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Abstract

Brain imaging genomics is an emerging data science field, where integrated analysis of brain 

imaging and genomics data, often combined with other biomarker, clinical and environmental 

data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics 

of the brain as well as their impact on normal and disordered brain function and behavior. It has 

enormous potential to contribute significantly to biomedical discoveries in brain science. Given the 

increasingly important role of statistical and machine learning in biomedicine and rapidly growing 

literature in brain imaging genomics, we provide an up-to-date and comprehensive review of 

statistical and machine learning methods for brain imaging genomics, as well as a practical 

discussion on method selection for various biomedical applications.
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I. Introduction

With recent technological advances in acquiring multimodal brain imaging data and high-

throughput genomics data, brain imaging genomics is emerging as a rapidly growing 

research field. It performs integrative studies that analyze genetic variations such as single 

nucleotide polymorphisms (SNPs), as well as epigenetic and copy number variations 

(CNVs), molecular features captured by various omics data and brain imaging quantitative 

traits (QTs), coupled with other biomarker, clinical and environmental data. The goal of 

imaging genomics is to gain new insights into the phenotypic characteristics and the genetic 

and molecular mechanisms of the brain, as well as their impact on normal and disordered 

brain function and behavior. Given the unprecedented scale and complexity of the brain 

imaging genomics data sets, major computational and statistical challenges have to be met to 

realize the full potential of these valuable data. Overcoming these challenges has become a 
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major and active research topic in the field of statistical and machine learning, where 

effective and efficient data analytic methods have been developed to reveal the genetic and 

molecular underpinnings of neurobiological systems, which can impact the development of 

diagnostic, therapeutic and preventative approaches for complex brain disorders.

Many advances in brain imaging genomics are attributed to large-scale landmark studies 

such as the Alzheimers Disease Neuroimaging Initiative (ADNI) [1], the Enhancing Neuro 

Imaging Genetics through Meta Analysis (ENIGMA) consortium [2], and the UK Biobank 

[3]. These studies facilitate the availability of big brain imaging genomics data to the 

worldwide research community, which contributes to the generation of a large body of 

literature concerning methodological developments and biomedical applications in brain 

imaging genomics, including a number of review articles summarizing relevant advances 

from multiple different perspectives.

For example, ADNI is a landmark Alzheimer’s disease (AD) biomarker study. The ADNI 

cohort constitutes a very rich repository of multi-modal data such as genome-wide 

genotyping, whole genome sequencing, blood transcriptome, blood epigenome, plasma/

serum/cerebrospinal-fluid proteome, plasma/serum metabolome, neuroimaging such as 

multimodal magnetic resonance imaging (MRI) and positron emission tomography (PET), 

cognitive, behavioral, and clinical data. Due to its open-science nature, data from ADNI 

have been widely used by the research community around the world to produce hundreds of 

publications in brain imaging genomics. These advances were periodically reviewed by the 

ADNI Genetics Core [4], [5] and the entire ADNI team [1], [6].

ENIGMA is another major initiative that contributes significantly to the field of brain 

imaging genomics. The ENIGMA consortium is a global team science effort with the shared 

goal of understanding disease and genetic influences on the brain. The progress of the 

ENIGMA Consortium has been regularly summarized in several review articles over the 

years (e.g., [2], [7], [8], [9]). In [2], Thompson et al. provided the most recent update of the 

ENIGMA consortium, which included over 1,400 scientists from 43 countries studying the 

human brain using imaging, genomics and other brain metrics.

The UK Biobank [3], a prospective epidemiological cohort of over 500,000 individuals, is 

another prominent study that offers an enormous amount of brain imaging genomics data. It 

has a full genetic data release for ~500,000 samples [10], and full brain imaging data release 

for ~15,000 samples in six modalities [11]. The team completed a large scale genomewide 

association studies of brain imaging QTs recently, which examined > 11 million SNPs on 

3,144 imaging QTs in 8,428 samples for discovery and two additional sets of 930 and 3,456 

samples for replication [12]. This study represents the current frontiers in large scale brain 

imaging genomics, yielding invaluable insights into the genetic architecture of the brain.

In addition to ADNI, ENIGMA and UK Biobank, there are many other research activities in 

brain imaging genomics, which have yielded various review articles. For example, in [13], 

Liu et al. reviewed multivariate methods for analyzing and integrating imaging and genetics 

data. In [14], Yan et al. reviewed regression and correlation methods for brain imaging 

genomics as well as set-based methods for mining high-level imaging genomics 
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associations. In [15], Mufford et al. reviewed methods and topics of brain imaging genomics 

in psychiatry. In [16], Liu et al. reviewed multimodal analysis strategies for analyzing and 

integrating multi-omics data and brain imaging data in the context of schizophrenia studies.

In short, the comprehensive reviews discussed above cover topics in brain imaging genomics 

from different perspectives. Some focus on reviewing data, methods, analyses and/or results 

from a specific study such as ADNI [1], [4], [5], [6] or ENIGMA [2], [7], [8], [9]. Some 

reviews examine the research activities and progress in the context of a specific discipline 

(i.e., psychiatry in [15]) or disorder (i.e., schizophrenia in [16]). Others provide 

methodology-oriented reviews on multivariate analyses [13] and machine learning [14]. 

Given that statistical and machine learning is playing increasingly important roles in 

biomedical research and new methods are emerging in the literature at a rapid pace [17], we 

feel that it will be valuable to provide an updated review on the topic of statistical and 

machine learning in brain imaging genomics. Thus, the goal of this paper is to provide an 

up-to-date and comprehensive coverage of statistical and machine learning methods for 

solving problems in brain imaging genomics as well as practical discussion on method 

selection for various biomedical applications.

Shown in Figure 1 is the schematic representation of the topics we will cover in this review. 

The major part of the paper will be devoted to the discussion of methods for solving the 

following three types of learning problems in brain imaging genomics (see Figure 1(a)).

• First, we will examine the problem of heritability estimation of brain imaging 

phenotypes in Section II, where the goal is to determine how much phenotypic 

variation is determined by genetics.

• Second, we will explore the problem of learning imaging genomics associations. 

Since a majority of papers reviewed here belong to this category, we will devote 

Sections III-VI to this topic. We will review a few fundamental strategies in 

Section III, including SNP-based methods, polygenic risk scores, multi-SNP 

methods, multi-trait methods, pathway and network enrichment methods, and 

interaction methods. We will discuss meta-analysis strategies in Section IV. We 

will review multivariate regression models in Section V and bimultivariate 

correlation models in Section VI to identify complex multi-SNP-multi-trait 

associations.

• Third, in Section VII, we will review methods for predicting an outcome of 

interest by integrating imaging and genomics data, as well as methods for joint 

association learning and outcome prediction.

Finally, in Section VIII, we will provide 1) a discussion of principles of method selection, 

based on biomedical application considerations (see Figure 1(b)) and statistical and machine 

learning considerations (see Figure 1(c)); 2) a discussion on scientific and clinical impact; 

and 3) a discussion on related work and future directions.
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II. Heritability Estimation

Early genetic studies of the brain largely focused on estimating heritability - the proportion 

of the observed variance in a trait that is explained by additive genetic factors [18]. Well 

before quantitative genetics was applied to neuroimaging data, classical genetic methods 

were developed to estimate the proportion of variance in a trait that was due to genetic and 

environmental factors - as well as random variation, such as measurement errors. The 

motivation to estimate heritability was that a highly heritable trait might be an attractive 

target for in-depth genetic analyses, compared to a trait with little or no genetic variance. 

Below we cover methods to estimate heritability based on genome-wide genotyping data. 

First, we note that heritability can be estimated based on data collected using twin or family 

designs, where the degree of genetic influence is estimated from trait correlations in relatives 

with different degrees of genetic overlap.

A. Twin and pedigree methods

Around 2001, neuroimaging studies of twins began to report correlations in regional brain 

measures in identical and fraternal twins, whereby identical twins had more similar brain 

structure than randomly selected pairs of individuals of the same age and sex. According to 

classical quantitative genetics, if the intra-class correlation is higher in monozygotic (MZ) 

than dizygotic (DZ) twins, then a trait is heritable. Falconers heritability statistic, h2, is 

defined as twice the difference between the MZ and DZ intraclass correlations. Thompson et 

al. [19] reported statistical maps of Falconers h2 statistics, for measures of gray matter 

density across the cortex, showing significant heritability, in a small MRI study of 80 young 

adult twins. Later studies built on this approach to fit structural equation models (SEMs) to 

quantify both genetic and environmental components of variance, for brain measures derived 

from MRI, diffusion tensor imaging (DTI), electroencephalogram (EEG), and functional 

MRI (fMRI), also using twin or family designs. A common model used for these studies was 

the ACE model, which estimates additive genetic (A), common (C) and unique (E) 

environmental contributions to trait variance (see [20] for a review of early neuroimaging 

studies using the ACE model).

Brun et al. [21] for example, used a general MRI analysis method called tensor-based 

morphometry (TBM) to map the heritability of brain morphology in MRI scans from 23 

monozygotic and 23 dizygotic twin pairs, using the ACE genetic model. Significance was 

tested using voxelwise permutation methods. Similar work with other computational 

anatomy approaches extended the ACE model to scalar maps defined on vertices of 3D 

surface models of brain structures such as the ventricles [22]. In that study, path coefficients 

for the ACE model that best fitted the data indicated significant contributions from genetic 

factors (A=7.3%), common environment (C=38.9%) and unique environment (E=53.8%) to 

lateral ventricular volume.

Extending the ACE model to diffusion MRI, to assess the genetics of brain white matter 

microstructure, Shen et al. [23] confirmed the overall heritability of the major white matter 

tract metrics but also identified differences in heritability. Highly heritable measures were 

found for tracts connecting particular cortical regions, such as medial frontal cortices, 

postcentral, paracentral gyri, and the right hippocampus. Later studies reported genetic 
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correlations between measures of cortical gray matter thickness and DTI-derived white 

matter measures [24]. Comparable methods applied to functional MRI revealed significant 

heritability for measures of functional synchrony in the brains resting state networks 

(RSNs). Fu et al. [25] estimated both genetic and environmental effects on eight well-

characterized RSNs. To do so, they fitted the classical ACE twin model to the functional 

connectivity covariance at each voxel in the RSN. Although environmental effects accounted 

for the majority of variance in widespread areas, specific brain regions showed significant 

genetic control within individual RSNs.

Methods to estimate heritability advanced as well. Open source tools, such as OpenMx and 

SOLAR, were adapted to handle brain-derived phenotypes, including entire images. 

Kochunov et al. [26] examined agreement in the heritability estimates, across a variety of 

datasets, for four different methods for heritability estimation that have been applied to 

neuroimaging data. SOLAR-Eclipse (www.solar-eclipse-genetics.org) and OpenMx 

(openmx.ssri.psu.edu) use iterative maximum likelihood estimation (MLE) methods. 

Accelerated Permutation inference for ACE (APACE) [27] and fast permutation heritability 

inference (FPHI) [28] use fast, non-iterative approximation-based methods. Heritability 

estimates from the two MLE approaches closely agreed on both simulated and imaging data, 

but the two approximation approaches showed lower heritability estimates when run on data 

that deviated from normality. The authors advocated a data homogenization approach that 

improved agreement across packages, using inverse Gaussian transformation to enforce 

normality on the input trait data.

B. GWAS methods for SNP heritability

As soon as genome-wide genotyping became cheaper and more common, methods were 

developed to estimate heritability from all genome-wide SNPs. The GCTA method 

(genomewide complex trait analysis; [29]; https://cnsgenomics.com/software/gcta/), for 

example, estimates heritability from general population data - and rather than requiring 

twins or pedigrees, it can be applied to data from individuals who are typically regarded as 

unrelated. GCTA computes both genetic and phenotypic covariance matrices from trait data 

and high-density SNP data, after calculating a kinship matrix and a genotypic relatedness 

matrix (GRM). Based on singular values of the GRM, GCTA estimates the percentage of 

phenotypic variance explained by all common SNPs (i.e., the SNP heritability of a trait), 

with a restricted maximum-likelihood linear mixed model (GREML). GCTA has been used 

to estimate “missing” heritability - the genetic contribution from all SNPs in aggregate - 

without needing to know exactly which SNPs are contributing to the variance.

Direct application of GCTA to the heritability analysis of high dimensional brain imaging 

QTs is computationally intractable. To overcome this limitation, in [30], Ge et al. proposed a 

“Massively expedited genome-wide heritability analysis (MEGHA)” method, which 

approximates GCTA and is suitable for analyzing a large number of phenotypes efficiently. 

It was successfully used to create vertex-wise heritability mapping of nearly 300,000 cortical 

thickness QTs. In [31], Ge et al. proposed a “moment matching method for SNP-based 

heritability estimation” (MMHE) and further extended the GWAS based heritabilty analysis 

to handle multidimensional traits (e.g., shape). It was successfully applied to the heritability 
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estimation of the shape of a set of brain structures. In a subsequent study [32], MMHE was 

used to complete a phenome-wide heritability analysis of the UK Biobank [3].

A related method - linkage disequilibrium score regression (LDSC) [33] - was also 

developed to estimate heritability due to all SNPs. Remarkably, it does not require individual 

genotypes at all, but only uses the summary statistics from a genome-wide association study. 

The approach exploits a feature of the genome called linkage disequilibrium (LD) - the fact 

that statistical correlations are found in a series of adjacent SNPs. Let N be the sample size, 

M be the number of all SNPs, and h2 be the heritability of a phenotype due to all SNPs. 

Given a SNP j, its LD Score lj is defined as l j = ∑k = 1
M r jk

2 , where r jk
2  is the LD between 

SNPs j and k measured by the squared correlation coefficient. The LD Score lj measures the 

amount of genetic variation tagged by j. Bulik-Sullivan et al. [33] noted that under a 

polygenic model, the expected χ2 association statistics for SNP j are

E[χ2 ∣ l j] = Nh2l j ∕ M + Na + 1,

where h2/M is the average heritability explained per SNP, and a measures the contribution of 

confounding biases, such as cryptic relatedness and population stratification. Based on this, 

if one regresses the χ2 statistics from GWAS against LD Score (i.e., LD score regression or 

LDSC), the resulting intercept minus one can serve as an estimator of the mean contribution 

of confounding bias to the inflated test statistics. Consequently, LDSC can also be used to 

produce SNP-based heritability estimates for any phenotypes including voxel-based or 

region-based imaging QTs, partition this heritability into separate categories (based on 

regions of the genome, such as specific chromosomes, or types of genetic variant), and to 

calculate genetic correlations between separate phenotypes.

When applied to imaging GWAS (explained below), the LDSC method has revealed patterns 

of genetic correlations across brain regions, leading to the notion that the brain may be 

partitioned into genetic modules or sets of regions with overlapping genetic determinants. 

Classical multivariate twin models had also reported evidence for such genetic clusters [34]. 

In [34], a multivariate model in 1,038 twins identified a common genetic factor that 

accounted for almost all the heritability of intracranial volume (0.88) and a substantial 

proportion of the heritability of all subcortical structures, particularly those of the thalamus 

(0.71 out of 0.88), pallidum (0.52 out of 0.75) and putamen (0.43 out of 0.89). LDSC has 

also been used to reveal overlap between genetic loci associated with brain structure and 

with schizophrenia, based on the summary statistics from various published GWAS [35]. 

Similar multivariate genetic models show that genetic influences on longitudinal growth or 

loss rates over time significantly overlap with genetic loci associated with baseline volumes 

for many structures. This may be an important observation in the quest to identify loci that 

influence rates of brain development and degeneration [36].

III. Imaging Genomics Associations: Fundamentals

Given an imaging phenotype, heritability analysis estimates how much of its variance is 

explained by the entire genome or all the SNPs on one or more chromosomes. In order to 
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locate specific genetic variants that contribute to the phenotypic change, genetic association 

analysis needs to be performed. Thus, a major research theme in brain imaging genomics is 

how to effectively identify interesting imaging genomics associations, which is the topic to 

be covered in Sections III-VI. In some cases, heritability analysis can be used as a 

prescreening step to identify imaging QTs with moderate to high heritability, and subsequent 

genetic association studies can then be applied only to those heritable QTs (e.g., in [38]).

A major challenge in brain imaging genomics is that both imaging and genomics data are 

high dimensional. The ability to test over a million SNPs in the genome for associations with 

hundreds, thousands, or even more imaging traits in the brain induces a huge burden for 

multiple comparison correction. While failure to properly correct for multiple comparisons 

leads to a high risk for false discoveries, excessive corrections greatly reduce the power to 

detect true signals. Thus, multiple comparisons and detection power are two important topics 

relevant to most association studies reviewed in this paper.

In [39], Lindquist et al. provided an excellent review of a few major statistical approaches to 

address the problem of multiple comparisons, using neuroimaging studies as an example. 

The goal is to choose an appropriate threshold to balance between sensitivity (true positive 

rate) and specificity (true negative rate). Two metrics to quantify the likelihood of obtaining 

false positives are often used: 1) the family-wise error rate (FWER, the probability of 

obtaining at least one false positive in a family of tests), and 2) the false discovery rate 

(FDR, the proportion of false positives among all rejected tests). Bonferroni correction [40], 

aiming to control the FWER at a user-specified level, is the most common approach for 

multiple comparison correction. Despite being simple to use, it is very conservative and 

often reduces detection power. Random field theory (RFT) [41] - a popular approach for 

controlling the FWER in fMRI studies - takes into consideration the spatial correlation in the 

images and appears to be less conservative than Bonferroni method. Permutation methods 

are nonparametric methods that do not make assumptions on the data distribution for 

controlling the FWER. While they offer substantial improvements in detection power, 

especially in small sample sizes, they are very computationally expensive; some recent 

innovations have been used to accelerate permutation testing [42]. The FDR [43] is a newer 

approach that controls for false positives. It is less stringent than FWER methods and thus 

has an increased detection power.

