified causal proportion parameter p. The 

remaining non-causal variants (proportion 1-p) are assigned an effect of zero. The proportion 

is specified by the user and generally several values will be considered, with the candidate 

chosen by cross-validation. A newer method, SBayesR, in the GCTB software package 

(Lloyd-Jones et al., 2019), expands the point-normal prior with a mixture of normal 

distributions, allowing for the specification of multiple proportions (adding up to 1). Both 

methods require specification of the chip heritability, which can be estimated from the data. 

The RSS package (Zhu and Stephens, 2017) includes additional choices for prior 

distributions and does not require specification of proportions or heritability. RSS requires 

MATLAB, and therefore is less accessible to users. PRS-CS (Ge et al., 2019) improves 

computational efficiency of Bayesian regression by using a continuous shrinkage prior 

distribution on marker effect sizes. The user must specify a global shrinkage parameter, ϕ, 

that reflects the proportion of causal variants, but the program can estimate ϕ from GWAS 

results. All of these models require providing an LD matrix which can be estimated from a 

reference panel such as 1000 Genomes. SBayesR creates a sparse LD matrix which 

improves computation and inference, while RSS introduces a shrunken LD matrix. The 

program GCTB, a Bayesian companion to the popular GCTA package, can create sparse or 

shrunken LD matrices for use in other software. The JAMPred software applies a similar 

approach and can account for long-range LD (Newcombe et al., 2019). It should be noted 

that both RSS and SBayesR currently only analyze continuous phenotypes.

Two PRS methods, SBLUP (Robinson et al., 2017) and lassosum (Mak et al., 2017), use 

non-Bayesian strategies to consider large numbers of markers jointly. SBLUP, part of the 

GCTA package (Yang et al., 2011), uses the restricted maximum likelihood (REML) 

implemented in GCTA to perform a random-effects model to acquire a best linear unbiased 

predictor (BLUP). It requires the chip heritability as a parameter, but GCTA can estimate 

this if individual-level data are available. lassosum applies least absolute shrinkage and 

selection operator (LASSO) regression to downweight, and perhaps omit altogether, effects 

of correlated markers. Two important parameters for lassosum, which may require 
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optimizing using external data, are λ, which determines the fraction of effects shrunken to 0, 

and s, the shrinkage parameter (Mak et al., 2017).

Critical Parameters and Complicating Factors

The discriminatory power of the model to determine an individuals’ “risk” is dependent 

upon the factors included in the model and their contribution to that risk. Several questions 

regarding the factors included in a GRS must be considered. Are these factors useful 

predictors in only the population in which they were first detected? Are they consistent 

across ethnic groups? Does the linkage disequilibrium structure vary between the discovery 

population and the test population and will this cause differences in model predictability? 

Are the risk alleles coded consistently across datasets? Are the same DNA strands being 

evaluated? Critical aspects to consider when constructing a GRS are listed in Table 3.

Choosing an outcome of interest can seem straightforward; however, for common, traits with 

many genetic determinants, it does require understanding the complexity in the genetic 

component and in the definition of multifactorial traits, and how these factors interact. As an 

example, the primary open-angle glaucoma (POAG) phenotype may be defined in many 

different ways: by the associated traits (endophenotypes) cup-to-disc ratio (CDR), 

intraocular pressure (IOP), visual field (VF) loss, or by some combination of these (reviewed 

in (Weinreb et al., 2014)). Fifteen loci have been identified as genetic risk modifiers of 

disease (Cooke Bailey et al., 2016a; Li et al., 2015; Hysi et al., 2014; Gharahkhani et al., 

2014; Wiggs et al., 2012; Thorleifsson et al., 2010; Burdon et al., 2011; Chen et al., 2014) 

and numerous others identified in POAG endophenotypes have recently shown association 

with POAG (Khawaja et al., 2018; Gao et al., 2018; MacGregor et al., 2018). The genetic 

factors identified in studies of POAG and its component phenotypes (such as IOP, CDR, VF 

changes) overlap but are not identical. Some, but not all, genetic loci are associated with the 

disease and endophenotypes; GAS7 is associated with intraocular pressure as well as overall 

POAG (Cooke Bailey et al., 2016b), CDKN2B-AS1 is associated with POAG and normal 

tension glaucoma, and other optic nerve parameters (reviewed in (Wiggs, 2015)), and 

