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Abstract

The goal of this paper was to provide a real-time left ventricular (LV) mechanics simulator using 

machine learning (ML). Finite element (FE) simulations were conducted for the LV with different 

material properties to obtain a training set. A hyperelastic fiber-reinforced material model was 

used to describe the passive behavior of the myocardium during diastole. The active behavior of 

the heart resulting from myofiber contractions was added to the passive tissue during systole. The 

active and passive properties govern the LV constitutive equation. These mechanical properties 

were altered using optimal Latin hypercube design of experiments to obtain training FE models 

with varied active properties (volume and pressure predictions) and varied passive properties 

(stress predictions). For prediction of LV pressures, we used eXtreme Gradient Boosting 

(XGboost) and Cubist, and XGBoost was used for predictions of LV pressures, volumes as well as 

LV stresses. The LV pressure and volume results obtained from ML were similar to FE 

computations. The ML results could capture the shape of LV pressure as well as LV pressure-

volume loops. The results predicted by Cubist were smoother than those from XGBoost. The mean 
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absolute errors were as follows: XGBoost volume: 1.734 ± 0.584 ml, XGBoost pressure: 1.544 

± 0.298 mmHg, Cubist volume: 1.495 ± 0.260 ml, Cubist pressure: 1.623 ± 0.191 mmHg, 

myofiber stress: 0.334 ± 0.228 kPa, cross myofiber stress: 0.075 ± 0.024 kPa, and shear stress: 

0.050 ± 0.032 kPa. The simulation results show ML can predict LV mechanics much faster than 

the FE method. The ML model can be used as a tool to predict LV behavior. Training of our ML 

model based on a large group of subjects can improve its predictability for real world applications.
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INTRODUCTION

According to the American Heart Association 2019 Update [1], the prevalence of heart 

failure (HF) has increased from 5.7 million (2009 to 2012) to 6.2 million (2013 to 2016) in 

Americans older than 20 years of age. This prevalence is projected to increase 46% by 2030 

[2]. In 2012, the total cost for HF was ~$31 billion and it is estimated that by 2030, the total 

cost will increase to $70 billion [2]. Therefore, there is substantial need for innovative 

treatment strategies for HF. Computational simulation provides a virtual platform where the 

behavior of the heart can be simulated and novel interventions can be assessed. Such 

simulations provide key insights on how HF develops, and how pharmaceutical and device 

design and implantation can be optimized. Among computational simulation, the finite 

element (FE) method has been extensively used by our group [3–5]. One important example 

of using FE to characterize HF is to understand the etiology of Heart Failure with Preserved 

Ejection Fraction (HFpEF) [4, 6]. We have used four-chamber FE models for the mechanical 

analysis of the heart [7, 8].

One shortcoming of the FE model is that it typically requires a relatively long time to run. 

For example, the four-chamber heart model developed in 2015 [7, 9] required 1,000 CPU 

hours to converge for a 1 s cardiac cycle. Today (2019), this time has been reduced to 100 

CPU hours, but even with these improved models, the estimated time to tune a model would 

still be thousands of CPU hours. This provides an incentive to study the feasibility of a 

reduced order model based on machine learning (ML). In addition, ML models can be used 

to estimate initial conditions to speed up FE model convergence.

The health conditions of the left ventricle (LV) are strongly linked to stresses [10]. 

Myocardial stresses determine the metabolic requirements of the heart and are important 

stimuli for growth and remodeling of the myocardium. Furthermore, the blood flow in the 

coronary arteries is influenced by the stresses in the surrounding cardiac tissue. Therefore, 

determination of LV stress is informative for better understanding the diseased conditions or 

the recovery status of the myocardium after treatment. We have used FE models to calculate 

stresses in the LV [4, 8], but the time required is relatively too long for real-time 

applications. This shortcoming of LV FE modeling prevents clinical implementation.

In the machine design industry, computational time for numerical analysis cannot be too 

long to be used during design iterations. To overcome this problem, ML has been used for 
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model-based system design, for example, in the automobile industry [11]. Recently, ML 

models have been reported for vascular applications [12–14]. Additionally, cardiac 

mechanics have been studied using ML [15, 16]. Using ML models, the behavior of the LV 

in response to alterations in material properties, loads, boundary conditions etc. can be 

predicted in nearly real time. This relatively fast prediction of the LV behavior could provide 

a tool for real-time monitoring of the LV behavior with applications in cardiac devices 

design, monitoring the health conditions of the LV, etc.