While some imaging genomics studies reviewed here employ the above methods for 

multiple comparison correction, others develop their own strategies for handling the issues 

of multiple comparisons and detection power. For example, in [44], Hua et al. proposed two 

strategies to handle multiple comparison and increase the power of detecting imaging 

genomics associations. On one hand, they treated the imaging QTs of the entire brain as a 

single multivariate response and used distance covariance to capture the association between 

all the QTs and each SNP, which greatly reduced the number of statistical tests. On the other 

hand, they proposed a new FDR-based algorithm that demonstrated an increased detection 

power compared with two existing FDR methods.

Another critical challenge in brain imaging genomics is the relatively small effect size of 

SNPs on the brain. Most SNPs account for under 1% of the variance in a brain QT, when 
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considered individually. Thus, the studies reviewed here all needed to address this challenge, 

and many of these studies have aimed to develop effective strategies with increased detection 

power to capture interesting imaging genomics associations. For example, one strategy is to 

reduce the effective number of tests to alleviate the burden of multiple comparison 

correction; see targeted SNP/QT studies discussed in Section III-A. The second strategy is to 

measure combined or collective effects of multiple markers together to increase the detection 

power; see studies discussed in Sections III-B, III-C, III-D, and III-E. The third strategy is to 

increase the sample size to enable the discovery of individual SNPs with small effect sizes; 

see studies discussed in Section IV. The fourth strategy is to apply a single multivariate 

model involving all the studied SNPs and QTs without needing to adjust for multiple testing; 

see studies discussed in Sections V and VI.

Before covering more advanced statistical and machine learning strategies for mining brain 

imaging genomic associations in Sections IV-VI, we first review a few fundamental methods 

in this section. We start from the simplest single-SNP-single-QT approaches, which search 

for pairwise imaging genomic associations on a SNP-by-SNP and QT-by-QT basis. Next, we 

discuss strategies using polygenic risk scores, which examine the aggregated effect from a 

set of disease related SNPs on an imaging QT. Then, we go over basic multi-SNP or multi-

trait methods, which aim to learn imaging genomics associations involving either multiple 

SNPs or multiple traits. After that, we review enrichment analysis methods, which intend to 

discover high level imaging genomics associations related to biological entities such as 

biological pathways, functional interaction networks and/or brain circuits. Finally, we briefly 

discuss interaction methods, which focus on the exploration of epistatic effects instead of 

main effects.

A. Single-SNP-single-QT methods

Given a set of genetic markers such as SNPs and a set of imaging quantitative traits (QTs), 

the simplest and most commonly used analytical strategy is to perform pairwise analysis 

between each SNP and each QT at the individual marker level. A SNP takes a value of 0, 1, 

or 2 (i.e., the genotype value), indicating the number of minor alleles at the corresponding 

chromosome location. An imaging QT typically takes a continuous value. A simple linear 

regression model can be used to examine the additive effect of the SNP on the imaging QT. 

An alternative strategy is to use Analysis of Variance (ANOVA), which is similar to linear 

regression but ignores the ordering of the genotype values. It examines the trait mean 

differences among three genotype groups. Both strategies can be used together with 

hypothesis testing to obtain a p-value. If multiple pairwise SNP-QT associations are 

examined, multiple comparison correction needs to be performed to identify significant 

findings.

Figure 2 shows three major types of SNP-QT analyses. 1) Targeted QT Analyses: The first 

type is to perform genetic analysis on one or more targeted imaging QTs. For example, in 

Figure 2, the bottom left panel (i.e., blue box) shows the Manhattan plot for the GWAS 

results of gray matter density of the right hippocampus. 2) Targeted SNP Analyses: The 

second type is to examine the genetic effects of one or more SNPs on all the imaging QTs 

across the brain. For example, in Figure 2, the right panel (i.e., red box) shows the voxel-

Shen and Thompson Page 8

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based morphometry (VBM) result of mapping the genetic effect of rs6463843 (in the 

flanking region of the NXPH1 gene) to the brain. 3) Brain-Wide Genome-Wide (BWGW) 

Analyses: The third type is to perform massive univariate analyses for all the possible SNP-

QT pairs across the entire brain and the entire genome. For example, in Figure 2, the top left 

panel summarizes all the pairwise SNP-QT association findings (only top findings are 

shown), where blocks labelled with “x” reach the level of p < 10−6. Note that, in [37], p < 

10−6 was explored as a somewhat less stringent threshold to identify imaging genomics 

associations showing a trend towards significance as well as examine clustering patterns of 

the corresponding SNP and imaging QT findings. Below, we discuss a few example studies 

in each of these three categories.

In one targeted QT study [45], Stein et al. performed a genome-wide association study of the 

bilateral temporal lobe volume as the QT. A linear regression analysis was conducted at each 

SNP to examine its genetic effect on the QT while covaried for age and sex. In another 

targeted QT study [46], Scelsi et al. computed a novel disease progression score (DPS) from 

multimodal neuroimaging data, and performed GWAS on it. The DPS was generated by the 

GRACE algorithm [47] from longitudinal cortical amyloid burden and bilateral hippocampal 

volume, providing an estimate of how advanced an individual’s disease progression is in 

comparison with the cohort average. A linear regression analysis was conducted at each SNP 

to examine its genetic effect on the DPS while covaried for sex, age at first amyloid scan, 

education, two principal components of population structure, and number of APOE e4 

alleles.

In one targeted SNP study [48], Risacher et al. examined the effect of the APOE e4 SNP 

rs429358 on several MRI and PET imaging QTs. Specifically, the effects of diagnosis, 

APOE e4 carrier status, and their interaction on regional amyloid deposition, regional 

glucose metabolism, hippocampal volume and entorhinal cortex thickness were examined 

using a two-way analysis of covariance (ANCOVA) and covaried for age and gender. In 

another targeted SNP study [49], Ho et al. examined the effect of a commonly carried allele 

of the obesity-related FTO gene on regional brain volume measures captured by MRI. 

Specifically, the general linear model was used to evaluate the relation of the imaging QT at 

each voxel to the SNP rs3751812 controlling for age and sex.

In one BWGW study [37], Shen et al. used a brain-wide genome-wide approach to 

investigate genetic effects on imaging QTs. The studied QTs included 56 volumetric and 

cortical thickness measures and 86 local gray matter density values for regions of interests 

(ROIs) across the entire brain. These imaging QTs were pre-adjusted to remove the effects 

of age, gender, education, handedness and incracranial volume (ICV). A linear regression 

analysis was conducted at each SNP to examine its genetic effect on each QT. In another 

BWGW study [45], Stein et al. performed the first voxel-based GWAS analysis. Using 

tensor-based morphometry to define imaging QTs, they examined genome-wide association 

at each voxel. A linear regression analysis was conducted at each SNP-by-voxel pair to 

examine the SNP genetic effect on each voxelwise QT while covaried for age and sex.

Although a voxelwise GWAS enables the examination of imaging genomics associations at 

the finest resolution, it is facing a major computational challenge given the huge number of 
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univariate SNP-QT associations to test. To overcome this challenge, in [50], Huang et al. 

proposed a Fast Voxelwise GWAS (FVGWAS) framework to facilitate efficient BWGW 

study at the voxel level. FVGWAS employs three components to achieve this goal. The first 

component is a heteroscedastic linear model, which allows a very flexible covariance 

structure suitable for voxelwise imaging QTs. The second component is a global sure 

independence screening (GSIS) procedure [51], which can greatly reduce the search space 

size from NsNv to ~ N0Nv for N0 ⪡ Ns. Here Ns is the number of SNPs, and Nv is the 

number of voxels. The third component is a detection procedure based on wild bootstrap 

methods, which is computationally cheap due to no involvement of repeated analyses of 

simulated datasets. As a result, for standard linear association, the computational complexity 

of FVGWAS is O((Ns + Nv)n2), outperforming O(nNvNs) for standard voxelwise GWAS 

[45], where n is the number of subjects. FVGWAS is available at https://www.nitrc.org/

projects/fvgwas/.

One issue related to imaging genomics is that most GWAS studies (e.g., ADNI) are based on 

case-control design, and the data are typically a biased sample of the target population. 

Directly correlating imaging QTs (as secondary traits) with genotype may lead to biased 

inference generating misleading results. In [52], Kim et al. compared standard linear 

regression model and disease status adjusted linear model with two models adjusting for 

biased case-control sample (i.e., inverse probability weighted regression [53], retrospective 

likelihood [54]) on the analysis of ADNI data. In [55], Zhu et al. completed a similar 

systematic evaluation of the biased sampling issue using both simulation and ADNI data. 

They compared standard linear regression model and disease status adjusted linear model 

with two models adjusting for biased case-control sample (i.e., retrospective likelihood [54], 

reparameterization of conditional model in [56]). Although the standard linear analysis was 

found to be generally valid on the ADNI data in [52], simulation studies in [55] showed that 

linear regression models without adjusting for biased sampling demonstrated severely 

inflated Type I error rates in some cases. In general, caution should be taken while analyzing 

imaging QT data as secondary phenotypes in case-control studies.

Table I summarizes the studies discussed above, where pairwise SNP-QT associations are 

examined on a SNP-by-SNP and QT-by-QT basis. These single-SNP-single-QT methods are 

simple and straightforward. The findings discovered by these methods are easy to interpret, 

since each resulting association involves only one SNP and one QT. Given the high 

dimensionality of both imaging and genomic data, studies examining a massive number of 

SNP-QT associations may face major computational and statistical challenges. In addition, 

multivariate associations involving multiple SNPs or multiple QTs won’t be able to be 

identified by these methods.

B. Polygenic risk scores

One approach to identify imaging genomics associations involving multiple SNPs is to use a 

polygenic risk score (PRS) [58]. A PRS captures the aggregate genetic effect from a set of 

trait-related SNPs that may not achieve significance at the individual level but collectively 

may explain a substantial portion of the trait variance. It is often calculated as the sum of 

their genotype values weighted by their effect sizes on a base phenotype (e.g., case control 
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status). In [59], Dima et al. reviewed the usefulness and applications of PRSs in imaging 

genetics. In [60], Chasioti et al. reviewed recent progress in PRS in AD and other complex 

disorders. The cohorts with both brain imaging and genetics data are often much smaller 

than those designed for large GWAS. A PRS can typically be calculated based on using the 

SNP-based effect sizes from large GWAS on a base diagnostic phenotype to make full use of 

the power of the large sample. After that, it can be applied to small samples with imaging 

data to examine its association with interesting imaging QTs.

Figure 3 shows an example flowchart to calculate a polygenic risk score (PRS) and apply it 

to brain imaging genomics studies. First, using the summary statistics from an independent 

GWAS (often a large-scale landmark study) on a base phenotype (Figure 3(a)), a set of SNPs 

associated with the base phenotype can be obtained using a user-specified p threshold 

(Figure 3(b)). Second, linkage disequilibrium (LD) clumping is often performed to select the 

most significant SNP from each clumped region to form a set of independent loci named as 

index SNPs (Figure 3(c)). Third, using the effect sizes of index SNPs from the summary 

statistics data (Figure 3(d)) and individual SNP data (Figure 3(f)) from the studied imaging 

genomics cohort (Figure 3(e)), one can calculate a PRS, which is the sum of genotype values 

of index SNPs weighted by their effect sizes on the base phenotype (Figure 3(g)). While this 

PRS can directly be used, some studies (e.g., [61], [62]) perform an optional step (Figure 

3(i)) to calculate a set of candidate PRSs by exploring a few p thresholds and then pick the 

PRS best predicting the target phenotype (Figure 3(h)) as the final PRS using several 

strategies described below. Finally, the effect of the resulting PRS on interesting imaging 

phenotypes can be examined (Figure 3(l)).

In [46], Scelsi et al. performed a PRS study on a novel image-based disease progression 

score (DPS) discussed in Section III-A, using a workflow similar to that shown in Figure 3. 

They obtained index SNPs and their effect sizes using the large AD GWAS conducted by the 

International Genomics of Alzheimer’s Project (IGAP) [63]. Instead of computing one PRS, 

they calculated 15 PRSs by exploring 15 p thresholds in the range of 0.95 – 10−5. They 

identified only one PRS with p threshold of 10−4, which is significantly associated with the 

image-based DPS.

In [61], Mormino et al. performed a PRS study on MRI-derived hippocampal volume, using 

the workflow shown in Figure 3. They used the IGAP GWAS summary statistics to obtain 

the index SNPs and their effect sizes. They explored a dozen p thresholds ranging from 5 × 

10−8 to 0.05 to generate multiple PRSs. The final PRS was selected as the one best 

differentiating clinically normal (CN) and AD participants in ADNI-1 sample. This PRS was 

found to be associated with hippocampal volume for ADNI-1 sample without dementia.

In [62], Sabuncu et al. performed a PRS study on cortical thickness measures. They used the 

summary statistics from another large-scale GWAS in AD [64] to obtain the index SNPs and 

their effect sizes. They further screened these SNPs using five different thresholds based on 

the genetic association results on a subset of ADNI data containing only CN and AD 

participants to create five different PRSs. The PRS with the highest correlation with Mini-

Mental State Examination (MMSE) score and Clinical Dementia Rating Sum of Box (CDR-

SB) score and strongest association with AD diagnosis was used in the subsequent imaging 
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genomic analyses on a nonoverlaping ADNI sample containing only CN subjects. This PRS 

was identified to be associated with AD-specific cortical thickness.

In [65], Tan et al. studied a similar problem on developing a polygenic hazard score (PHS) 

instead of PRS. They used the IGAP GWAS summary statistics to identify a set of SNPs 

with p < 10−5. They evaluated these SNPs using the Alzheimer’s Disease Genetics 

Consortium (ADGC) Phase 1 data. Using a stepwise Cox proportional hazards model, they 

identified 31 top SNPs and formed a PHS [66]. This PHS was applied to the ADNI data and 

found to be associated with ADNI imaging phenotypes such as regional amyloid burden 

using amyloid PET and regional volume loss using MRI.

In [67], Euesden et al. presented PRSice, a software tool for generating PRS. It takes GWAS 

summary statistics on a base phenotype and genotype data on a target phenotype, and returns 

a PRS for each individual. It calculates PRS at multiple p thresholds and can select the most 

predictive one. The software is available at http://prsice.info/.

Table II summarizes the studies described above. A PRS captures the aggregate effect from 

an ensemble of SNPs related to a base phenotype. In disease-relevant brain imaging 

genomics studies, examining the effect of a PRS instead of each individual SNP on imaging 

QTs has great potential to increase statistical power as well as gain meaningful insights into 

the biological mechanism from genetic determinants to brain endophenotypes, and to 

disease status. However, there is also some discussion in recent literature regarding potential 

limitations in PRS-based analyses. For example, bias towards the reference population was 

observed in [68]. Specifically, the generalizability of a PRS across different populations 

appeared to be limited. Greater diversity should be prioritized to realize the full potential of 

PRS. In addition, statistical power differences across diseases and cohorts were also 

observed in [69]. Several factors could limit the power of a PRS. One factor could be the 

cohort difference between the base and target GWAS. Another factor could be limited 

sample sizes of available data for certain diseases, in particular for heterogeneous disorders 

that can be stratified into different subtypes with even smaller sample size in each group.

C. Multi-SNP methods

Single-SNP analysis is often limited by the modest SNP effect sizes. Multi-SNP methods 

examine joint effect from a set of SNPs on a phenotypic trait. It has enormous potential to 

improve the power of genetic association studies and identify polygenic or multi-locus 

mechanisms for complex diseases. There are several categories of multi-SNP analysis 

strategies. The first category focuses on the joint analysis of a set of targeted SNPs based on 

the prior knowledge. For example, one approach is to analyze a polygenic risk score (PRS) 

involving top SNPs from an independent GWAS, as previously described in Section III-B. 

Another approach is to analyze a set of disease-related SNPs from the literature (e.g., [70]). 

The second category is to perform GWAS at the gene level instead of the SNP level, where 

the aggregate effect of all the SNPs within each gene on the target phenotype is examined to 

increase statistical power (e.g., [71], [72], [73]). The third category employs data-driven 

strategies to automatically identify relevant SNPs from either the entire genome or a set of 

candidate SNPs [74]. Below, we discuss a few example studies using these strategies. 

Section VI will cover additional studies using the third category of strategies.
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In [70], Apostolova et al. examined the top 20 AD SNPs and their joint effect with brain 

amyloidosis in an ADNI sample including 322 CN, 496 mild cognitive impairment (MCI), 

and 159 AD participants. Stepwise multivariate linear regression was used to examine the 

association between joint exposure of 20 AD risk alleles and mean amyloid burden from 

florbetapir PET scans while controlling for age, sex and APOE e4 status. Voxelwise 3D 

stepwise regression was also used to map the genetic effect onto the brain. The study 

identified an association between several AD SNPs and brain amyloidosis.

In [71], Hibar et al. extended the SNP-based voxelwise GWAS (vGWAS) method [45] to a 

gene-based voxelwise GWAS (vGeneWAS) method. It was demonstrated on a brain-wide 

genome-wide study using the same ADNI sample. The joint effect of SNPs within each gene 

on each voxel was examined using a multiple partial-F test while controlling for age and sex. 