POAG-associated loci AFAP1, FOXC1, TXNRD2/GNB1L, and ATXN2/SH2B3 were 

recently associated with IOP (Khawaja et al., 2018). Choosing variants relevant to 

constructing a POAG risk score, for example, requires careful consideration and examination 

of this information. A recent example of a genetic risk score utilizing IOP-associated SNPs 

to predict POAG had AUC estimates of 0.76 and 0.74 in regression-based glaucoma 

prediction models in independent datasets (Khawaja et al., 2018). Gao et al. recently 

reported a PRS associated with IOP and POAG from the UK Biobank (Gao et al., 2019b), 

wherein the most discriminative model included PRS, age and sex, but, of note, the AUC of 

the base model (age and sex only) was slightly improved (from 0.713 to 0.766) with the 

addition of PRS to the model.

Mode of inheritance must also be taken into consideration. The formula described above 

assumes an additive genetic model (for binary traits, implying multiplicative on the odds 

scale) for all risk variants. Whereas the true contribution of genetic variants may not follow 

this model, some prediction accuracy may be lost, despite dominance effects likely not 

substantially contributing to sporadic, complex diseases (Hill et al., 2008).
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When constructing a GRS, DNA strand and risk allele coding are also crucial to keep 

consistent across studies so as to ensure validity and transferability of GRS. It is also 

imperative to note that the risk allele is not necessarily always the minor or reference allele 

and this is a key aspect to keep consistent between studies, since a protective effect of one 

allele implies risk at the other allele. Further, effect estimates should be estimated in the 

largest group possible, but not in the group being tested (to prevent model over-fitting). Map 

positions of older GWAS chips and whole-genome sequencing data may be reported relative 

to a different build of the human genome than modern GWAS chips (usually GRCh37/

hg19).

Special care should be taken when constructing GRS including SNPs with strand-ambiguous 

alleles A/T or C/G, because the reference allele is not obviously comparable between 

samples typed on different DNA strands. Ensure that the genotypes from new samples are 

relative to the same DNA strand (e.g., the Illumina TOP or dbSNP + strand), or, if strand 

information is absent, compare allele frequencies across samples to identify the common 

minor allele. In the latter case, A/T and C/G SNPs with minor allele frequency above 0.4 

may not be usable, owing to uncertainty in assigning the minor allele.

Most common variants associated with complex disease confer modest effect sizes. 

Assessing the contribution of these loci, which are identified with increasing frequency in 

massively large datasets of primarily European ancestry, to smaller or ethnically diverse 

samples requires careful planning and analysis and thus allelic heterogeneity should also be 

taken into consideration. In similar populations the true heritability accounts for the 

possibility of allelic heterogeneity; however, allelic heterogeneity will reduce prediction 

accuracy if discovery and testing cohorts are not of the same genetic background. In a 

sample of Amish individuals, Hoffman et al. calculated GRS generated from 19 AMD loci 

reported in Fritsche et al. (2013) and compared the distribution to that in a non-Amish 

European American sample (Hoffman et al., 2014). They found that overall the Amish risk 

scores were significantly lower in the Amish case and control groups, despite similar AMD 

prevalence, thus providing some insight into the genetic architecture of AMD in the Amish 

and highlighting important difference in genetic architecture even within European 

populations.

Cooke et al. (2012) previously evaluated a GRS that included 17 known type 2 diabetes 

(T2D) risk loci in an African American sample and showed that while the risk allele load 

was higher in African American cases compared to controls, the high-effect TCF7L2 
rs7903146 risk allele accounted for all increased risk in African Americans. Expanding on 

this work, Keaton and colleagues genotyped additional T2D SNPs to bring the total to 43 

SNPs and confirmed that there are ethnic-specific differences in the genetic architecture of 

T2D when comparing African Americans to European Americans (Keaton et al., 2014). 

Unfortunately, many of the GRS scores modeled to date have only been evaluated in 

European Caucasian individuals. This is reflective of the widespread genetic data in this 

population and the (in comparison) relative shortage of data in individuals of other ancestries 

(Bustamante et al., 2011). Further studies in individuals of non-European descent are needed 

to assess predictive models across ethnic groups, as the variants generally do not correspond 

directly, as mentioned above and as highlighted by studies that evaluated known AMD 
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variants in African Americans and Mexican Americans and only detected association at the 

ARMS2 A69S variant (Restrepo et al., 2014; Spencer et al., 2012).