Therefore, the goal of this paper was to develop an FE-based ML platform to simulate LV 

mechanics. To the best of our knowledge, the decision tree algorithm, eXtreme Gradient 

Boosting (XGboost) [17–19] has not been used for cardiac mechanics. This ML algorithm 

has been recognized in terms of accuracy, flexibility and speed [19, 20]. We also used 

Cubist, a similar package with smoother predictions, for LV pressure and volume. The 

resultant ML model can provide myocardial stresses in seconds and can be used in iterative 

medical device design for the heart. Abaqus FE software was used to generate 77 LV models 

for pressure and volume and 100 models for stress prediction training. The features of the 

ML model were mechanical properties and time for pressure and volume predictions, and 

mechanical properties and elements centroid coordinates for stress predictions. The FE 

models were used to create ML models that reduced the LV pressure and volume prediction 

time from nearly 1,000 CPU hours to 11 CPU seconds, and stress prediction time from 

nearly 20 CPU minutes to 5 CPU seconds.

METHODS

Finite Element Models

In vivo data were obtained under a protocol approved by our institutional review board [21]. 

The geometries, material behavior, loads and boundary conditions (BCs) were implemented 

as follows. We used two geometries. For pressure and volume predictions, we used data 

from a four-chamber model including LV, right ventricle (RV), left atrium, and right atrium. 

For stress predictions we used data from a swine LV-only model. The specifications of 

geometry reconstructions have been previously reported [9, 21]. These FE models consider 

LV as a passive material during diastole, and as a contractile material during systole. The 

constitutive equation of the passive and active behavior has been extensively described [4, 8, 

9]. Briefly, the passive behavior described the tissue as a hyperelastic fiber-reinforced 

material, as follows:

Ψdev = a
2be

b I1 − 3
+ ∑i = f , s

ai
2bi

e
bi I4i − 1 2

− 1 +
a f s
2b f s

e
b f s I8 f s

2
− 1

Ψ vol = 1
D

J2 − 1
2 − ln (J)

(1)

where a and b are isotropic stiffness of the tissue, af and bf are tissue stiffness in the fiber 

direction, and afs and bfs are the stiffness due to the connection between fibers and sheet; I1, 

I4i and I8fs are invariants, defined as follows:

Dabiri et al. Page 3

Front Phys. Author manuscript; available in PMC 2020 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I1: = tr(C)
I4i: = C: i0 ⊗ i0
I8 f s: = C:sym f0 ⊗ s0

(2)

where C is the right Cauchy-Green tensor, and f0 and s0 are vectors that define the fiber and 

sheet directions, respectively. J is the deformation gradient invariant, and D is a multiple of 

the Bulk Modulus K (i.e., D = 2
K ).

The active tissue behavior is described as follows [4, 8, 22, 23]:

T0 = Tmax
Ca0

2

Ca0
2 + ECa50

2 Ct (3)

where Tmax is the isometric tension at the largest sarcomere length and highest calcium 

concentration, Ca0 is the peak intracellular calcium concentration, and

Ct = 1
2(1 − cosω), (4)

ω =

π t
t0

 when 0 ≤ t ≤ t0

π
t − t0 + tr

tr
 when t0 ≤ t ≤ t0 + tr

0 when t ≥ t0 + tr

tr = ml + b (5)

m, b are constants that specify the shape of the linear relaxation duration and sarcomere 

length relaxation, and t0 is time to reach peak tension after the initiation of active tension.

In addition,

ECa50 =
Ca0 max

exp B l − l0 − 1
, l = lR 2E f f + 1 (6)

where:

Eff= Lagrangian strain in the fiber direction,

B is a constant that specifies the shape of the peak isometric tension-sarcomere length 

relation,

l0 is the sarcomere length that does not produce active stress,
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lR is the sarcomere length with the stress-free condition, and (Ca0)max is the maximum peak 

intracellular calcium concentration.