To address the SNP colinearity issue, a principal component analysis (PCA) was performed 

on the SNPs within each gene. The “eigenSNPs” capturing the first 95% data variance were 

then used in the multiple partial-F test. This method can be thought of as a variant of 

principal component regression (PCReg) [75].

In [72], Ge et al. further extended vGWAS and vGeneWAS to a new SNP-based or gene-

based voxelwise GWAS framework with increased power, and demonstrated it on a BWGW 

study using the same ADNI sample. This method includes three new methodological 

contributions. The first one is a fast implementation of voxelwise and clusterwise inferences 

using random field theory to improve statistical power via embracing the spatial correlation 

in the images. The second one is a multi-locus model based on least square kernel machines 

(LSKMs) to evaluate the joint effect of multiple SNPs within each gene on each voxelwise 

QT. The multilocus method employs a semi-parametric regression model [76], where the 

covariate effects on the QT are modeled linearly and parametrically and the SNP effects on 

the QT are modelled non-parametrically using the LSKM approach. This method allows for 

revealing nonlinear effects introduced by the interaction among SNPs. The third contribution 

is a a fast permutation procedure that uses parametric tail approximation to provide accurate 

p estimations in an efficient manner.

In [73], Xu et al. proposed a new method called imagingwide association study (IWAS), 

which was inspired by transcriptome-wide association study (TWAS) [77]. It aims to 

integrate imaging QTs with GWAS to improve statistical power and biological 

interpretation. It is a gene-based approach and has two steps involving two sets of GWAS 

data respectively: 1) the reference GWAS data containing imaging QTs, and 2) the main 

GWAS data containing target phenotype such as disease status. In the first step, which 

analyzes the reference GWAS data, for each gene, IWAS estimates a set of SNP weights via 

regressing an imaging QT on all the SNPs. In other words, it builds a prediction model for 

the genetic component of the imaging QT. In the second step, which analyzes the main 

GWAS data, IWAS uses the weights learned in the first step to calculate a weighted 

genotype score for each gene, and examines its association with the target phenotype. Using 

strategies described in [78], [79], IWAS can also be applied to the main GWAS data 

containing only summary statistics. In short, IWAS uses an imaging QT to construct weights 

for a weighted gene-based GWAS test. The gene-based method reduces the number of tests 

and boosts statistical power. Also, computing gene scores via extracting genetically 
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controlled components of an imaging QT provides potential opportunities to help interpret 

GWAS findings.

The above studies developed or employed methods to examine the association between one 

SNP set and one QT. In [74], Lu et al. proposed a method for examining joint association 

mapping between a large number (e.g., 105) of SNP sets and a QT. Here the SNP sets can be 

defined by LD blocks or genes so that multiple SNPs can be combined to increase detection 

power. A linear mixed-effects model was proposed to simultaneously regress a QT on a large 

number of SNP sets. This model has the potential to further increase detection power via 1) 

incorporating the correlation among SNP sets, and 2) greatly reducing the burden of multiple 

comparison correction. A Bayesian latent variable selection procedure was proposed to 

select significant latent variables. An efficient Markov Chain Monte Carlo (MCMC) 

algorithm was proposed to reduce the complexity of major computationally intensive steps 

in MCMC iterations. The empirical studies was performed on the ADNI sample to identify 

associations between a few imaging QTs and a number of SNP sets defined by LD blocks 

and genes, and yielded promising results.

Table III summarizes the studies described above, which are designed to identify multi-SNP-

single-QT associations. Compared with single-SNP methods, examining joint effect of a 

SNP set on an imaging QT can potentially increase statistical power and identify multi-locus 

or polygenic mechanisms for complex brain phenotype. In addition, the SNP sets are often 

defined by LD blocks, genes, pathways, known trait-associated variants, or other prior 

knowledge, which may offer meaningful biological insights for interpreting multi-SNP 

discoveries.

D. Multi-trait methods

Similar to multi-SNP methods, multi-trait methods provide an alternative means to increase 

detection power, compared with single-SNP-single-trait analyses. There are several classical 

strategies to perform multivariate trait analysis, as nicely summarized in [80]. One approach 

is to first conduct univariate analysis on each trait and then combine their results [81]. For 

example, a typical strategy is to select the SNP with the minimum p-value with multiple 

comparison correction. The second approach is to perform dimensionality reduction on the 

traits and then apply univariate analysis on a small number of extracted trait features. These 

features could simply be the average trait or first a few components from PCA [82] or 

canonical correlation analysis (CCA). The third approach is to employ classical multivariate 

analysis methods such as multivariate analysis of variance (MANOVA) [83] and generalized 

least squares (GLS) [84], [85]. Below, we discuss a few recently proposed methods for 

performing multi-trait analyses in brain imaging genomics.

In [80], Zhang et al. proposed a set of new testing methods for identifying single-SNP-multi-

QT associations under the framework of generalized estimation equations (GEEs) [86]. They 

tried to address the challenge that, in multi-QT analyses, there is a lack of a uniformly 

powerful test. For example, given a QT set, if very few QTs are associated with the target 

SNP, selecting the QT with minimum p from a set of univariate SNP-QT analyses could be 

more powerful. On the other hand, if most of the QTs are associated with the SNP, doing a 

univariate analysis between the average QT and the SNP could be more powerful. With this 
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observation, under the GEE framework, they proposed the SPU(γ) tests (i.e., the sum of 

powered score (U) tests), for a series of values of γ = 1,2,…, ∞, where a larger γ tends to 

put higher weights on QTs with stronger associations with the SNP. As a result, SPU(∞) 

corresponds to the minimum p strategy and SPU(1) corresponds to the average QT strategy. 

Based on this, they also proposed adaptive SPU (aSPU) test. The aSPU test statistic is 

defined as the minimum p among all the SPU tests TaSPU = minγ∈ΓPSPU(γ). In other words, 

aSPU was designed to be an adaptive method that automatically performs data-driven 

weights adjustment and selects the most powerful weighted test from all these candidates. 

The empirical study was performed on an ADNI sample to pairwisely associate 20 candidate 

SNPs to a few imaging QT sets, and the proposed aSPU method outperformed various 

competing methods.

In [87], Kim et al. further extended the aSPU test to a new test that can identify associations 

involving multiple SNPs. While aSPU searches for single-SNP-multi-QT associations, the 

new test is designed to identify multi-SNP-multi-QT associations. Similarly, under the GEE 

framework, they proposed the SPU(γ1, γ2) tests (i.e., an extension of SPU(γ) to 

accommodate both multiple QTs and multiple SNPs), for a series of values of γ1 = 1, 2,…, 

∞ and γ2 = 1,2,…, ∞. Here a larger γ1 tends to put higher weights on QTs with stronger 

associations with the SNPs, and γ2 tends to put higher weights on SNPs with stronger 

associations with the QTs. Based on this, they also proposed the adaptive SPU test for a SNP 

set (aSPUset). The aSPUset test statistic is defined as the minimum p among all the SPU 

tests TaSPUset = minγ1∈Γ2,γ2∈Γ2PSPU(γ1, γ2). Clearly, aSPUset is an extension of aSPU to 

identify multi-SNP-multi-QT associations using the same adaptive method that 

automatically performs data-driven weights adjustment and selects the most powerful 

weighted test from all these candidates at both the SNP and trait levels. It has the benefit of 

measuring the collective effects of multiple SNPs for an increased detection power. The 

empirical study was performed on an ADNI sample to perform gene-based SNP-set GWAS 

of 12 imaging QTs within human brain default mode network (DMN). The aSPUset method 

outperformed competing methods including aSPU, and identified a new gene AMOTL1 not 

detected by other SNP-based methods.

In [88], Kim et al. proposed a similar adaptive SPU test for single-SNP-multi-QT 

associations using a proportional odds model (POM). Most methods for mining single-SNP-

multi-QT associations associations treated QTs as response and the SNP as predictor. In this 

approach, they treated the SNP as an ordinal response and multiple QTs as predictors, and 

developed a similar adaptive SPU (aSPU) test under a POM framework instead of the GEE 

framework used in [80]. Compared with the GEE-based aSPU, the POM-based aSPU has 

two advantages: 1) it is easier to handle mixed types of traits (e.g., binary and quantitative), 

and 2) it can handle high dimensional setting (e.g., QT number > sample size). The 

empirical studies on ADNI data were performed to identify SNP-based genetic associations 

with two imaging QT sets, one containing 12 MRI-based QTs related to DMN, and the other 

containing functional brain connectivity network data among 18 ROIs. Compared with 

competing methods such as the GEE-based aSPU, the POM-based aSPU performed 

similarly in both studies that have a low dimensional setting.
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In [44], Hua et al. proposed a brain imaging GWAS method on identifying single-SNP-

multi-QT associations. The method includes a few components to improve detection power. 

First, they pooled voxel-level measures into 119 ROI-level QTs for reducing both 

dimensionality and voxel-level noises. Second, they treated the imaging QTs of the entire 

brain as a single multivariate response and used distance covariance to capture the 

association between all the QTs and each SNP. This approach could reduce the number of 

statistical tests and simultaneously embrace ROI interaction effects. Third, they proposed a 

new false discovery rate (FDR) based algorithm for multiple testing adjustment, named as 

local FDR modeling. Empirical study was performed on an ADNI sample to identify SNPs 

associated with 119 QTs from the entire brain.

In [89], Huang et al. proposed a new functional GWAS (FGWAS) method for efficiently 

performing whole genome analysis of high dimensional imaging QTs. First, instead of doing 

a univariate analysis to each SNP and each QT, they treated all the imaging QTs as a single 

functional response measured in the brain space. They proposed a multivariate varying 

coefficient model (MVCM, a function-on-scale model) to fit all the imaging QTs (as a 

functional phenotype) with each SNP via embracing key features of a functional phenotype 

including spatial smoothness, spatial correlation and low dimensional representation. 

Second, they introduced a global sure independence screening (GSIS) procedure based on 

global test statistics [51]. This approach selects NG0 important SNPs, and greatly reduces the 

genomic search space size from NG to ~ NG0 for NG0 ⪡ NG. Third, they developed an 

efficient divide-and-conquer algorithm for performing multiple comparison and achieved 

substantial performance gain on computational time and memory. It can handle functional 

phenotypes such as 1-D curves, 2-D surfaces and 3-D images. The empirical study on an 

ADNI sample was performed to identify genetic associations with functional QTs on 

hippocampal surfaces, and yielded promising results.

Table IV summarizes the studies discussed above, which are designed to identify multi-QT 

associations with one or more SNPs. Example strategies for performing multi-QT analyses 

in recent brain imaging genomics studies include adaptive sum of powered score test to 

identify the most powerful weighted QT score, distance covariance between QT set and each 

sNP to reduce the number of tests and incorporate interaction effects among QTs, and 

modeling all the QTs as a single functional response to embrace spatial smoothness and 

correlation as well as low-rank representation. Compared with single-trait methods, multi-

QT genetic association analysis has the potential to not only improve detection power but 

also reveal complex imaging genomics associations involving multiple contributing QTs.

E. Pathway and network enrichment methods

Pathway and network analyses are routinely used in genomic studies [91]. Analyzing 

genomic data through sets defined by biological pathways and functional interaction 

networks offers enormous potential to increase statistical power and translate genomic 

findings into meaningful biological hypotheses. For example, if we define a SNP set using a 

pathway of interest, we can employ the multi-SNP methods reviewed in Section III-C to 

examine the joint effect of this pathway-based SNP-set on any trait. Most of these multi-

SNP methods use a single multivariate learning model to relate multiple sNPs to a trait. Here 
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we review another category of popular methods called enrichment analysis, which are 

widely used in pathway and network analysis of GWAS findings. Different from the multi-

SNP methods discussed earlier, an enrichment analysis typically involves two steps: 1) 

conduct SNP-based or gene-based GWAS on a trait, and 2) perform pathway or network 

enrichment analysis of the GWAS findings.

One type of the enrichment analysis methods is threshold-based (e.g., hypergeometric test or 

Fisher’s exact test), and is used to identify pathways or sub-networks that are over-

represented by the “significant” GWAS hits. Another type of the enrichment analysis 

methods is rank-based (e.g., GSEA-SNP [92]), and uses a Kolmogorov-Smirnov-like 

running sum to quantify the degree to which a pathway- or network-derived gene set is over-

represented at the top of the gene list ranked by the GWAS results. These analyses are of 

high significance. They can identify pathways and networks related to imaging QTs or 

disease outcomes, which can potentially serve as the foundation for the development of 

diagnostic, therapeutic and preventative approaches for complex brain disorders. Below we 

review a few example studies using pathway and network enrichment methods.

In [93], Ramanan et al. performed a genome-wide pathway analysis of memory impairment 

on an ADNI sample. A composite memory measure was computed from the ADNI 

neuropsychological test battery and used as the QT in this study. GWAS was performed on 

this QT but did not yield any significant findings after multiple testing adjustment. A 

subsequent genome-wide pathway analysis was then conducted through applying GSA-SNP 

software [94] to the GWAS result, and identified 27 significantly enriched canonical 

pathways after FDR correction. The resulting pathways include memory-related signaling 

pathways and pathways related to cell adhesion, neuronal differentiation and outgrowth, or 

inflammation. These results indicate pathway enrichment analysis could not only offer 

increased detection power but also yield valuable biological information to help mechanistic 

understanding.

In [95], Yao et al. expanded the scope of enrichment analysis from GWAS to voxelwise 

brain imaging studies, and proposed a framework for mining regional imaging genetic 

associations via voxelwise enrichment analysis. The main idea was to treat an ROI as a set 

of voxels, similar to a pathway as a set of SNPs or genes in the genomic studies. A post hoc 

enrichment analysis was performed on the voxelwise statistics to identify ROIs over-

represented by the top voxel findings. Fisher’s exact test for independence was used to 

calculate the enrichment p-value for each ROI. The existing ROI-based methods often 

collapse the voxel measures into a single value (e.g., the average), and may have limited 

power when only weak signals exist in part of an ROI. The enrichment-based strategy can 

properly address this challenge. The empirical study was performed on an ADNI sample to 

evaluate pairwise associations between 19 AD candidate SNPs and FDG-PET imaging QTs 

from 116 ROIs across the entire brain. The proposed enrichment method outperformed 

traditional ROI and voxelwise approaches and identified a number of new significant 

associations. Some of these new findings were supported by evidences from tissue-specific 

brain transcriptome data.
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In [90], Yao et al. expanded the scope of enrichment analysis from GWAS to brain imaging 

genomics studies. They proposed a new two-dimensional enrichment analysis paradigm, 

called Imaging Genetic Enrichment Analysis (IGEA). IGEA jointly considers meaningful 

gene sets (GS) and brain circuits (BC), and aims to identify GS-BC pairs over-represented 

by SNP-QT findings from BWGW imaging genetic association study. To demonstrate the 

IGEA framework, they used the whole brain transcriptome data from the Allen Human 

Brain Atlas (AHBA) [96] to construct GS and BC modules so that, within each module, 

genes share similar expression patterns across ROIs and ROIs share similar expression 

patterns across genes. Figure 4 shows the IGEA workflow: (A) perform SNP-level GWAS of 

brain wide imaging QTs; (B) map SNP-level GWAS findings to gene-level summary 

statistics; (C) construct gene-ROI expression matrix from AHBA data; (D) construct GS-BC 

modules by performing 2D hierarchical clustering on gene-ROI expression matrix, and then 

filter out 2D clusters with an average correlation below a user-given threshold; (E) perform 

IGEA by mapping gene-based GWAS findings to the identified GS-BC modules; and (F) for 

each enriched GS-BC module, examine the GS using Gene Ontology (GO) terms [97], 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [98], and Online Mendelian 

Inheritance in Man (OMIM) disease databases (https://omim.org/), and map the BC to the 

brain. The empirical study using the brain transcriptome data from AHBA and brain imaging 

genetics data from ADNI identified 25 significant high-level GS-BC modules, and showed 

the promise of IGEA on revealing high-level imaging genomic associations.

Similar to pathways, biological networks are also valuable prior knowledge that can assist 

GWAS to identify meaningful high-level genomic associations with a target phenotype. For 

example, network-based GWAS aims to identify phenotype-associated modules from 

biological networks [100]. This high-level association evaluates the collective effect of all 

the SNPs/genes within the network module on the phenotype, and thus provides not only 

increased detection power but also meaningful biological interpretation. In [99], Yao et al. 

proposed a module detection method for brain imaging genomics studies using tissue-

specific biological networks. Figure 5 shows its workflow. First, GWAS is performed on a 

target imaging QT. Second, the GWAS results are re-prioritized using the NetWAS approach 

[101]. NetWAS couples machine learning methods (e.g., support vector machines, ridge 

regression) with a tissue-specific functional interaction network [102] (specific to the 

imaging QT in our case) to re-rank the GWAS results. Using network topology information, 

SNPs connected to more top findings tend to be pushed more towards the top of the re-

ranked list. As a result, the top re-prioritized findings tend to be more densely connected 

than the top findings in original GWAS. Thus, the third step is to identify densely connected 

modules using only interactions among these top re-prioritized findings. Finally, enrichment 

analysis is applied to these modules to identify the ones over-represented by the original 

GWAS findings. The empirical study was performed on an ADNI sample to identify 

modules related to the mean FDG-PET measure in amygdala, and yielded promising results.