PRS offer heightened predictive power over GRS but have special challenges. Immense 

samples sizes are required to achieve an AUC approaching that theoretically obtainable 

given heritability and trait prevalence(Dudbridge, 2013). Moreover, PRS as calculated by the 

approaches discussed here, will miss contributions to overall heritability not normally 

measured by GWAS, including dominance (if testing with an additive genetic model), 

epistatic (gene-by-gene), gene-by environment and epigenetic effects, as well as the effects 

of rare genetic variants and genomic structural variation (Manolio et al., 2009). Thus, the 

ideal AUC will usually not be achieved even with unlimited data. PRS calculations are 

computationally burdensome, requiring fast computers and, ideally, should be run under the 

Linux operating system. They also require tuning parameters whose optimal values may be 

sample-dependent and difficult to find. Even in P+T methods, the proper p value and r2 

thresholds are not a priori clear. Increasing maximum r2 for LD pruning increases prediction 

power but also increases overfitting (Goldstein et al., 2015). Finally, like GRS, PRS do not 

generalize well across ethnic groups (Martin et al., 2017, 2019), an important consideration 

in light of the underrepresentation of non-European samples in genetic research previously 

mentioned (Bustamante et al., 2011).

In summary, we have reviewed here various methods to construct and evaluate GRS. There 

are many considerations to keep in mind when implementing a GRS to ensure relevance and 

reliability, and there are substantial caveats to the use of GRS. All of these elements should 

be kept in mind when considering using a GRS and when drawing conclusions based on 

GRS.
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Significance Statement

The past decade has seen phenomenal growth in genetics and genomics knowledge, with 

exponential increase in available data. Translation of this vast body of information into 

useful, predictive measures of disease susceptibility, progression or treatment outcome 

has lagged, however, especially for complex, common diseases with many contributing 

genetic factors. A popular approach to estimate overall genetic risk, and to summarize the 

cumulative effects of genetic loci, is the use of genetic risk scores, which aggregate the 

effects of genetic variants associated with disease. In this Unit, we review common 

methods for constructing genetic risk scores and polygenic risk scores, with particular 

attention to their practical application and limitations.
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KEY CONCEPTS

A genetic risk score is an estimate of the cumulative contribution of genetic factors to a 

specific outcome of interest in an individual. The score may take into account the 

reported effect sizes for those alleles and may be normalized by adjusting for the total 

number of risk alleles and effect sizes evaluated.

A polygenic risk score is an extension of the genetic risk score for large numbers of 

possibly correlated markers. It aims to capture all the heritable variation measurable by 

the marker panel for prediction.

The area under the curve (AUC) measures the predictive ability of a receiver operating 

characteristic (ROC) generated based on the genetic risk scores for a sample of 

individuals. The AUC is a function of the ability of the risk score to correctly identify the 

presence (sensitivity) or absence (specificity) of the outcome of interest.

Disease prediction is the ability to determine disease state given any number of known 

factors including, but not limited to, genetic, environmental and lifestyle.

Complex traits and complex diseases have multiple contributing factors, including both 

genetic variation and environmental factors. They have a clear genetic component but no 

simple mode of inheritance.
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Figure 1. 
A, raw output from the --logistic function in PLINK. The column OR contains the odds ratio 

per copy of allele A1. B, Corresponding PLINK myprofile.raw file, with marker name, 

reference allele (A1) and ln (OR) from the test of additive effects (lines labeled ADD under 

TEST).
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Table 3.

Considerations for Generating a Genetic Risk Score

Factor Considerations

Outcome of Interest Pleiotropy
Definition of complex phenotype (component phenotypes)
Clinical covariates

Loci P-value threshold (polygenic vs. highly significant loci only)
Imputation type/quality
Linkage disequilibrium
Mode of inheritance
Agreement of DNA strand between training and test data
Reference (risk) allele coding
Build of human genome

Sample Population (ethnic background; admixture)
Demographic makeup (age, sex, socioeconomic status, etc.)

Weighting log (OR) from logistic regression
Total number of risk variants
LD between risk variants (for PRS)
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