The passive stress is derived from passive behavior, during diastole, and the total stress is the 

sum of passive and active stresses during systole. We assumed homogeneous contraction 

(Tmax) in all models.

The specifications of the models, including loads and boundary conditions, have been 

described in our previous publications in detail [4, 7, 8]. Briefly, in LV models, the LV 

pressure was applied to the endocardial surface in early diastole. The interaction between LV 

and the arterial system was model using lumped parameter 1-D circulatory models. In this 

paper, the four-chamber heart FE results were obtained after several initial cycles, and FE 

data for LV pertain only to the diastole part of the cardiac cycle.

ML Models

The ML Model for LV Pressure and Volume Prediction

The structure of the ML-FE surrogate model is shown in Figure 1. This was a supervised 

learning regression problem. We used a tree ensemble learning approach whereby XGboost 

package [17–19] in Python programming language was used to predict LV pressures and 

volumes based on material properties and time. The features of the ML model are listed in 

Table 3. We also used Cubist [24], a package that makes predictions using rules which are 

learned during training from decision trees. The Latin hypercube design of experiments 

(DOE) method was used to sample the features. Using the radial basis function (RBF) and 

lumped parameter simulations, the DOE was optimized to minimize the error due to 

sampling, and also minimize the number of FE simulations [25, 26]. The number of selected 

FE models for training and test data were 77 and 3, respectively. The test data were not 

included in the training data. It should be noted that each single training or test data for LV 

volume and pressure ML models, refers to a single time point in a cardiac cycle. Because 

each cardiac cycle was composed of 401 time points, each FE model included 401 data 

examples. The data for each FE model at different time points were not independent, but 

they were different features within one single cardiac cycle dataset [27]. The limits of the 

features were set as follows: 0.0015 < l0 < 0.0028, 0.075 < t0 <0.25, 0.65 < Tmax <1.9. Only 

active properties were altered in the datasets used to predict LV pressure and volume. A 

hyperparameter grid search was conducted to find optimized parameters as indicated in 

section “ML Parameter Tuning and Error Estimation”.

The ML Model for LV Stress

The passive material properties (a, af , as, afs) were altered using Latin hypercube DOE to 

produce 120 LV models. The range of these variables was as follows: 0.229e-3 < a < 

9.881e-3, 0.005e-1 < af < 49.901e-3, 9.1e-05 < as < 6.986e-3, 7.568e-5 < afs < 3.952e-3 

MPa. The ratios between passive properties b, bf , bs, bfs and corresponding a, af , as and afs 

were based on data in the literature [23]; consequently, values of b, bf , bs, bfs were obtained 

from corresponding a, af , as, afs. For these simulations, D (Equation 1) was 0.2 MPa−1 and 

the end diastolic pressure was 16.38 mmHg. There were 576 elements in the endocardium 
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where element centroid stresses in fiber direction (S11), cross-fiber direction (S22), and shear 

stress (S12) were calculated using FE method. XGboost was used to predict stresses: 100 out 

of 120 FE models for training and 20 out of 120 FE models for testing (we did not use 

Cubist for stress predictions). It should be noted that for LV stress predictions, each single 

training or test example refers to a single finite element. Because there were 576 elements in 

each FE model, there were 576 training or test examples in each FE model. The data for 

each FE model at different elements were not independent, but they were different features 

within one single LV dataset [27]. Stresses at end diastole (ED) were used to implement ML 

predictions. The features of the ML model are summarized in Table 3.

ML Parameter Tuning and Error Estimation

To select the optimized hyperparameters for ML estimators, a grid search analysis was 

conducted in XGBoost for the blood pressure and volume as well as stress predictions (Table 

1). We used a decision tree algorithm for the base learner (booster = “gbtree”), and the 

learning task and the related objective were set by a linear regression analysis (objective = 

“reg:linear”). The score used to select the optimized parameters was the coefficient of 

determination, R2, calculated as follows:

R2(y, y) = 1 −
∑i = 1

n yi − yi
2

∑i = 1
n yi − y 2 (7)

where y and y are actual and predicted values, n is the number of data points, and

y = 1
n ∑

i = 1

n
yi

The higher the R2 is, the better the predictability of the model is (Scikit-learnv.0.21.2 

documentation). After the best model was found by the grid search, that model was used for 

predictions.