Table V summarizes the studies discussed above, which are designed to detect high-level 

imaging genomic associations related to pathways, networks or brain circuits. The brain 

imaging genomics studies usually apply the standard enrichment methods widely used in the 

genomic domain, including both threshold-based and rank-based approaches. In addition to 

these enrichment calculation methods, various related strategies have been proposed to 
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address specific issues in brain imaging genomics. For example, the enrichment analysis can 

be transferred from the genomic domain to the imaging domain to perform ROI enrichment 

analysis based on voxelwise findings [95]. It can also be extended to two dimensional 

imaging genetic enrichment analysis (IGEA) to mine high level imaging genetic associations 

based on massive BWGW SNP-QT results [90]. In addition, given the recent availability of 

tissue-specific networks, the imaging GWAS based module identification can be extended to 

use the functional interaction network specific to the studied imaging QT (i.e., tissue from 

the corresponding brain region) [99]. In sum, the enrichment methods examine the collective 

effect of a SNP/gene set, a QT set, or both, and have the potential to increase detection 

power. Also, the examined SNP or QT sets correspond to functionally annotated biological 

entities, and may provide valuable insights into underlying mechanisms.

A topic relevant to enrichment analysis is prioritization. Enrichment analysis is typically 

performed at the end of the analysis pipeline (e.g., as a post-hoc analysis of the GWAS 

findings). Prioritization takes a reverse approach where valuable prior knowledge such as 

pathway and network information is used to select a small set of genes for subsequent 

analyses. For example, in [103], Patel et al. used Gene Ontology (GO) [97] to build a 

biological process network associated with 21 AD seed genes from [63], and then performed 

imaging genetic analyses targeting at all the genes in the network. In [104], Lorenzi et al. 

used the GTEx database (https://gtexportal.org/) to screen candidate SNPs generated from 

imaging genetic analysis of a discovery sample for obtaining potential expression QT loci 

(eQTL), and then performed another imaging genetic analysis targeting only these 

prioritized loci in an independent sample. In [105], Grothe et al. used amyloid PET and MRI 

scans to compute brain-wide spatial patterns of AD-typical amyloid deposition and 

neurodegeneration, and then used the whole brain gene expression database AHBA [96] to 

rank and prioritize genes based on their spatial correlation with the above amyloid burden 

and neurodegeneration patterns. In short, the strength of gene prioritization is twofold: 1) it 

reduces the burden of multiple testing and has the potential to increase detection power; and 

2) the valuable functional annotation knowledge used for prioritization can help with 

biological interpretation and alleviate the risk for false discoveries. On the other hand, we 

should also be cautious about its possible limitations such as bias associated with the 

reference atlas or prior knowledge used for prioritization and difficulty in updating findings 

according to the evolution of these valuable resources. Finally, in addition to enrichment 

analysis and prioritization, the pathway and network information can also be incorporated 

into advanced statistical and machine learning models to guide our search for more 

complicated imaging genomics associations (e.g., [106], [107], [108]), which will be 

discussed in Sections V and VI.

F. Interaction methods

Most brain imaging genomics association studies examine main effects of genetic variants 

on imaging QTs. It is well-known that these main effects can only explain a portion of 

heritability of the studied QTs. Missing heritability can often be attributed in part to the 

interaction effects (or epistatic effects) within genetic variants or between genetic and 

environment factors. These studies are facing major statistical and computational challenges, 

since an exponentially increasing number of possible tests (to the order of the interaction) 
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significantly reduces the statistical power due to multiple comparison correction. Thus a 

major topic in epistatic studies is to find an effective search strategy to reduce computational 

time and increase statistical power. Below we review a few example studies exploring the 

effects of SNP-SNP interaction or SNP-environment interaction on imaging QTs.

In [109], Zieselman et al. presented a bioinformatics pipeline for the epistatic analysis of an 

MRI-based QT (i.e., mean grey matter density) using an ADNI sample. The pipeline 

employed two phases to dramatically reduce the search space. Phase I was focused on 

identifying a set of genes with significant SNP-SNP interactions, where the Quantiative 

Multifactor Dimensionality Reduction (QMDR) method [110] was used to examine the 

SNP-SNP interaction effect on the QT within each gene. 20 genes with 34 SNPs were 

identified. In Phase II, these genes were uploaded to the Integrative Multispecies Prediction 

(IMP) Webserver (http://imp.princeton.edu, [111]) to create a gene interaction network that 

incorporates the prior functional genomics knowledge. Up to 20 additional genes connected 

to the input genes with a high confidence were allowed to be added to the IMP network. 10 

genes (6 original + 4 additional) with 10 SNPs were identified. Finally QMDR was used to 

examine all pairwise, three-way and fourway SNP-SNP interactions among these 10 SNPs. 

The most significant finding is a three-way interaction including two SNPs within the 

olfactory gene cluster and one TRPC4 SNP. The goal of this study was to use the existing 

knowledge to reduce the possibility of false positives instead of identifying all possible 

interactions which is a much harder task to accomplish.

In [112], Meda et al. performed a genome-wide interaction analysis (GWIA) of MRI-based 

atrophy measures in hippocampus and entorhinal cortex using an ADNI sample. Their 

strategy to reduce the number of tests was to examine 151 million SNP pairs based on the 

gene-gene interaction patterns in the KEGG pathway database. Linear regression 

implemented in the INTERSNP software [113] was used to identify epistatic effects while 

controling for sex, age, education, APOE e4 and clinical status. They identified 109 SNP-

SNP interactions for right hippocampal atrophy and 123 for right entorhinal cortex atrophy. 

These findings were overrepresented in several interesting pathways including the calcium 

signaling, axon guidance, and ErbB signaling pathways.

In [114], Hibar et al. performed a GWIA of MRI-based temporal lobe volume (TLV) using 

an ADNI sample. The EPISIS software [115] was employed to screen all possible SNP pairs 

based on a machine-learning algorithm called sure independence screening (SIS) [51]. SIS is 

a screen method that evaluates the correlation strength between each SNP pair and the 

outcome and selects the most associated SNP pairs. In this study, 111 SNP-SNP interaction 

pairs were obtained after SIS screening. All these interaction terms were then included in a 

single ridge regression model, where the extended Bayesian Information Criterion (BIC) 

[116] was used to identify the most relevant SNP pairs. This study identified a significant 

interaction between rs1345203 and rs1213205.

In [117], Ge et al. presented a kernel machine method (KMM) to evaluate main and 

interaction effects among multiple genetic and nongenetic variable sets on an imaging QT. 

Their model includes three separate kernels. The first one is a genetic kernel to measure the 

epistatic and joint effect of a SNP set on an imaging QT. The SNP sets can be defined by 
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haplotype structure, gene or pathway. The second one is a non-genetic kernel to measure the 

collective effect of multiple nongenetic factors. The third one is the Hadamard product of the 

above two kernels to examine their interaction effect. Using an ADNI sample, they applied 

KMM to explore the interaction effects between each of 21 AD candidate genes and six 

cardiovascular disease (CVD) risk factors on MRI-based hippocampal volume. Two genes, 

CR1 and EPHA1, were identified to have such interaction effects with the CVD risk factors.

In [118], Wang et al. proposed a set-based mixed effect model for gene-environment 

interaction (MixGE) on imaging QT. They reviewed major set-based association tests and 

grouped them into five categories: 1) burden tests (collapsing variants into a burden score), 

2) adaptive burden tests (burden tests using data adaptive weights), 3) variance component 

tests (examining variance of genetic effects), 4) combined tests and 5) exponential 

combination tests (both combining burden and variance component tests). Their work is an 

extension of a combined test named mixed-effects score test (MiST) [119] to examine gene-

environment (G×E) effect on imaging QTs. The proposed MixGE method models both fixed 

and random effects of G×E and examines homogeneous and heterogeneous contributions 

from a SNP set and their interaction with environment factors on an imaging QT. They 

employed score statistics instead of direct parameter estimation to accelerate the 

computation, which enabled the voxelwise analyses. Similar to [117], the empirical study 

was performed on the same ADNI sample to explore the interaction effects between each of 

21 AD candidate genes and the first principal component of six CVD risk factors on 

hippocampal volume and voxelwise tensor-based morphometry data. The analysis on the 

hippocampal volume replicated the results of KMM [117]. The analysis on the TBM data 

suggested an interaction effect of ABCA7 gene and CVD risk on right superior parietal 

cortex.

Table VI summarizes the studies discussed above, which are designed to examine epistatic 

effects of genetic variants or their interaction effects with nongenetic factors on brain 

imaging QTs. Given the major statistical and computational challenges induced by an 

enormous number of possible tests, studies in the field typically employ various strategies to 

reduce the search space. For example, one strategy is to examine only a small set of 

candidate interactions with a potential biological mechanism suggested by functional 

interaction networks or biological pathways. In this case, we should be aware of the 

strengths and limitations of the prioritization approach, as discussed in the end of Section 

III-E. Another strategy is to perform data-driven screening to focus on the analysis of a 

small number of most promising candidate interactions.

IV. Imaging Genomics Associations: Meta-Analysis

A key challenge in imaging genomics is the relatively small effect size of genetic variants on 

the brain - most genetic variants account for under 1% of the variance in a brain measure, 

when considered individually, meaning that hundreds or even thousands of scans may be 

needed to detect and independently replicate an effect. An important exception to this rule 

appears to be the APOE gene; a common form of this gene, APOE4, is carried by around a 

quarter of the world’s population, and is associated with a roughly 3-fold higher lifetime risk 

for Alzheimers disease. In elderly people, this genotype is associated with a 1-2 standard 
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deviation lower hippocampal volume [121], relative to carriers of the most common form of 

the gene, APOE3. Nonetheless, other common genetic variants with large effects on the 

brain have been extremely difficult to find; as a result, studies have expanded to ten thousand 

subjects or more, in an effort to find replicable associations [120].

In addition, the ability to test over a million markers in the genome for associations with 

brain measures means that heavy corrections are often required for multiple statistical 

testing. A typical genome-wide association study might test over a million independent 

genetic markers; to avoid reporting false positives, the genetics field established a genome-

wide association significance threshold (typically p < 0.05/106, or thereabouts) before an 

association could be declared significant. The number of traits derived from images in an 

individual study might also be very large (up to 140 traits in a typical study of cortical 

thickness and surface area - and well over 106 voxels in an image or 104 edges in a 

connectivity network). If every trait is tested for genome-wide associations, this leads to 

even more stringent significance thresholds. Smith and Nichols [123] give a detailed power 

analysis of association testing in large biobanks, noting the very large samples required. In 

parallel, several researchers examined the power and data requirements for well-powered 

studies of image-wide genomewide associations [45], [124] and connectome-wide 

genomewide association, which performs association tests at each edge in a graph or 

network model of brain connectivity [38], [20], [125].

Early attempts to reduce the search space in imaging genomics (by focusing on genes more 

likely to have effects on the brain) largely failed. Ten years ago, several hundred papers had 

reported associations between variants in specific candidate genes (e.g., COMT, BDNF) and 

an imaging trait - yet almost none of these was replicated when tested in independent data. 

Jahanshad et al. [126] pooled regional fractional anisotropy (FA) measures for 6,165 

subjects from 11 cohorts worldwide to evaluate effects of 15 candidate SNPs that had been 

reported in the literature to show associations with white matter microstructure; not a single 

one of these associations was replicated in independent samples. This “crisis of 

reproducibility” or “power failure” has also been noted in several branches of science [127] 

including neuroscience [128], [129].

Modeled on the Psychiatric Genomics Consortium in psychiatric genetics, the ENIGMA 

Consortium (Enhancing NeuroImaging Genetics through Meta Analysis; http://

enigma.ini.usc.edu) was founded in 2009 to address these problems, and perform large scale 

genome-wide association studies for brain measures derived from MRI [130], DTI [126] and 

EEG [131]. ENIGMA uses a meta-analytic design to pool evidence from large numbers of 

cohorts worldwide. ENIGMA has since expanded to include over 50 working groups, 

focusing on global studies of specific brain diseases, and has published the largest 

neuroimaging studies to date of 9 brain disorders. Here, we focus on its work in imaging 

genetics, which can be categorized into studies of common [130] and rare [122] genetic 

variants and epigenetic variation [132]. These studies may be further subdivided by the data 

types studied (e.g., MRI and EEG) and methods used (e.g., mass-univariate meta-analysis, 

tests of genetic overlap between brain traits and other clinical or behavioral traits, and 

image-wide or connectome-wide testing of genetic associations). We begin with mass-

univariate analyses, as they are the simplest.
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Stein et al. [120] and Hibar et al. [121] identified over 20 genetic loci associated with the 

volumes of subcortical brain regions, including the hippocampus, amygdala, thalamus, 

putamen and other regions of the basal ganglia, and intracranial volume. Manhattan plots of 

these effects are shown in Figure 6(A-B), for each structure; the evidence of association is 

shown for each genetic marker (on the x-axis) and each regional volume measure (on the y-

axis) using a logarithmic scale, −log10(p). Several aspects are notable from a methodological 

point of view. First, only hits that are genomewide significant are considered reliable, by 

convention, due to the large number of statistical tests performed. To attempt to replicate 

these hits in independent data, ENIGMA partnered with the CHARGE Consortium on a 

series of papers reporting GWAS in ever increasing sample sizes, of intracranial volume 

[133], hippocampal volume [121], and all subcortical volumes [134]. Earlier papers 

performed a simple p-value look-up in the replication data; a later paper performed a meta-

analysis of all cohorts.

These analyses were performed using standardized protocols for quality control of the 

imaging and genomic data, as well as imputation of genetic data to common reference 

panels, such as the 1000 Genomes reference panel (this step allows the same set of variants 

to be analyzed across cohorts, even if some sites have used different genotyping chips). A 

later cortical GWAS [130] led to an annotated atlas of over 200 genetic loci associated with 

surface area and thickness measures from 70 cortical regions. Parallel work by the UK 

Biobank reported GWAS for MRI, DTI, and even functional MRI metrics in their first 9,000 

subjects scanned [135], [12]. The UK Biobank was subsequently added to the ENIGMA 

studies as a replication sample, showing generally strong replication [130]. A parallel set of 

studies also assessed the overlap between these brain-related genetic loci and genetic 

markers implicated in a range of brain diseases and neuropsychiatric disorders, including 

Alzheimers disease and Parkinsons disease [130], schizophrenia and bipolar disorder [136], 

[35], obsessive compulsive disorder [137], Tourette syndrome [138], and even IQ [130], 

[139].

Holland et al. [140] studied the discoverability of SNPs using GWAS for a range of different 

traits, including image derived measures. By modeling the effect sizes found empirically for 

SNPs associated with brain and behavioral traits, they noted that the rate of discovery of 

SNPs - and the cumulative percentage of variance explained - tends to follow an S-shaped 

curve. Remarkably, to discover markers that account for over half of the SNP heritability 

(the proportion of variance due to genotyped SNPs), they estimate that 10,000-10,000,000 

participants would be needed, depending on the trait or disease studied (e.g., increasing 

numbers of subjects were needed to perform a well-powered GWAS of plasma cholesterol 

levels, regional brain volumes, schizophrenia, and major depression). Differences in SNP 

discoverability, for each trait, depend on the genetic architecture of each trait - the fraction of 

the genome that accounts for various proportions of the observed variance, the effect sizes 

for each SNP in this set, and the minor allele frequency (MAF) of the variants implicated. 

By estimating these from empirical data, detailed power analyses were reported.

Some Bayesian methods have been proposed to overcome the heavy statistical corrections 

associated with mass-univariate testing of over a million genetic loci. Smeland et al. [136] 

categorized markers as belonging to different genetic categories (e.g., lying within and 
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outside known genes, or by functional type, such as enhancers or promoters). As brain-

relevant genetic loci have different prevalence in these various genetic categories, Smeland 

et al. were able to use the conditional FDR (false discovery rate) method to discover some 

known SNPs more efficiently (i.e., in smaller samples) as well as other genetic markers not 

yet discovered using existing methods. Similarly, genetic clustering - the quest to identify 

overlap in genetic influences between traits - has led to genetic connectomes - matrices or 

graphs of genetic correlations, in which traits with common genetic determination are stored 

in a matrix, and clustered. Some researchers argue that genetic clustering of voxels in an 

image, edges in a network, or vertices on surface models of the cortex, may yield more 

efficient targets for GWAS [141], [142]; such methods are just beginning to be explored.

ENIGMA is also using meta-analysis to assess effects on the brain of other types of genetic 

variation. ENIGMA’s Epigenetics group identified two sites in the genome where 

methylation relates to hippocampal volume (N=3, 337; [132]). This type of study is 

computationally analogous to a GWAS, although methylation occurs at a somewhat lesser 

number of genetic loci, making the analysis slightly more efficient; nonetheless, thousands 

of subjects are still needed to detect and replicate individual associations.

As biobanks grow in size, it has become possible to discover and independently replicate 

effects on the brain of rare genetic loci (with a prevalence of <1:1000 individuals), such as 

the genetic deletions responsible for 22q deletion syndrome [143], [144]. The ENIGMA 

CNV Consortium [122] is performing a systematic study of these rare variants; in general, 

they may have a far greater effect on the brain than common variants, making their effects 

more efficient to replicate. Partnerships among ENIGMA, deCODE Genetics, and the UK 

Biobank are creating a catalog of rare variants and their effects on the brain ([122]; see 

Figure 6(C)). Once the effects on the brain are known for deletions of different sizes, a 

second round of analyses may be required to determine how specific genetic loci within the 

deleted region influence the effects.

V. Imaging Genomics Associations: Multivariate Regression

Here we provide a review of machine learning studies that use regression models to identify 

complex multi-sNP and/or multi-QT associations. Let X ∈ ℝn × p be the genetic data with p 

variables on n subjects. Let Y ∈ ℝn × q be the imaging data with q variables on n subjects. 

We assume that each column of X and Y is normalized with zero mean and unit variance. 

Most of the regression models discussed below can be described using the following generic 

regularized loss function framework.

minWℒ(X, Y, W) + Σi = 1
m λiℛi(W), (1)

where W ∈ ℝp × q is the weight matrix for regression of Y on X, and λi is the parameter 

balancing the loss function ℒ(X, Y, W) and the regularization ℛi(W).

A sparsity-inducing regularization term is often included in these models. The motivation is 

twofold. First, it is reasonable to hypothesize that only a small number of markers are 

relevant in the resulting imaging genomics association. The sparsity term can help identify 
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these relevant markers. Second, the sparsity constraint can reduce the model complexity and 

subsequently reduce the risk of overfitting.

Below we discuss example studies using the four categories of methods: 1) sparse multiple 

regression (univariate response, W degrades to a vector w), 2) sparse multivariate multiple 

regression (multivariate response, W is a matrix), 3) sparse reduced rank regression 

(reducing the rank of W, e.g., W = BAT), and 4) Bayesian regression and neural network 

models.

A. Sparse multiple regression

We start with a few relatively simple sparse multiple regression models, where the response 

is a scalar. Some of these (e.g., [106]) will be later extended into its multivariate version.

In [106], Silver et al. proposed the “pathways group lasso with adaptive weights” (P-GLAW) 

algorithm, which is based on a group lasso model:

minw‖y − Xw‖2
2 + λΣg ∈ 𝒢dg‖wg‖2, (2)

where 𝒢 defines the grouping structure of w. The goal is to identify a set of SNPs from X to 

predict a single imaging QT y. The SNPs are grouped using the pathway knowledge so that 

the feature selection is done at the pathway level to enhance biological interpretation and 

generate insightful results. The empirical study was performed on synthetic data simulated 

based on an ADNI sample and canonical pathways from the Molecular Signals Database 

(MsigDB, [145]).

In [146], Hao et al. proposed a “tree-guided sparse learning” (TGSL) method, which is also 

based on a group lasso model but with a tree structure:

minw‖y − Xw‖2
2 + λΣi = 0

l Σ j = 1
ni d j

i‖w
G j

i‖2, (3)

where G j
i  indicates a predefined tree (say T) structure of w, the tree T has l depth level, and 

the i-th level contains ni nodes organized as T i = {G1
i , …, G j

i , …, Gni
i }. The goal is to identify a 

set of SNPs from X to predict a single imaging QT y. The SNPs are grouped using a tree 

structure, which groups SNPs by LD blocks and groups LD blocks by genes. The empirical 

study was performed on an ADNI sample to predict six target imaging QTs using SNPs 

from 20 AD genes.

In [147], Wang et al. proposed a “diagnosis-aligned multimodal” (DAMM) method for 

regressing a target SNP x on multimodal imaging QTs (Ym for m ∈ [1, M]) as follows:

minWΣm = 1
M ‖x − Ymwm‖2

2 + λ1ℛ1(W) + λ2ℛ2(W), (4)

where W = [w1,…,wM]. The first regularization ℛ1(W) is an l2,1 norm to select features with 

effects on most of the modalities. The second regularization ℛ2(W) is a graph laplacian term 
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that encourages the subjects within (between) the same diagnositic group to have similar 

(different) values in the projected space (i.e., these projected imaging components are 

aligned with diagnosis). The empirical study was performed on an ADNI sample, where the 

response is the APOE e4 SNP, and the predictors include two modalities of ROI measures: 

VBM measure from structural MRI, 2) hyper-graph based clustering coefficient measure 

from functional MRI.

B. Sparse multivariate multiple regression

Now we focus on sparse multivariate multiple regression models. In [148], Wang et al. 

proposed a “Group-Sparse Multitask Regression and Feature Selection” (G-SMuRFS) 

method, which is a structured sparse model (see also Figure 7(a)):

minW‖Y − XW‖F
2 + λ1‖W‖G2, 1

+ λ2‖W‖2, 1 (5)

where the group l2,1-norm regularization (∥W∥G2,1,) does feature selection at the group level 

(e.g., LD-block), and the l2,1-norm regularization (∥W∥2,1) does feature selection at the 

individual SNP level. The empirical study was performed on an ADNI sample, where 1,224 

SNPs from 37 AD genes were used to predict 10 VBM measures and 12 FreeSurfer [150] 

measures, and SNPs were grouped by LD blocks.

In [151], Wang et al. aimed to use longitudinal imaging QT data (Yk for k ∈ [1, t]) to predict 

SNP data (X), and proposed the following “task-correlated longitudinal sparse regression” 

(TCLSR) model (each time point treated as a task):

minWΣk = 1
t ‖X − YkWk‖F

2 + λ1ℛ1(W) + λ2ℛ2(W), (6)

where W = [W1,…,Wt] (the same as that shown in Figure 7(b)), ℛ1(W) is a trace norm to 

approximate a low rank representation of W, ℛ2(W) is an l2,1 norm to select features with 

effects at most of the time points. The empirical study was performed on an ADNI sample to 

predict 1,224 SNPs from 37 AD genes using longitudinal imaging QTs.

In [149], Wang et al. studied the same problem as [151] and proposed a new model 

“temporal structure auto-learning” (TSAL) as follows (see also Figure 7(b)):

minWΣk = 1
t ‖X − YkWk‖F

2 + λ1ℛ1(W) + λ2ℛ2(W), (7)

where ℛ1(W) is a Schatten p-norm regularization term to identify low rank structures (e.g., 

four green boxes sharing similar patterns in Figure 7(b)), and ℛ2(W) is a l2,1-norm to select 

SNPs correlated to most QTs over the time (e.g., the red box in Figure 7(b)). Of note, 

compared with TCLSR (Eq. (6)), Schatten p-norm approximates rank minimization better 

than the trace norm [152], and l2,0+ norm can achieve a more sparse solution than l2,1 norm. 

The empirical study was performed on an ADNI sample, where longitudinal imaging QTs 

were used to predict 3,576 SNPs from 153 AD candidate genes.
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In [153], Zhou et al. proposed a “joint projection learning and sparse regression” (JPLSR) 

model for identifying multi-SNP-multi-QT association. JPLSR model takes the following 

form (different from the generic form shown in Eq (1)):

minW1, W2, P‖(Y − XW2)T‖2, 1 + λ1‖XW2P − YW1‖F
2

+ λ2ℛ(X, Y, W1, W2, P) + λ3‖W1‖2, 1 + λ3‖W2‖2, 1

s . t . PPT = I .
(8)

The first term is the loss function to find the multi-SNP-multi-QT association. The second 

term is to project the SNP data and imaging QT data into a joint latent space to aid 

association discovery. The third term combines two graph laplacian terms (one for SNP data 

and one for imaging data) to encourage the genetic and imaging components projected to the 

latent space are aligned with diagnosis. The fourth and fifth terms are two l2,1 norms for 

selecting relevant imaging and SNP features, respectively. The empirical study was 

performed on an ADNI sample to relate 93 ROI-based imaging QTs to 3,123 SNPs from top 

AD candidate genes.

C. Sparse reduced rank regression

Here we focus on reviewing studies using sparse reduced rank regression (SRRR), which is 

a special type of multivariate multiple regression models for identifying multi-SNP-multi-

QT associations from high dimensional imaging genomic data. The major goal is to 

minimize the rank of the (p × q) regression matrix W. Assuming that W has a reduced rank 

of r < min(p, q), Vounou et al. [154] proposed to rewrite W as the product of a (p × r) matrix 

B and (q × r) matrix A: W = BAT. In [154], they studied the following rank-one model (i.e., 

A and B become two vectors a and b)

mina, b‖Y − XbaT‖F
2 + λ1‖a‖1 + λ2‖b‖1, (9)

where the l1 term is applied to both a and b for sparse feature selection. This model was 

evaluated using the synthetic imaging genetic data simulated using an ADNI sample.

In [155], Vounou et al. applied a slightly modified version of the above model (Eq (9)) to an 

ADNI sample, where they use genome-wide SNP data to predict voxelwise longitudinal 

imaging QTs. They first applied a penalized linear discriminant analysis (LDA) for voxel 

filtering to identify disease-relevant imaging QTs, and then employed the following SRRR 

model to predict QT data Y from SNP data X:

mina, b‖Y − XbaT‖F
2 + λ‖b‖1, (10)

where the l1 term is applied for SNP selection. A data re-sampling scheme was used to 

identify SNPs with high selection probability.

In [107], Silver et al. integrated the P-GLAW idea (Eq (2)) into the SRRR framework (Eq 

(9)), and proposed the following “pathways SRRR” (P-SRRR) model:
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mina, b‖Y − XbaT‖F
2 + λΣg ∈ 𝒢dg‖bg‖, (11)

where 𝒢 defines the grouping structure of b. The goal is to identify a set of SNPs from X to 

predict a set of AD-related imaging QT Y. The SNPs are grouped using the pathway 

knowledge so that the feature selection is done at the pathway level. The empirical study was 

performed on an ADNI sample with KEGG canonical pathways from MsigDB [145].

In [156], Zhu et al. proposed a “structured SRRR” (S-SRRR) model for regressing brain-

wide imaging QT data Y on genome-wide SNP data X as follows:

minA, B‖Y − XBAT‖F
2 + λ1‖A‖2, 1 + λ2‖B‖2, 1

subject to ATA = I,
(12)

where the l2,1 norm regularizes A and B in a row-wise fashion for effective selection of SNP 

and QT features. The empirical study was performed on an ADNI sample to relate 2,098 

SNPs from 153 AD candidate genes to 93 imaging QTs.

In [157], Zhu et al. employed the graph self-representation method [158] to model a sparse 

matrix S ∈ ℝp × p capturing the internal partial correlations among the SNP data X as 

follows:

minS‖X − XS‖F
2 + λ1‖S‖1 + λ2‖S‖2, 1

subject to diag(S) = 0,
(13)

where the constraint diag(S)=0 was imposed to avoid generating the trivial solution. 

Integrating the above model (Eq (13)) into the S-SRRR model (Eq (12)), Zhu et al. proposed 

the following “graph-regularized S-SRRR” (GRS-SRRR) model for regressing Y on X given 

S as a graph constraint:

minA, B, S‖Y − XBAT‖F
2 + λ1‖X − XS‖F

2

+ λ2‖S‖1 + λ3‖[B, S]‖2, 1,
subject to ATA = I and diag(S) = 0 .

(14)

The empirical study was performed on the same ADNI sample as in [156].

In [159], Zhu et al. modified the GRS-SRRR model (Eq (14)) into the following “robust 

graph-regularized S-SRRR” (RGRS-SRRR) model:

minA, B, S ‖Y − XBAT‖2, 1
+ λ1 ‖X − XS‖2, 1 + λ2‖S‖1 + λ3‖[B, S]‖2, 1,
subject to ATA = I and diag(S) = 0,

(15)
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Here ∥Y − XBAT∥2,1 and ∥X − XS∥2,1 are the robust versions of ‖Y − XBAT‖F
2  and 

‖X − XS‖F
2 , respecitively, according to [158], [160]. The empirical study was performed on 

an ADNI sample with 90 imaging QTs and 3,996 SNPs from 153 AD candidate genes.

D. Bayesian regression and neural network models

While many regularized multivariate regression models have been proposed in brain imaging 

genomics, several Bayesian methods have been studied to achieve similar goals. For 

example, inspired by G-SMuRFS [148], Greenlaw et al. [161] proposed a Bayesian group 

sparse multi-task regression (BGSMTR) model for identifying multi-SNP-multi-QT 

associations while embracing the group structure (e.g., LD blocks, genes) within the SNP 

data. While G-SMuRFS only provided a point estimate of the regression coefficients, 

BGSMTR was proposed to allow for full posterior inference such as obtaining interval 

estimates for the regression parameters. The model was designed as an adapted version of 

the Bayesian group lasso [162], [163] to accommodate multivariate responses as well as 

variable selection at both SNP and gene levels. The empirical study was performed on an 

ADNI sample to predict 56 imaging QTs using 486 SNPs from 33 AD candidate genes.

There are also Bayesian models designed for reduced rank regression. In [164], Zhu et al. 

proposed a Bayesian generalized low rank regression (GLRR) model for analyzing both high 

dimensional imaging responses and covariates. Similar to SRRR, GLRR used a low rank 

representation to approximate the high dimensional weight matrix. It also modeled the high 

dimensional covariance matrix of imaging responses with a dynamic factor model. Bayesian 

local hypothesis testing was proposed to identify significant SNP effects on imaging QTs, 

while controlling for multiple comparisons. An efficient Markov chain Monte Carlo 

(MCMC) algorithm was developed for posterior computation. The empirical study was 

performed on an ADNI sample to evaluate the effects of 1,071 SNPs from 40 AD candidate 

genes on 93 ROI-based volume measures.

In [165], Lu et al. extended the above GLRR model [164] into a Bayesian longitudinal low 

rank regression (L2R2) model for examining genetic effects on longitudinal imaging 

responses. L2R2 includes three innovative components. The first one is a low-rank matrix to 

approximate regression weight matrices and gene-age interaction. The second one is to use 

penalized splines for characterizing the overall time effect. The third one is a sparse factor 

analysis model coupled with random effects to embrace spatio-temporal correlations of 

longitudinal imaging QTs. An efficient MCMC algorithm was used for posterior 

computation. The empirical study was performed on an ADNI sample to evaluate the effects 

of 1,071 SNPs from 40 AD candidate genes on longitudinal imaging measures of 93 ROIs.

Neural network models, despite underexplored in brain imaging genomics, have started to 

attract recent attention. In [166], Wang et al. proposed an “Additive Model via Feedforward 

Neural networks with random weight” (FNAM). This model was inspired by and adapted 

from the “feedforward neural networks with random weight” (FNNRW) [167] to enjoy the 

advantages of 1) modeling the non-linear associations between SNPs and QTs, and 2) 

computational efficiency over neural nets with back propagation. The improvement of 

FNAM over FNNRW is that FNAM considers the role of each feature independently in the 
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prediction and thus one can estimate its contribution to help model interpretation. The 

empirical study was performed on an ADNI sample to examine the genetic effects of 3,123 

SNPs from 153 AD candidate genes on 90 VBM measures and 90 FreeSurfer measures.

E. Summary

Table VII summarizes multivariate analysis methods used in the studies discussed above, 

which aim to reveal complex imaging genomics associations between multivariate SNP data 

and imaging QT data. At a high level, the methods discussed in Sections V-A, V-B and V-C 

share a common rationale: they all use regularized regression models to relate SNPs to 

imaging QTs. While the sparse multiple regression (SMR) models in Section V-A aim to 

identify multi-SNP-single-QT associations, the sparse multivariate multiple regression 

(SMMR) models in Section V-B and the SRRR models in Section V-C are designed to 

identify multi-SNP-multi-QT associations. The SRRR models may be thought of as a special 

case of the SMMR models, where the regression coefficient matrix W in SMMR is 

explicitly described as a low rank version W = BAT in SRRR. In general, these models share 

some common benefits: 1) the regression coefficients directly capture the SNP-QT relations 

and thus are easy to interpret; and 2) using a single model to analyze the studied SNP and 

QT data eliminates the need for multiple testing correction and improves the detection 

power. One pitfall with these models is the high dimensionality of the data, which increases 

the risk of overfitting. To address this challenge, various regularizations are used in these 

models to simplify model complexity, incorporate biologically meaningful structure, and 

thus reduce the overfitting risk. For example, sparsity can be imposed by using l1 or l2,1 

norm to simply model complexity (e.g., in G-SMuRFS, SRRR). Meaningful biological 

structures (e.g., LD block, gene, pathway) can be embraced by using group lasso or group 

l2,1 norm (e.g., in P-GLAW, TGSL and P-SRRR). Rank minimization can also be modeled 

as a regularization term (e.g., in TCLSR and TSAL) to address spatial or temporal 

correlation and reduce model complexity. Besides the above regression models, Bayesian 

methods have also been studied to achieve similar goals. Neural network methods, although 

underexplored in this field, have started to appear to address brain imaging genomics 

problems.