In addition to R2 we computed mean absolute error (MAE) for the results (Scikit-learnv.

0.21.2 documentation):

MAE =
∑i = 1

n yi − yi
n

(8)

Feature Importance

For the ML models, the relative importance of the features was calculated using the 

XGBoost package in Python (we used “Gain” for this purpose). The relative importance 

values are based on how often each feature was used for splitting weighted by the squared 

improvements in the model due to those splits, averaged over all trees [17, 28].
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RESULTS

The XGBoost and cubist algorithms produced LV pressures in agreement with the FE 

computations in a much shorter time (Figures 2, 3, Tables 2, 5). The R2 scores (Equation 7) 

were relatively close to 1 for both Cubist and XGBoost (Table 5). When predicted pressures 

and volumes were used, the resultant pressure volume loop predicted by ML was in 

agreement with FE calculations (Figure 5). The results for volume predictions were also 

noticeably close to FE results (Figures 4, 5, Tables 4, 5). It should be noted that all results 

pertain to test data.

The minimum and maximum and time of maximum pressure and volume were similar for 

FE and ML results, but the differences between maximum dP/dt and dV/dt for FE and ML 

models were noticeable (Table 4). Other aspects of LV pressure were also captured in the 

ML predictions, in particular, the bump before the contraction (Figure 2). The stresses 

predicted by ML were in agreement with FE calculations (Figures 6, 7). The regional 

variation of stresses can be predicted by ML with noticeable accuracy (Figure 7).

Results showed that for the features considered in LV pressure predictions, l0 in the RV 

plays the most important role, followed by time, l0 in the LV, and t0 in the LV. The other 

parameters that noticeably influence LV pressure in systole are Tmax in the LV,Tmax in the 

RV, and t0 in the RV and (Table 3). For LV volume predictions, l0 in the LV was the most 

important feature followed by time, l0 in the RV, Tmax in the LV, t0 in the LV, t0 in the 

RV,Tmax in the RV (Table 3).

For the myocardial stresses, the most important factor is the location where stress is 

computed. The passive parameters have different influences on myofiber (S11), cross-

myofiber (S22), and shear stresses (S12). For S11, passive properties in the sheet direction are 

more important than passive properties in the fiber direction, whereas for S22, passive 

properties in the fiber direction are more important than those in the sheet directions. For 

shear stress, the passive properties in the sheet direction are more important than those in the 

fiber direction (Table 3).

DISCUSSION

We used ML to predict LV pressures and volumes on the order of seconds. It took ~1000 

CPU hours to compute LV pressures, but <12 CPU seconds to obtain the same data using the 

ML approach (Table 2). The results of the ML model agreed closely with those of the FE 

models (Tables 4, 5). Although ML has been used to analyse the mechanics of cardiac tissue 

[15, 16], to the best of our knowledge, ours is the first study that used decision tree 

algorithms, XGBoost and Cubist to compute LV pressure and volumes, as well as stresses. 

Using decision trees, XGBoost provides the importance of features in the predictions, which 

can be used to assess the role of features in the heart behavior.

We used a grid search analysis to determine optimized hyper-parameters for ML models 

(Table 1). We could use more parameters in grid search analysis, but the training time would 

increase. Because the FE and ML results are in reasonable agreement, using more hyper-

parameters in the grid search would be inefficient computationally. Similarly, we could 
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generate more FE data to feed to the ML model, but it would not be computationally 

efficient, because generating FE data is time-consuming. In other words, over-training the 

ML model by using more hyper-parameters in the grid search or generating more FE results 

was not computationally efficient.

Historically, the LV pressure has been modeled using different approaches, including 

lumped electrical circuit analogies [29] and FE [4, 8, 9]. Lumped electrical circuit analogies 

methods provide informative insights about the cardiovascular system, but cannot provide 

important information such as stresses in the LV. On the other hand, in FE models, the 

simulation time is usually too long to provide real-time information (Table 2). The ML 

approach presented here provides a fast and reliable (in comparison to FE models) modeling 

approach in real-time.

Comparison between actual and predicted LV pressure and volume parameters revealed 

quite reasonable agreement between the two (Table 4). The differences between actual and 

predicted dP/dt and dV/dt are due to the fact that we did not train the model for dP/dt and 

dV/dt. Moreover, we did not remove noise from ML predictions, which could lead to larger 

time derivatives (noise can be removed using a filter).

In our study, values of R2 were relatively close to 1 for LV pressure and volume predictions, 

indicating close agreement between our FE and ML results. However, the R2 function is not 

as informative as the FE and ML results in a time domain (Figures 2–4). For stress 

predictions, the values of R2 were also relatively high, which again indicates the ML and FE 

results are relatively in close agreement. A more informative comparison between FE and 

ML stress predictions can be done using Figure 7, which compares the FE and ML results 

with spatial distributions considered. The MAE values show relatively close agreement 

between FE and ML results (Table 5).

Although the XGBoost package provided relatively correct predictions, it produced jagged 

approximations for LV pressures (Figure 2). Since XGBoost uses a sequence of weak 

decision trees, it predicts the outputs in a discrete way [20]. Results from Cubist resolved 

this limitation as the volumes and pressures approximated by Cubist were noticeably 

smoother than those from XGBoost (Figure 3 vs. Figure 2). However, it would be trivial to 

add a filter to the XGB results in the time domain and make it similarly smooth. In fact 

XGBoost has several advantages compared to other gradient boosting algorithms, in terms of 

speed, flexibility for handling data, sensitivity to outliers, and performance [19, 20]. In line 

with their reported advantages, XGBoost and Cubist provided predictions noticeably in 

agreement with FE results in our study [20]. Algorithms used in previous ML cardiac 

models could be computationally expensive, and do not provide feature importance [16, 30].

According to ML analysis, the LV pressure and volume are primarily affected by the initial 

myofiber length (with no active tension) in the right ventricle and left ventricle, respectively 

(relative to other parameters in Table 3). This result is in line with experimental studies 

(Figure 8) that reported the active sarcomere tension is related to muscle length [22]. Also, 

the importance values (Table 3) showed the important role that RV could have in the 

mechanics of LV. For the passive behavior (Table 3), the coordinates which represent the 
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location of each finite element, have the highest importance in stress predictions. If any of 

these coordinates alters, the stresses change accordingly (coordinates change with element 

number).

We used stress data from LV endocardium because endocardium plays an important role in 

etiology of cardiac diseases. For example, endocardial mechanics is hypothesized to alter 

over the course of HFpEF development [4, 31–33]. In addition, subendocardial ischemia 

health conditions reportedly affect LV torsion [34]. However, our ML methodology can be 

applied to stress in any region of the myocardium.

In our study, we used a set of mechanical properties that were relevant to calibration of 

active and passive behavior of the myocardium, and all the parameter sets produced 

converged FE models. Also, the resultant combinations led to physiologically relevant 

models. For example, after alterations in passive properties, 98.5% of the myofiber stresses 

were between 0 and 15 kPa, which is in line with published data for LV stress [4, 8, 23]. 

However, selection of the mechanical properties is not relevant in terms of the applications 

of ML in prediction of LV mechanics. We could select other parameters in the constitutive 

equations, but the conclusions of our study would not change.

Study Limitations and Future Directions

In this ML study, we used data from a single human subject (for pressure and volume) and a 

single swine model (for stresses), and we did not consider heterogenous properties. The 

training data used in this study may not capture important aspects of the heart behavior over 

a broad range of subject-specific or pathological conditions, but our ML model can be 

trained using data from more subjects and/or pathological conditions. Subject-specific 

parameters such as anatomy, health conditions, sex, and age change FE models in many 

respects such as geometry, loads, boundary conditions, and heterogenicity of material 

parameters. The ML algorithm would have wider applicability if we consider a wider range 

of subjects, geometries, heterogenous material parameters, and diseased conditions. When 

the training is performed based on data from different subjects, the mechanical properties 

obtained from Latin hypercube DOE can also be optimized such that the selected properties 

better reflect physiological data [16]. These aspects can be included in future developments 

of our ML methodology.