VI. Imaging Genomics Associations: Bi-multivariate Correlation

Besides regression models, another category of prominent methods developed for brain 

imaging genomics studies are bimultivariate correlation models such as sparse canonical 

correlation analysis (SCCA) and parallel independent component analysis (pICA). Similar to 

the regression model discussed above, the sparsity is also encouraged in these correlation 

models to reduce model complexity and the risk of overfitting, as well as identify relevant 

biomarkers. Here we discuss a few example studies using these strategies to identify 

complex multi-SNP-multi-QT associations. We will cover 1) fundamental SCCA models, 2) 

enhanced SCCA models, 3) multimodal and longitudinal SCCA models, and 4) other 

bimultivariate correlation models.
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A. Fundamental SCCA models

Let X ∈ ℝn × p be the genetic data with p variables on n subjects. Let Y ∈ ℝn × q be the 

imaging data with q variables on n subjects. We assume that each column of X and Y is 

normalized with zero mean and unit variance. The most popular bimultivariate correlation 

models used in brain imaging genomics are SCCA and its variants with various 

regularization terms. These models can typically be described using the following generic 

regularized CCA form.

maxu, v uTXTYv − Σi = 1
k λiℛi(u, v)

s . t . ‖Xu‖2
2 = ‖Yv‖2

2 = 1 .
(16)

A schematic representation of this reguarlized CCA framework is shown in Figure 8(a) in 

the context of brain imaging genomics. The goal is to find a genetic component Xu (i.e., a 

linear combination of the SNPs) and an imaging component Yv (i.e., a linear combination of 

the imaging QTs) so that their correlation (i.e., uTXTYv s.t. ‖Xu‖2
2 = ‖Yv‖2

2 = 1) is 

maximized under one or more regularization terms ℛi(u, v). For example, the conventional 

SCCA model [168] is formed by introducing two l1 norm terms: ℛ1(u) = ‖u‖1 and 

ℛ2(v) = ‖v‖1. Various other regularization terms can be defined to achieve different goals 

such as incorporating group/network structure or other prior knowledge in brain imaging 

genomics data. Below we discuss a few example studies using regularized SCCA strategies.

In [169], Du et al. proposed a “structure aware SCCA” (SCCA) model by introducing into 

Eq (16) two group l1 norms: ℛ1(u) = Σg ∈ 𝒢1
‖ug‖2 and ℛ2(v) = Σg ∈ 𝒢2

‖vg‖2. The LD 

blocks were used to form the SNP grouping structure 𝒢1. The ROIs were used to form the 

voxelwise imaging QT grouping structure 𝒢1. An empirical study was performed on an 

ADNI sample to identify multi-SNP-multi-QT associations between voxelwise QTs and and 

APOE SNPs.

In [108], Yan et al. proposed a “knowledge-guided SCCA” (KG-SCCA) by introduce into 

Eq (16) the following two regularization terms (Figure 8(b)). On the genomic side, ℛ1(u) is 

a group l1 term, where SNPs are grouped by LD blocks. On the imaging side, ℛ2(v) is a 

network-guided regularization term (similar to graph laplacian), where ROIs are connected 

if they share similar co-expression patterns across the genes from the amyloid pathway. 

Allen Human Brain Atlas (AHBA) [170] was used to get the gene expression data across the 

brain. An empirical study was performed on an ADNI sample to identify multi-SNP-multi-

QT associations between amyloid imaging QTs and and APOE SNPs.

B. Enhanced SCCA models

As shown in Section VI-A, there are three types of regularizations used in SCCA models: 1) 

l1 norm for flat sparsity, 2) group l1 norm for group sparisity, and 3) graph laplacian type 
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norm to encourage joint selection of features connected in a graph. Below, we discuss a few 

enhanced SCCA models that are designed to improve some of the above norms.

In [171], Du et al. proposed a SCCA framework using a generic non-convex penalty (GNC-

SCCA) to address the challenge that the l1 norm over-penalizes large coeffients and may 

introduce estimation bias. They tested seven non-convex penalties for replacing the l1 term 

in an l1-based SCCA. These non-convex penalties were designed to reduce the estimation 

bias. An empirical study was performed on an ADNI sample to identify multi-SNP-multi-

QT associations between voxelwise QTs and 163 SNPs from AD genes.

Although the ideal sparsity inducing term is l0 norm, it is computationally intractable. Thus, 

l1 norm is typically used to approximate l0 norm. Given that the truncated l1 norm better 

approximates l0, Du et al. [172] proposed a truncated l1-norm penalized SCCA (TLP-SCCA) 

via replacing l1-norm with truncated l1-norm, and a truncated group lasso SCCA (TGL-

SCCA) via replacing group lasso with truncated group lasso. An empirical study was 

performed on an ADNI sample to identify multi-SNP-multi-QT associations between 

voxelwise QTs and 58 SNPs from AD-related genes, where QTs were grouped by ROI and 

SNPs were grouped by LD block.

GraphNet was proposed in [173] as a regression model with combined graph laplacian and 

l1-norm regularization terms: ∥u∥GN = uTLu + β∥u∥1, where L is the Laplacian matrix of a 

given graph. In [174], Du et al. proposed an “absolute value based GraphNet SCCA” (AGN-

SCCA) model, which incorporated an extended version of GraphNet regularization into the 

SCCA framework. The AGN regularizations are modeled as follows:

ℛ1(u) = ‖u‖AGN = ∣ u ∣T L1 ∣ u ∣ + β1‖u‖1, (17)

ℛ2(v) = ‖v‖AGN = ∣ v ∣T L2 ∣ v ∣ + β2‖v‖1, (18)

where L1 and L2 are Laplacian matrices of the correlation matrices of X and Y. Here, they 

used data-driven correlation as graph constraint to encourage the selection of correlated 

features together. The newly added absolute value operation allows for the joint selection of 

both positively and negatively correlated features. An empirical study was performed on an 

ADNI sample to identify multi-SNP-multi-QT associations between ROI-based imaging 

QTs and 58 SNPs from AD-related genes.

In [175], Gossmann et al. proposed a “FDR-corrected SCCA” (FDR-SCCA) procedure to 

introduce false discovery rate (FDR) concept to SCCA and develop a method to control 

FDR. The existing SCCA methods determine the sparsity parameter using model fit criteria 

such as cross-validation and permutation. There is a lack of theoretical results to identify an 

appropriate level of sparsity for true signal discovery. This work proposed a method to 

define the FDR for canonical weight vectors in SCCA, and used it as a statistical criterion to 

determine the model sparsity level. An empirical study was performed on an imaging 

genomics sample from Philadelphia Neurodevelopmental Cohort (PNC) [176] to relate 
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nearly 100,000 SNPs to nearly 5,000 functional connectivity measures extracted from the 

fMRI data.

C. Multimodal and longitudinal SCCA models

The SCCA models discussed above aim to relate the SNP data to the imaging data of one 

single modality at one single time point. Attempts have also been made to extend these 

models to handle multimodal or longitudinal imaging data. We review a few example studies 

here.

In [177], Du et al. proposed a “multi-task SCCA” (MTSCCA) model to identify bi-

multivariate associations between SNP data and multimodal imaging data. Let X ∈ ℝn × p be 

the SNP data, Y j ∈ ℝn × q(j ∈ [1, M]) be the imaging data of M modalities. MTSCCA is 

designed as:

maxU, V Σ j = 1
M uj

TXTYjvj − λ1‖U‖2, 1

− λ2‖U‖G2, 1
− λ3‖V‖2, 1

s . t . ‖Xu j‖2
2 = ‖Y jv j‖2

2 = 1,
(19)

where U = [u1 u2 ⋯ uM] and V = [v1 v2 ⋯ vM]. Here the canonical correlation is maximized 

for each modality separately. The first regularization ∥U∥2,1 is an l2,1 term for SNP feature 

selection. The second regularization ∥U∥G2,1 is a group l2,1 term for SNP feature selection at 

the group level (e.g., LD blocks). The third regularization ∥V∥2,1 is an l2,1 term for imaging 

feature selection across all the modalities. A fast optimization algorithm was implemented 

and applied to an ADNI sample to identify associations between over 150,000 SNPs from 

chromosome 19 and ROI-based QTs from three imaging modalities (VBM, FDG-PET, and 

Amyloid-PET).

In [178], Hao et al. proposed a “temporally constrained group SCCA” (TG-SCCA) model to 

identify genetic association with longitudinal imaging QTs. Let X ∈ ℝn × p be the SNP data, 

Y j ∈ ℝn × q (j ∈ [1, t]) be the imaging data at t time points. TG-SCCA is designed as:

maxu, V Σ j = 1
t uTXTYjvj − λ1‖u‖1

− λ2‖V‖2, 1 − λ3Σ j = 1
t − 1 ‖v j + 1 − v j‖1

s . t . ‖Xu‖2
2 = ‖Y jv j‖2

2 = 1,
(20)

where V = [v1 v2 ⋯ vt]. Here the canonical correlation is maximized for each time point 

separately while maintaining the genetic component the same across all the time points. The 

first regularization ∥u∥1 is an l1 norm for SNP feature selection. The second regularization 

∥V∥2,1 is an l2,1 term for imaging feature selection across all the time points. The third 

regularization Σ j = 1
t − 1 ‖v j + 1 − v j‖1 is an fused lasso term to constrain the weight difference 

between two neighbouring time points. An empirical study was performed on an ADNI 
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sample to identify associations between 85 APOE SNPs and longitudinal VBM QTs from 

116 ROIs at four time points.

In [179], Du et al. proposed another longitudinal imaging genetics model based on 

MTSCCA [177]. It is named as “temporal multi-task SCCA” (T-MTSCCA) and designed as:

maxU, V Σ j = 1
t uj

TXTYjvj − λ1ℛ1(U) − λ2ℛ2(V)
s . t . ‖Xu j‖2

2 = ‖Y jv j‖2
2 = 1,

(21)

where U = [u1 u2 ⋯ ut] and V = [v1 v2 ⋯ vt]. Here the canonical correlation is maximized 

for each time point separately. The regularization ℛ1(U on the genomic side contains three 

components: one l1 norm and one l2,1 norm for feature selection at SNP level, and one group 

l2,1 norm for feature selection at group level (e.g., LD block). The regularization ℛ2(V on 

the imaging side contains three components: 1) a l1 norm for imaging feature selection using 

flat sparsity, 2) a l2,1 norm for selection imaging features associated at most time points, 3) a 

fused pairwise l2,1 norm (FP2,1-norm) for joint selection of the same QT at neighbouring 

time points. Compared with the non-convex fused lasso used in TG-SCCA [178], FP2,1-

norm is convex and thus easy to optimize. An empirical study was performed on an ADNI 

sample to identify associations between 1,085 APOE SNPs and longitudinal VBM QTs from 

90 ROIs at four time points.

D. Other bimultivariate correlation models

We now discuss a few other bimultivariate correlation models. In [180], Floch et al. 

proposed a two step procedure, named as FSPLS (filtering + sparse partial least squares), to 

identify associations between high dimensional SNP and imaging QT data (e.g., empirical 

study of real data including 94 subjects with 600,000 SNPs and 34 fMRI QTs). The first step 

of FSPLS selected top SNPs with minimal p-values via massive univariate association 

analysis between each SNP-QT pair using linear regression based on an additive genetic 

model. The second step of FSPLS applied a single sparse partial least squares (SPLS) model 

to the selected SNP data and full QT data to identify an multi-SNP-multi-QT association. 

Empirical studies on both simulated and real high dimensional SNP and imaging QT data 

demonstrated that FSPLS outperformed several competing methods using other 

regularization and dimensionality reduction strategies coupled with PLS or kernel CCA 

models. This work also illustrated that the SRRR, SCCA and SPLS models are 

mathematically equivalent methods, up to specific assumptions on the covariance matrix.

In [181], Fang et al. proposed a “greedy projected distance correlation” (G-PDC) method to 

examine pairwise gene-ROI associations, where each gene contains a number of SNPs and 

each ROI contains a number of voxels. Distance correlation measures statistical dependence 

between two random vectors (e.g., gene vs ROI), and can model nonlinear relationship 

between them. Projected distance correlation measures conditional dependence based on 

distance correlation [182]. In this work, given an gene-ROI pair, the goal is to test their 

independence while controlling for all the other SNPs and voxels. Fang et al. proposed an 

efficient G-PDC algorithm to enable large-scale imaging genomics analysis. An empirical 
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study was performed on the PNC data [176] to examine the pairwise association between 

221 ROIs (containing 27,168 voxels) and 2,035 genes (containing 63,010 SNPs).

In [183], Hu et al. integrated distance correlation model into the CCA framework, and 

proposed “distance CCA” (DCCA) method. The G-PDC method described above performs 

pairwise analysis for each possible gene-ROI combination and is still facing large burden for 

multiple testing correction. The DCCA model was proposed to overcome this limiation by 

identifying a set of original SNPs and a set of original imaging QTs with the highest 

distance correlation. The approach was to first construct a distance kernel function and then 

solve an optimization problem. An empirical study was performed on the PNC data [176] to 

examine the pairwise association between 264 ROIs (containing 27,384 voxels) and 736 

genes (containing 21,487 SNPs).

Parallel independent component analysis (pICA) [184], [185] is another well-established 

strategy for mining multi-SNP-multi-QT associations. It is a joint estimation procedure to 

extracte imaging components and genetic components for achieving two goals: 1) 

maximizing independence among components within each modality using an entropy term, 

and 2) maximizing components’ correlation between two modalities. In [186], Meda et al. 

applied pICA to an ADNI sample for identifying multi-SNP-multi-QT associations between 

genome-wide SNPs and brain-wide ROI-based imaging QTs.

E. Summary

Table VIII summarizes bi-multivariate correlation methods used in the studies discussed 

above, which aim to identify multi-SNP-multi-QT associations from high dimensional 

imaging genomic data. Most of these strategies are regularized SCCA models. Similar to the 

regression models in Section V, these SCCA models also employ l1 or l2,1 norm for feature 

selection, group l1 or l2,1 norm for feature selection at group level, and graph Laplacian for 

graph-guided learning. Multimodal and longitudinal SCCA models often include l2,1 norm 

for feature selection across modalities or time points as well as fussed lasso or fused 

pairwise l2,1 norm for smoothing neighboring weights along the temporal dimension. Other 

bimultivariate correlation models include 1) SPLS that is mathematically equivalent to 

SRRR and SCCA under certain assumptions on the covariance matrix, 2) distance 

correlation that can model nonlinear associations, and 3) parallel ICA models for joint 

maximization of within-modality component independence and between-modality 

component correlation.

VII. Integrating Imaging and Genomics for Outcome Prediction

In addition to identifying imaging genomics associations, another active research topic in 

brain imaging genomics is how to integrate brain imaging and genomics data for prediction 

of outcomes of interest such as disease stage, impairment score, and progression status. A 

relevant interesting topic is to learn the associations among genomics, imaging and the 

outcome to help understand biological pathway from genetics to brain structure and 

function, and to cognitive, behavior and diagnostic outcomes. In this section, we first focus 

on methods for outcome prediction, and then review methods for joint association learning 

and outcome prediction.
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A. Outcome Prediction

We discuss a few example studies using existing conventional prediction models, newly 

developed machine learning approaches, and state-of-the-art deep learning methods. Of note, 

all these studies were performed using brain imaging genomics data from the ADNI cohort.

We start with some studies using conventional predictive models. For example, in [187], 

Dukart et al. examined the role of multimodal imaging (MRI, FDG-PET, Amyloid-PET), 

neuropsychological, and genetic data as potential biomarkers for identifying MCI patients 

who will convert to AD in the future. They first built Naive Bayes classifiers to distinguish 

AD and CN participants using different combinations of the above data modalities. After 

that, they applied the learned classifier to the MCI cohort for predicting AD conversion 

status. They achieved 76% accuracy using FDG-PET data, and 87% accuracy using 

multimodal imaging and genetic data. This shows the promise of the data integration 

strategy in the context of AD outcome prediction.

In [188], Filipovych et al. proposed a method to create a composite imaging genetic score 

for predicting MCI conversion to AD. On the imaging side, they used a nonlinear pattern 

recognition method “COMPARE” [189] to identify AD-relevant volumetric regions. After 

that, a nonlinear support vector machine (SVM) was applied to imaging measures from these 

regions to get an imaging score for each individual. On the genomic side, a linear SVM was 

used to classify AD vs CN, which yielded a polygenic AD-related genetic score for each 

subject. Finally, a composite imaging genetic score was created as a weighted sum of the 

imaging score and the genetic score. The empirical study showed that the proposed 

composite score improved the prediction accuracy.

In [190], Kauppi et al. performed survival analysis using Cox proportional Hazard model to 

predict time to progression from MCI to AD via integrating a polygenic harzard score 

(PHS), an imaging based atrophy score and the MMSE score. The PHS was generated using 

the ADGC data [66], as described in Section III-B. The atrophy score was generated from 

volumetric measures of a few AD-related ROIs using a linear discriminant analysis (LDA) to 

distinguish AD vs CN, see [191], [192] for more details. The empirical study showed that 

combining PHS with atrophy and MMSE significantly improved the prediction performance 

compared with models without PHS.

Besides conventional prediction methods, new machine learning models have also been 

proposed for outcome prediction using brain imaging genomics data. For example, in [193], 

Wang et al. proposed a joint classification and regression framework for multimodal 

multitask learning (JCRMML). JCRMML was designed to use multimodal imaging (MRI, 

FDG-PET) and genetic data for joint prediction of diagnositic and cognitive outcomes, and 

at the same time to identify disease-sensitive and cognition-relevant imaging and genetic 

biomarkers (Figure 9(a)). It is formulated as a regularized multivariate linear model with 

feature weight matrix ∥WT∥ shown in Figure 9(b), where a task indicates an outcome 

response. The loss function includes a logistic regression component for disease 

classification and a linear regression component for cognitive score regression. JCRMML 

has two regularization terms. One group l1 term ∥W∥G1 is used for learning group-wise 

weights for features within a single modality for each task (i.e., a diagnostic or cognitive 
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outcome). One l2,1 term ∥W∥2,1 is used for selecting features associated with most tasks (i.e., 

outcomes). The empirical study yielded improved performance on prediction both diagnostic 

and cognitive outcomes, compared with several competing methods.