We showed the applicability of our ML methodology for predicting LV mechanics with 

examples from LV pressure, volume and stress data. However, the number of test data could 

be increased to improve the ML model. It is recommended to use 20% of data for testing the 

ML model [35, 36]. In our study, for stress predictions, the test data were more than 16% of 

data, and for LV volume and pressure predictions the number of test data was <4% data. 

When the number of data is limited, an alternative approach is to use cross-validation [35, 

36]. Therefore, in our ML models, we implemented cross-validation (Table 1). As a future 

direction, the number of the data could be increased to include more test examples.

We used the old FE results (Figures 2, 5), despite their limitations: the first “bump” in Figure 

2 is too high, and the right lower region in Figure 5 does not correspond to physiological 
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data. These non-physiological FE results were caused by data uncertainty and FE numerical 

analysis at the time of FE simulations (2015). Material properties, boundary conditions and 

other aspects of the FE models have likely caused these non-physiological characteristics. 

We have previously shown the validity of our FE models [4, 7, 8]. In particular, we have 

developed four-chamber whole heart models that simulate the heart mechanics more 

realistically than the results shown in Figures 2, 5 [8]. In this paper, we used data shown in 

Figures 2, 5 because generating new FE results would be time-consuming, and the goal of 

this paper was better achieved using these old FE results. Specifically, in this paper our focus 

was on applicability of our ML approach to predict the mechanics of the LV.

There are many aspects of the heart mechanics and behavior that could be fed into our ML 

algorithm. For example, in patients with HF induced by infraction, the infarcted tissue 

properties change in different stages of disease/recovery. To estimate the LV wall stress, an 

ML algorithm can be used wherein LV properties, geometry and pressure are the inputs and 

wall stresses are the outputs. This strategy can serve as a monitoring tool for optimizing 

treatment of HF.

Another important aspect of our ML model is its application in LV assistive device design 

and drug development. Our ML model can give key information such as stresses, strains, 

pressure and volume in real time. This information (and similar data) are important in the 

design process of left ventricle assist devices, stents, heart valves, and effects of drugs on LV 

tissue. Our ML methodology can be used to track the alterations in LV behavior in real time, 

when the device design iterations or drug safety and efficacy testing are conducted. This 

approach has been reported in other industries [11].

In this study, we focused on pressure, volume and stresses in the LV. Future studies could 

include other aspects of the LV or mechanical characteristics of other parts of the heart. For 

example, the ML model can be trained to predict dP/dt. Also, volume, pressure, stress and 

strains of the right ventricle can be fed into the ML model. The relevant FE data can be 

calculated for different healthy, diseased and treated conditions with or without implants and 

assistive devices. Specifically, we recently developed FE models to calibrate mechanical 

properties in beating hearts [37]. The LV pressure and volumes can be used as the features of 

the data sets, and the mechanical properties can be predicted. However, to use our ML 

methodology for material calibration, more features need to be included, such as sex, age 

and geometrical or strain data, which were not available in this study. Once the ML is 

trained for material calibration, the health conditions of normal and diseased hearts can be 

estimated by implementing our ML approach in portable devices. This line of research is the 

subject of our future studies.

CONCLUSIONS

Data such as pressure, volume, and stresses are crucial to understand the health conditions of 

the heart. Although FE is a powerful tool that can provide this information, it often takes too 

long for real- time applications. Using ML, these data can be produced in a matter of 

seconds, and hence ML linked with FE enables using more crucial data in real time. This 
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possibility is important in many areas, including planning surgeries, designing medical 

devices, and monitoring health conditions of the heart.
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FIGURE 1 |. 
The structure of the ML model used to predict LV pressure, volume and stress. The loads, 

boundary conditions (BC), the mesh and material properties were parts of the FE model. The 

material properties (6 active properties for pressure and volume, 8 passive properties for 

stress predictions) were sampled by design of experiments (DOE) and used as the inputs of 

the ML model. For LV pressure and volume predictions, time (t) was another input of the 

ML model. For LV stress predictions, position of each element was also an input (stresses at 

end diastole were used).
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FIGURE 2 |. 
The FE-computed and ML-predicted LV pressure curve for three cycles (3 × 401 = 1,203 

test data) based on random selection of mechanical properties (FE: blue, brown, purple, ML: 

red, orange, green, respectively). For these results, XGboost was used. The variability in 

three test cardiac cycles (1,203 test data each) can be seen in this figure.
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FIGURE 3 |. 
The FE-computed and ML-predicted LV pressure curve for three cycles (3 × 401 = 1,203 

test data) based on random selection of mechanical properties (FE: blue, ML: red). For these 

results, Cubist was used.