In [194], Zhang et al. examines several machine learning strategies for AD prediction via 

combining multimodal imaging (MRI and FDG-PET), CSF and SNP data. Specifically, they 

compared three state-of-the-art feature selection methods. The first is a multiple kernel 

learning (MKL) method named as SimpleMKL [195]. The second is a high-order graph 

matching based feature selection (HGM-FS) [196]. The third is sparse multimodel learning 

(SMML) [197]. The AD prediction model was learned in three steps. 1) A feature selection 

method was applied to select discriminative features. 2) Each selected feature was multiplied 

by its learned weight to form a new feature vector. 3) A linear SVM was applied to the new 

feature vectors to learn a predictor. Empirical studies yielded a few findings: 1) FDG-PET 

was the modality with the best prediction accuracy, 2) adding SNP data to other modalities 

could improve prediction accuracy, and 3) HGM-FS worked the best among three feature 

selection methods.

In [198], Peng et al. proposed a “structured sparse kernel learning” (SSKL) model for AD 

predication using multimodal imaging (MRI and FDG-PET) and SNP data. They described 

each feature with a kernel and used the modality information to group kernels to facilitate 

variable selection at both feature and group levels. An innovative structured sparsity 

regularization term was further introduced to enable feature sparsity within each modality 

but encourage non-sparse solution modality-wisely. The intuition is based on the hypothesis 

that different modalities offer complementary information and including modalities with 

weaker predictive power may help capture valuable complementary information. Their 

empirical study yielded promising results.

In [199], Singanamalli proposed a “Cascaded Multi-view Canonical Correlation” (CaMCCo) 

for classifying CN, MCI and AD using multidimensional imaging, genetics, biomarker and 

cognitive data. The cascaded framework first classified all subjects as CN vs cognitively 

impaired (CI), and further classified CI subjects as MCI vs AD. For each binary 

classification, the class label was used as a separate variable set. Integrating the class label 

set with all the other modalities, supervised multiview CCA (sMVCCA) [200] was 

employed to obtain a low dimensional representation of each involved modality, followed by 

a modality selection step using the diagnostic information. Naive Bayes classification 

method was then applied to the fused representation of selected modalities to learn a 

classifier. Empirical study showed that fusion of selected modalities outperformed that using 

each individual modality and that integrating all the modalities.

Although neural network (NN) models have been highly successful in making prediction for 

many recent applications in various fields such as computer vision and natural language 

processing, they have not been widely used in brain imaging genomics. This could be 

largely attributed to the limited sample size and high dimensionality of the existing imaging 

genomics data. Some attempts have been made to address this challenge. Below we review a 

couple of recent studies using NN methods for AD outcome prediction via integrating brain 

imaging genomics data.
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For example, in [201], Zhou et al. presented a three-stage deep feature learning and fusion 

framework to detect disease status (e.g., CN/MCI/AD) via integrating MRI, FDG-PET and 

SNP data. In the first stage, they learned feature representation for each modality 

independently. In the second stage, they used the features learned in Stage 1 to learn joint 

latent features for each pair of modalities. In the third stage, they learned the diagnostic label 

using the features learned in Stage 2. This framework can address several challenges. 1) 

Learning high-level features for each modality in Stage 1 could alleviate data heterogeneity 

issue. 2) Using the maximum number of all available samples at each stage could help 

address both the high-dimension-low-sample-size and incomplete modality data issues. 

Their empirical study showed very promising results that the proposed NN method 

outperformed a number of non-NN based competing methods.

In [202], Ning et al. proposed another NN framework to detect AD or MCI-to-AD 

conversion using MRI and SNP data. Their strategy to address high-dimension-low-sample-

size is twofold. 1) Instead of examining all the SNPs and imaging QTs, their analysis only 

targeted at 16 AD-related QTs and 19 AD-related SNPs to reduce the dimensionality. 2) 

They designed a relatively simple NN with 2 hidden layers, and explored 2, 4, 8, up to 64 

nodes in each layer to reduce the model complexity. The proposed NN was fully connected 

between layers, coupled with shortcut connections linking all the input nodes directly to the 

output layer. Their empirical study showed promising results that the proposed NN model 

outperfonned a linear regression model.

Table IX summarizes example studies using machine learning methods for outcome 

prediction via integrating imaging and genomics data. Some studies directly applied 

conventional learning methods to the combined data sets and showed improved 

performances. Some studies developed new learning models to address various challenges 

such as feature selection at group level, and joint classification and regression. With a couple 

of successful attempts, NN models have started to attract attentions in the field of brain 

imaging genomics.

B. Joint association learning and outcome prediction

Here we review a few example studies exploring the associations among genomics, imaging 

and outcome. These include four SCCA based studies [203], [204], [205], [206], one study 

using classic mediation analysis [207], and one study using a newly proposed Bayesian 

method [208]. While two studies [206], [207] performed the analyses using the PNC data, 

the other four studies were conducted on the ADNI data.

In [203], Yan et al. proposed a “discriminative SCCA” model in order to identify disease-

relevant imaging proteomics associations. Instead of SNP data, Yan et al. analyzed the 

protein expression data collected from CSF and plasma and studied their relationship to 

imaging QTs and multi-class diagnostic label (CN, MCI, AD). Figure 10(a) shows a 

schematic representation of the DSCCA model. It introduced a new graph laplacian 

regularization to the standard SCCA framework. The graph is defined on the subjects, where 

subjects within the same diagnositic group are connected. This regularization encourages the 

identification of canonical components with discriminative power. Figure 10(b) shows a 

comparision between DSCCA and SCCA, where the imaging component Yv is plotted 
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against the proteomic component Xu. It is clear that the components identified by DSCCA 

have more discriminative power than those by SCCA. The empirical study using cross-

validation showed that DSCCA yielded higher canonical coefficient (CC) on the test data 

than SCCA.

In [204], Hao et al. proposed an alternative strategy to identify pairwise associations among 

genomics, imaging, and outcome(s). This was directly implemented by a three way SCCA, 

which was a joint learning model by combining three pairwise SCCA models to learn a 

single compoent for each modality (i.e., genomics, imaging, or outcome). Two empirical 

studies were performed on ADNI imaging genomics data: one using a set of cognitive scores 

as outcome, and the other using diagnostic status as outcome. In a cross-validation setting, 

both studies using three way SCCA yielded higher CCs on the test data than that using 

SCCA.

In [205], Du et al. proposed a joint learning model by combining SCCA and Regression 

(SCCAR) to identify diagnosisrelevant imaging genomics associations. Let z be the outcome 

data. The model is defined as:

minu, v
1
2‖z − Yv‖2

2 − uTXTYv + λ1ℛ1(u) + λ2ℛ2(v)

s . t . ‖Xu‖2
2 = ‖Yv‖2

2 = 1 .
(22)

Here, they would like to jointly learn the imaging component Yv so that it could predict the 

outcome z (see the first regression term) and is correlated with the genomic component (see 

the second CCA term). In the empirical study, they used l1 norm for both ℛ1(u) and ℛ2(v). 

The cross-validation results showed that SCCAR could identify stronger canonical 

correlations than SCCA in the test data.

In [206], Zille et al. proposed a “Multi-Task Collaborative Regression” (MT-CoReg) method 

to extract outcome-relevant variables that are co-expressed in both imaging and genomics 

modalities. Simliar to SCCAR, MT-CoReg was also formulated as a joint learning model by 

integrating SCCA and linear regression. The major difference is that MT-CoReg allows the 

imaging component used in the linear regression to predict outcome to be different from that 

used in the SCCA to correlated with the genetic component. An empirical study was 

performed on the PNC cohort to analyze the SNP and fMRI data for the study of learning 

ability as outcome, and yielded promising results.

In [207], Bi et al. performed a genome-wide mediation analysis in order to detect 

complicated mechanisms of genetic inferences on the outcome implicitly through 

intermediate imaging QTs. The study was performed on the PNC cohort, analyzing 445,205 

SNPs, 204 imaging QTs, and 104 psychiatric and cognitive traits as outcomes. Mediation 

analysis was performed at the individual marker level using a three-stage procedure. 1) 

GWAS was performed to identify significant SNP-QT pairs. 2) Each outcome was regressed 

against each candidate SNP. 3) Each outcome was regressed against each identified SNP and 

its associated QT. A mediation relationship is established if the SNP is significant in 1) and 
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2), QT is significant in 3), and the absolute effect size of the SNP is smaller in 3) than 1). 

Their analysis identified an NMNAT2 SNP assciated with a psychiatric trait through the 

volume of left superior frontal region.

Performing brain wide genome wide analysis at the single marker level faces a major 

challenge on multiple comparison correction. To overcome this limitation, A common 

approach is to learn one single multivariate multiple regression model coupled with some 

sparsity-inducing regularization. In [208], Batmanghelich proposed such as Bayesian 

method for probabilistic modeling of imaging, genetics and diagnosis. The goal of this 

method is to jointly learn the following two predictive relationships in a single Bayesian 

model: 1) using imaging QTs to predict diagnosis, and 2) using SNPs to predict imaging 

QTs. The joint model can help identify a set of imaging QTs that not only have a genetic 

basis, but also are associated with diagnostic status. Their empirical study on the ADNI data 

yielded promising results.

Table X summarizes example studies for joint learning of imaging genomics associations 

and outcome prediction model. Four of these studies introduced into the standard SCCA 

framework one or more components that incorporate outcome information. Empirical 

studies demonstrated that including outcome information as additional constraints could 

identify stronger imaging genomics associations, indicating this strategy has a potential to 

capture true signals and reduce model overfitting.

VIII. Discussion and Conclusions

A. Summary of learning problems and reviewed methods

We have reviewed three categories of learning problems in brain imaging genomics, as 

shown in Figure 1(a). In the first catogory, we focused on the learning problem of 

heritability estimation of brain imaging QTs. The heritability of a trait is defined as the 

proportion of its observed variance explained by the genetic factors. Given high dimensional 

brain imaging data, heritability estimation can be used as a screening tool to extract heritable 

QTs as attractive targets for in-depth genetic analyses. We discussed two types of methods 

for heritability estimation: one based on data collected using twin or family designs, and the 

other based on genome-wide genotyping data.

In the second category, we focused on the problem of learning imaging genomics 

associations, a major theme studied in brain imaging genomics to gain new insights into the 

genetic and molecular mechanisms of the brain structure and function. Given the high-

dimensionality-small-sample-size challenge we are facing in brain imaging genomics, a 

wide range of methods have been proposed to increase statistical power and enhance 

biological interpretation via reducing dimensionality, measuring collective effects, and 

incorporating prior knowledge. We first reviewed a few fundamental strategies, including 

single-SNP-single-QT methods, polygenic risk scores, multi-SNP methods, multi-trait 

methods, pathway and network enrichment methods, and interaction methods. We then 

discussed the important topics of power and sample size and reviewed relevant meta-

analysis strategies. After that, we reviewed two major types of multi-sNP-multi-QT 

methods: multivariate regression models and bi-multivariate correlation models.
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In the third category, we focused on the learning problem of integrating imaging and 

genomics for outcome prediction. This is an important topic studied in brain imaging 

genomics to gain valuable insights into the outcome-relevant neurobiologocal mechanisms at 

the genetic, molecular and macroscale brain system levels. Imaging and genomics data 

capture subject’s characteristics at different scales and from different perspectives, and are 

naturally considered to contain complementary information for improved outcome 

prediction. Various machine learning and deep learning methods have been proposed to 

address relevant data integration challenges such as high dimensionality, small sample size, 

heterogeneity and incompleteness. We reviewed these learning strategies for outcome 

prediction using both brain imaging and genomics data, as well as joint learning strategies 

that could not only identify associations between imaging and genomics data but also use 

them to accurately predict outcomes.

B. Biomedical application considerations

Figure 1(b) summarizes some biomedical application considerations regarding the studied 

data sets across multiple disciplines including brain imaging, genomics and clinical outcome 

research. Careful consideration of the data characteristics and relevant biological structure 

and knowledge can often provide valuable guidance on the selection of an appropriate 

method for practical applications. A brain imaging genomics application involves the 

integrated analysis of brain imaging data, genomics data and optionally clinical outcome 

data.

First, let us take a look at brain imaging data. Imaging QTs can be extracted from brain 

scans at multiple scales (e.g., voxels, RoIs, connectivity matrix, etc). Below we discuss a few 

example strategies for dealing with analytic challenges with these QTs. Although voxelwise 

analysis (e.g., [57]) can capture the finest details in the brain, it is often under-powered due 

to its heavy burden of multiple comparison correction and high spatial correlation. There are 

several strategies to overcome this limitation: 1) use methods like random field theory (e.g., 

[72]) to reduce the multiple testing burden via embracing spatial correlation, 2) collapse 

voxel measures into RoI measures to greatly reduce the number of statistical tests (e.g., 

[37]), 3) measure collective effect of all voxels within an ROI to reduce the test number 

(e.g., [95]), and 4) perform only targeted SNP analysis (e.g., [49]). Compared with 

voxelwise analysis, RoI-based analysis has a greatly reduced multiple testing burden, but 

may not be able to capture detailed spatial patterns. one strategy to leverage this issue is to 

first identify a small number of interesting SNPs from ROI-based analysis and then map 

their effects onto the brain in a voxelwise fashion (e.g., [37]). Connectivity matrices are 

another type of high dimensional imaging QTs. To alleviate the multiple testing burden, 

besides conducting targeted QT analyses, one can perform heritability analysis to select only 

highly heritable connectivity QTs for in-depth genetic analysis (e.g., [38]).

Brain imaging data can be collected with multiple modalities. Given the availability of 

multimodal imaging data, one can employ multimodal learning strategies (e.g., [193]) to 

make full use of the complementary information offered by multiple imaging modalities. 

one may also consider methods like [201] to address potential challenges related to 

multimodal imaging data (e.g., high dimensionality, small sample size, heterogeneity and 
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incompleteness). In addition, brain imaging data can be longitudinal. A longitudinal QT 

offers a unique power to capture progressive pattern a cross-sectional QT cannot describe 

and thus is an important biomarker to study. one simple approach could be to examine some 

summary statistics of a longitudinal QT (e.g., [48]). One can also employ more complicated 

longitudinal learning models (e.g., [151], [149]) to identify more detailed longitudinal 

patterns. Finally, there are different types of prior knowledge and structure that can be used 

to group and connect imaging QTs. For example, voxels can be grouped by ROIs (e.g., 

[169]), ROIs can be grouped by network components (e.g., DMN [88]), and connected by 

brain networks (e.g., [108]). Incorporating these prior knowledge into the learning model 

can help alleviate overfitting and yield biologically interpretable findings.

Second, let us take a look at the genomic data. Traditional GWAs performs univariate 

analysis at the sNP level, with a huge burden on multiple testing correction. To address this 

challenge, the following are a few possible strategies: 1) examine a few target sNPs (e.g., 

[49]) or a polygenic risk score (see section III-B), 2) perform analysis at the sNP-set level 

(e.g., LD block, gene) (e.g., [71]), 3) perform enrichment analysis using pathways and 

networks (see Section III-E), and 4) examine a single model involving multiple SNPs (see 

Sections V-VI). Here, the LD blocks, genes, pathways, and functional interaction networks 

are biologically meaningful knowledge and structures. They can also be incorporated into 

the multivariate learning models to reduce overfitting and improve model interpretability.

Third, let us take a look at the clinical outcome data such as disease stage, impairment score 

and progression status. These are critical data sources for the study of brain disorders. There 

are several strategies to perform outcome-relevant brain imaging genomics studies. One is to 

first identify outcome-relevant imaging QTs and then reveal its genetic basis. This can be 

done as a two step procedure (e.g., [207]) or via a joint learning model (e.g., [208]). The 

second strategy is to combine imaging and genomics data for an improved outcome 

prediction (see Section VII-A). The third strategy is to use outcome information to guide the 

search for imaging genomics associations, which can often reduce overfitting and identify 

stronger associations (e.g., [203]).

C. Statistical and machine learning considerations

Figure 1(c) summarizes some statistical and machine learning considerations for brain 

imaging genomics. The first important consideration is the statistical power, since the 

existing brain imaging data sets typically have high dimensionality and relatively small 

sample size. The following are a few strategies on how to increase study power. First, 

compared with case-control analyses, QT studies are shown to have increased statistical 

power [4], [209]. The second strategy is to employ more powerful multiple testing correction 

methods by taking into consideration the correlation within imaging and genomics data (e.g., 

[44]). The third strategy is to increase the sample size via mega- or meta-analysis on 

combined data set from multiple collaborative sites (see Section IV). The fourth strategy is 

to reduce the test number by pooling low level measures into high level ones (e.g., averaging 

voxel measures into ROI measures, aggregating SNP statistics into gene statistics), or simply 

by applying a single multivariate model involving all the studied SNPs and QTs.
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Another important methodological consideration is how to control overfitting and reduce 

spurious findings for multivariate learning models. To reduce the risk of overfitting, the data 

fitting flexibility of a learning model should be properly-controlled. One strategy is to 

reduce the number of variables in the model via dimensionality reduction. For example, one 

can condense fine level SNP/voxel measures into high level gene/ROI components (e.g., 

[71], [37]). Another strategy is to include regularization terms in the model to control data 

fitting flexibility. For example, to increase the feature selection stability, we can group SNPs 

by LD block (e.g., [169]). To help biological interpretation, we can group SNPs by gene, 

pathway or network, and/or ROIs by brain network (e.g., [146], [107], [108]). In addition, 

incorporating outcome information into the learning model can help select outcome-relevant 

SNP and QT markers and reduce overfitting (e.g., [203]).