Dabiri et al. Page 16

Front Phys. Author manuscript; available in PMC 2020 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4 |. 
The FE-computed and ML-predicted LV volume curve for three cycles (3 × 401 = 1,203 test 

data) based on random selection of mechanical properties (FE: blue, ML: red). For this 

results XGBoost was used.

Dabiri et al. Page 17

Front Phys. Author manuscript; available in PMC 2020 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5 |. 
The FE-calculated and ML-predicted LV pressure-volume loop for one cardiac cycle (401 

test data) based on random selection of active mechanical properties (FE: blue, ML: red). 

For this result, Cubist was used.
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FIGURE 6 |. 
The LV endocardium stresses (kPa) computed by FE and predicted by ML for a sample test 

model (FE: blue, ML: red). The stresses pertain to the centroid of elements. For these 

results, XGboost was used.
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FIGURE 7 |. 
Polar plots of average: FE results, standard deviation of the FE results and MAE (kPa) 

between ML and FE results. The averages were calculated over all 20 test models.
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FIGURE 8 |. 
Active tension changes with sarcomere length, reproduced from Guccione and McCulloch 

[22]. For more information see Guccione and McCulloch [22] and Figure 8 in their paper.
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TABLE 2 |

Approximate run time for FE and ML models.

Model╲Output Pressure Volume Myofiber stress cross-myofiber stress Shear stress

ML training (including grid 
search) 3 CPU hours 12 CPU hours 8 CPU hours 8 CPU hours 7 CPU hours

ML training (using one set of 
optimized hyper-parameters) 7 CPU minutes 34 CPU minutes 22 CPU minutes 14 CPU minutes 23 CPU minutes

ML test 2 CPU seconds 11 CPU seconds 5 CPU seconds

FE (a single simulation) 1,000 CPU* hours 1,000 CPU* hours 20 CPU minutes

*
This CPU hour time refers to computations for a four-chamber model in 2015.
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TABLE 5 |

R2 and MAE Score for the ML predictions.

Model R2 score (average ± SD) MAE (average ± SD)

Pressure (Cubist) 0.958 ± 0.029 1.623 ± 0.191 mmHg

Pressure (XGBoost) 0.939 ± 0.067 1.544 ± 0.298 mmHg

Volume (Cubist) 0.942 ± 0.055 1.495 ± 0.260 ml

Volume (XGBoost) 0.923 ± 0.050 1.734 ± 0.584 ml

Myofiber stress (XGBoost) 0.971 ± 0.040 0.334 ± 0.228 kPa

Trans-myofiber stress (XGBoost) 0.936 ± 0.042 0.075 ± 0.024 kPa

Shear stress (XGBoost) 0.994 ± 0.006 0.050 ± 0.032 kPa

For each single cardiac cycle (pressure and volume) or LV (stress) test sample the error was calculated and then, the average and standard deviation 
was calculated for all test samples.

Front Phys. Author manuscript; available in PMC 2020 January 03.


	Abstract
	INTRODUCTION
	METHODS
	Finite Element Models

	ML Models
	The ML Model for LV Pressure and Volume Prediction
	The ML Model for LV Stress
	ML Parameter Tuning and Error Estimation
	Feature Importance

	RESULTS
	DISCUSSION
	Study Limitations and Future Directions
	CONCLUSIONS
	References
	FIGURE 1 |
	FIGURE 2 |
	FIGURE 3 |
	FIGURE 4 |
	FIGURE 5 |
	FIGURE 6 |
	FIGURE 7 |
	FIGURE 8 |
	TABLE 1 |
	TABLE 2 |
	TABLE 3 |
	TABLE 4 |
	TABLE 5 |