There are a few other methodological considerations we briefly discuss below. 1) To help 

biological interpretation, we can incorporate prior knowledge and structure into the learning 

methods and try to identify associations between meaningful biological entities such as 

genes, pathways, ROIs, and genetic and brain networks. One strategy is to perform GWAS 

enrichment analysis (e.g., [90], [99]) to measure collective effects at the set level. This can 

reduce the number of tests and increase the detection power. Another strategy is to regularize 

the learning model using these sources of prior knowledge and structure to guide our search 

for meaningful associations (e.g., [106], [107], [108], [146]). In both cases, findings are 

associated with meaningful functional annotation implicating potential biological 

mechanism and interpretation, which make them less likely to be false discoveries.

2) Scalability is often an important consideration in BWGW studies, particularly if one 

wants to perform analyses at the voxelwise level. Several efficient algorithms (e.g., [50], 

[72]) have been proposed to address this consideration. One effective strategy is a global 

sure independence screening (GSIS) procedure used in [50], which can greatly reduce the 

search space size from NsNv to ~ N0Nv for N0 ⪡ Ns. Here Ns is the number of SNPs, and Nv 

is the number of voxels. Another valuable strategy is a fast permutation procedure, proposed 

in [72], that uses parametric tail approximation to provide accurate p estimations in an 

efficient manner.

3) Biased sampling is another potential cause for spurious findings. Most GWAS studies 

(e.g., ADNI) are based on case-control design, and the data are typically a biased sample of 

the target population. Directly correlating imaging QTs (as secondary traits) with genotype 

may lead to biased inference generating misleading results. This issue has been considered 

in several studies (e.g., [52], [55]). Although the standard linear analysis was found to be 

generally valid on the ADNI data in [52], simulation studies in [55] showed that linear 

regression models without adjusting for biased sampling demonstrated severely inflated 

Type I error rates in some cases. In general, caution should be taken while analyzing 

imaging QT data as secondary phenotypes in case-control studies.

4) Gene-gene interaction has also been studied to identify epistatic genetic effects on 

imaging QT and to help address miss heritability. Given an exponentially increasing number 

of possible tests, a major topic in epistatic studies is to find an effective search strategy to 

reduce computational time and increase statistical power. One strategy is to examine only a 
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subset of candidate interactions with a potential biological mechanism suggested by 

functional interaction networks or biological pathways (e.g., [109], [112]). Another strategy 

is to perform data-driven screening to focus on the analysis of a small number of most 

promising candidate interactions (e.g., [109], [114]).

D. Scientific and clinical impact

Our previous reviews of ADNI brain imaging genomics findings [4], [5] indicated that 

numerous genes contributing to increased risk for or protection against AD have been 

identified and replicated using multimodal brain imaging data. These findings implicated 

immune, mitochondrial, cell cycle/fate, and other biological processes and advanced the 

mechanistic understanding of AD. Below we briefly discuss a few new example findings 

with potential scientific and clinical impacts.

According to the most recent ENIGMA review paper [2], the consortium’s GWAS analyses 

have revealed over 200 genetic loci associated with cortical thickness or surface area, and 

over 40 common genetic variants associated with subcortical volumes. In addition, the recent 

UK Biobank GWAS of 3,144 brain imaging QTs identified 148 clusters of SNP-QT 

associations [12]. These results have provided substantial new insights into the genetic 

landscape of the brain, and offered great scientific value that could impact and advance 

research on normal brain development and aging, and neurological and psychiatric 

disorders.

Given the timelines set in place by the National Alzheimer Project Act (NAPA) (e.g., the 

goal of effectively treating or preventing AD and related dementias by 2025) and that many 

clinical trials of therapies for AD have failed in recent years, it becomes an extremely 

important and timely topic to study brain imaging genomics in AD. In particular, these 

efforts could accelerate progress in better understanding of the genetic, molecular and 

neurobiological mechanisms of AD and have subsequent translational impact on disease 

modeling and drug development. For example, recent ADNI studies have yielded prominent 

imaging genomics findings such as 1) BCHE and IL1RAP with amyloid QTs [210], [211], 

2) PARP1, CARD10, REST, FASTKD2 and ADORA2A with hippocampal morphometry 

[212], [213], [214], [215], 3) INPP5D with cerebral blood flow [216], and 4) APOE with 

multimodal imaging QTs [48], [108], [174]. Some of these findings have contributed to 

genetically based drug targets leading to novel disease model systems (e.g., creation of the 

IL1RAP knockout mouse [217], nomination of INPP5D as a modeling target (http://

agora.ampadportal.org)).

Finally, for many novel statistical and machine learning methods reviewed here, the authors 

often used the ADNI data to demonstrate the power of the methods to detect interesting and 

novel imaging genomics signals. Some yielded confirmatory findings matching previous 

studies, showing the effectiveness of these methods. Some identified novel signals missed by 

existing methods, showing improved detection power. Of note, the generalizability of 

findings from many of these new methods needs to be evaluated in additional independent 

data sets to demonstrate their broader impact in the future.
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E. Related work and future directions

In this work, we mostly reviewed the methods developed and employed for analyzing ADNI 

and ENIGMA data. Similar methods have been investigated in the study of other 

neurological and psychiatric disorders. For example, the pICA method was first proposed 

and then widely used in studies of psychiatric disorders [218]. Various SCCA and other 

multivariate models (e.g., [219], [220], [221], [222], [223]) have been developed and 

employed in brain imaging genomics applications to study psychiatric disorders. Additional 

details are available in [224], where Chen et al. provided a recent review on neuroimaging 

genomics analyses and their translational potential to diagnosis and treatment in mental 

disorders.

Thanks to the open science nature of the ADNI project and the large-scale global alliance 

formed by ENIGMA, a large number of researchers around the world have had the chance to 

analyze the ADNI and ENIGMA data, resulting in a major growth of literature in new 

statistical and machine learning methods for brain imaging genomics. Of note, the 

generalization of many of these new methods remains to be evaluated in other independent 

data sets, which will be an interesting and promising future direction. In particular, given the 

rapid growth and sheer number of these new developments, we observe no lack of 

innovation and expect to see the impact of these methods or their enhanced versions to 

permeate biomedical studies in brain imaging genomics.

Integrating imaging and omics data is also an active research topic in cancer studies, which 

is often referred to as radiogenomics [225]. In these studies, in addition to SNP data, multi-

omics data (e.g., transcriptomics, proteomics, metabolomics, epigenomics) are often 

collected from the actual tumor tissues. So relating multi-omics data to imaging data 

becomes a study focus. Note that the omics data are tissue-specific. Thus, the methods 

reviewed in this paper are mostly focused on relating SNP data to imaging QTs, mainly due 

to the lack of the available brain tissue in these in-vivo studies. However, with the increasing 

accumulation of brain samples in some landmark studies (e.g., AMP-AD [226]), more and 

more omics data will be available for the study of brain disorders. A promising future 

direction is to adapt many radiogenomics approaches developed for cancer research to the 

study of brain imaging genomics.

As we aim at understanding mechanisms and pathways, another challenge in brain imaging 

genomics is how to handle spurious correlations leading to erroneous conclusions. Thus, 

replication in independent cohorts will be an important step to complete in order to identify 

true signals. Some sources of spurious correlations such as overfitting and biased sampling 

have been studied as described earlier. However, systematic investigation of various 

confounding factors is an underexplored topic and warrants further investigation.

Deep learning models have been highly successful in addressing data-driven problems in 

biology and medicine [227]. However, they have not been widely used in brain imaging 

genomics, partly due to the limited sample size and high dimensionality of the existing 

imaging and genomics data sets. Some recent attempts have been made to develop effective 

deep learning models for outcome prediction via integrating brain imaging genomics data 

(e.g., [201]). Given that deep learning has been producing impressive results in both medical 
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image analysis [228], [229] and multi-omics research [230], it is a promising future direction 

to develop deep learning methods for solving pressing problems in brain imaging genomics.

Given the unprecedented scale, complexity and heterogeneity of the fast growing Big Data 

in brain imaging genomics, we are facing a variety of other methodological challenges that 

suggest promising and exciting future research directions. 1) Although multi-cohort 

integrative data analysis can offer increased statistical power, one major obstacle is that the 

available data modalities often vary across different studies. Thus, one promising direction is 

to develop novel machine learning or transfer learning methods that can effectively handle 

incomplete data modalities and facilitate multi-cohort data integration. 2) Most methods 

reviewed here analyzed genotyping data and were not designed for examining whole 

genome/exome sequencing (WGS/WES) data. The rapid growth of WGS/WES data in brain 

imaging genomics calls for new statistical and machine learning methods that can properly 

handle their ultrahigh dimensionality and resolution as well as effectively identify both 

common and rare genetic variants related to imaging QTs. 3) There is also an urgent need 

for novel scalable computational strategies to support large-scale consortium-based 

collaborative efforts. For consortia with one single centralized data repository, cloud-based 

computational and informatics tools are needed to enable the users to directly analyze large-

scale data in the cloud. For consortia with multiple local data repositories, distributed 

computation methods and frameworks could be established to handle the decentralized data 

sets.

The rapid growth of brain imaging genomics as an emerging data science field is greatly 

attributed to the public availability of valuable imaging and genomics data sets. For example, 

thanks to the open-science nature of the ADNI project, hundreds of publications using 

ADNI imaging genomics data have been produced in the past decade, yielding not only 

innovative machine learning methods but also novel biomedical discoveries. Similar to 

ADNI and ENIGMA, more and more landmark studies are producing big data including 

multidimensional imaging and omics modalities, and make them available to the research 

community. Shown below are some example landmark studies: 1) Alzheimers Disease 

Neuroimaging Initiative (ADNI) [1], 2) Enhancing NeuroImaging Genetics through Meta 

Analysis (ENIGMA) [7], [8], 3) UK Biobank [3], 4) Human Connectome Project (HCP) 

[231], 5) Accelerating Medicines Partnership - Alzheimer’s Disease (AMP-AD) [226], 6) 

Mind Clinical Imaging Consortium (MCIC) [232], 7) Pediatric Imaging, Neurocognition, 

and Genetics study (PING) [233], 8) Parkinsons Progression Markers Initiative (PPMI) 

[234], 9) The Cancer Genome Atlas (TCGA) [235], and 10) The Cancer Imaging Archive 

(TCIA) [236]. With this growing availability of brain imaging genomics data, we anticipate 

to observe many more advances in machine learning and their applications to brain imaging 

genomics, which will significantly contribute to biomedical discoveries in brain science and 

the study of brain disorders.
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Fig. 1. 
Schematic representation of topics covered in this review. (a) Learning problems in brain 

imaging genomics: this review is organized by these topics. (b) Biomedical application 

considerations: these are example topics related to the studied brain imaging, genomics and 

outcome data. (c) Statistical and machine learning considerations: these are example topics 

considered by the reviewed statistical and machine learning methods.
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Fig. 2. 
Example pairwise SNP-QT Associations [37]. (1) The top left panel summarizes all the 

pairwise SNP-QT association findings, where blocks labelled with “x” reach the level of p < 

10−6. (2) The bottom left panel (i.e., blue box) shows the Manhattan plot for the GWAS 

results of gray matter density of the right hippocampus. (3) The right panel (i.e., red box) 

shows the voxel-based morphometry result of mapping the genetic effect of rs6463843 (in 

the flanking region of the NXPH1 gene) to the brain. [Images are reproduced here with 

permission from Elsevier [37].]
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Fig. 3. 
Example flowchart to calculate a polygenic risk score (PRS) and apply it to brain imaging 

genomics studies. Step (i) is optional, where various strategies can be used to calculate a set 

of candidate PRSs (e.g., by exploring a few p thresholds [61], [62]) and pick the PRS best 

associated with the target phenotype (see (h)) as the final PRS (see (j)). See main text for 

more details.
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Fig. 4. 
Imaging Genetic Enrichment Analysis (IGEA) framework proposed in [90]. [Images are 

reproduced here from a Springer open access article [90]].
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Fig. 5. 
The workflow for identifying functional interaction modules from the tissue-specific 

network using imaging GWAS findings. [Images are reproduced here with permission from 

Oxford University Press [99]].
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Fig. 6. 
Example ENIGMA results. (A-B) Manhattan plots of GWAS on ICV and subcortical 

volumes [120], [121]. (C) Catalog of rare variants and their effects on the brain created by 

partnerships among ENIGMA, deCODE Genetics, and the UK Biobank [122]. [Data 

adapted, with permission from the authors and publishers].
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Fig. 7. 
Example structured sparse multivariate multiple regression models, where only regression 

weight matrices W are shown here. Let X be genotype data and Y be imaging QT data. (a) 

Illustration of the G-SMuRFS model [148] (minW‖Y − XW‖F
2 + λ1‖W‖G2, 1

+ λ2‖W‖2, 1), 

where the group l2,1-norm regularization (∥W∥G2,1) does feature selection at the group level 

(e.g., LD-block), and the l2,1-norm regulesization (∥W∥2,1) does feature selection at the 

individual SNP level. [Image is reproduced here with permission from Oxford University 

Press [148]]. (b) Illustration of the TSAL model [149] 

(minW∑k = 1
t ‖X − YkWk‖F

2 + λ1ℛ1(W) + λ2ℛ2(W)), where ℛ1(W) is a Schatten p-norm 

regularization term to identify low rank structures (e.g., four green boxes sharing similar 

patterns), and ℛ2(W) is an l2,1-norm to select SNPs correlated to most QTs over time (e.g., 

the red box). [Image is reproduced here with permission from Mary Ann Liebert, Inc. 

[149]].
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Fig. 8. 
(a) Schematic representation of a generic reguarlized CCA framework for brain imaging 

genomics, which aims to find a genetic component Xu and an imaging component Yv so 

that their correlation (i.e., uTXTYv s.t. ‖Xu‖2
2 = ‖Yv‖2

2 = 1) is maximized under one or more 

regularizations ℛi(u, v). For example, the conventional SCCA model [168] is formed by 

introducing two l1 norm terms: ℛ1(u) = ‖u‖1 and ℛ2(v) = ‖v‖1. (b) Schematic illustration of 

“Knowledge-guided SCCA” (KG-SCCA) [108]. Two regularizations are introduced into the 

reguarlized CCA framework shown in (a). On the genomic side, ℛ1(u) is a group l1 term, 

where SNPs are grouped by LD blocks. On the imaging side, ℛ2(v) is a network-guided 

regularization term (similar to graph laplacian), where ROIs are connected if they share 

similar co-expression patterns across the genes from the amyloid pathway. [Network inset 

image is reproduced here with permission from Oxford University Press [108]].
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Fig. 9. 
(a) The JCRMML framework [193] performs joint classification and regression via 

multimodal multitask learning to identify disease-sensitive and cognition-relevant 

biomarkers from brain imaging genomic data. The identified biomarkers could predict not 

only disease status, but also cognitive functions to help us better understand the underlying 

mechanism from gene to brain structure and function, and to cognition and disease. (b) 

Illustration of the JCRMML feature weight matrix WT. The group l1-norm (G1-norm) learns 

the group-wise weights for features within a single modality for each task (i.e., outcome) 

and the l2,1-norm selects features associated with most tasks. [Images are reproduced here 

with permission from Oxford University Press [193]].
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Fig. 10. 
(a) Schematic representation of the DSCCA model [203]. DSCCA incorporates a 

regularization into SCCA to encourage the identification of canonical components with 

discriminative power. (b) The imaging component Yv is plotted against the proteomic 

component Xu. DSCCA components are clearly more discriminative than SCCA 

components. [Image in (b) is reproduced here from an Open Access chapter by World 

Scientific Publishing Company [203]].
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TABLE I

Example studies using single-SNP-single-QT methods, where pairwise SNP-QT associations are examined on 

a SNP-by-SNP and QT-by-QT basis.

Ref Notes

[45] GWAS, targeted QT, linear regression

[46] GWAS, targeted QT, linear regression

[48] Targeted SNP, targeted QTs, two-way ANCOVA

[49] Targeted SNP, voxelwise QTs across brain, general linear model

[37] GWAS, ROI-based QTs across brain, linear regression

[57] GWAS, voxelwise QTs across brain, linear regression

[50] Fast voxelwise GWAS (FVGWAS): heteroscedastic linear model, global sure independence screening, wild bootstrap

[52] Regression models for analyzing secondary phenotypes

[55] Regression models for analyzing secondary phenotypes
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TABLE II

Example studies using polygenic risk scores (PRSs) for brain imaging genomics. A PRS summarizes the 

aggregate effect from an ensemble of SNPs related to a base phenotype. The effect of the PRS is examined on 

interesting imaging QTs.

Ref Notes

[58] PRS: Power and predictive accuracy

[59] PRS: Usefulness and applications in imaging genetics

[46] Standard PRS workflow, image-based DPS

[61] Standard PRS workflow, hippocampal volume

[62] Standard PRS workflow, cortical thickness

[65] PHS instead of PRS, amyloid and MR imaging QTs

[67] PRSice: PRS software, http://prsice.info/
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TABLE III

Example studies using multi-SNP methods, where multi-SNP-single-QT associations are examined.

Ref Notes

[70] Joint effect of target SNPs on imaging QTs, stepwise multivariable linear regression

[71] Multivariate gene-based voxelwise GWAS, PCA and multiple partial F test (a variant of PCReg)

[72] Voxelwise GWAS with increased power, random field theory, semi-parametric regression model with least square kernel machines, fast 
permutation procedure

[73] Imaging wide association study, weighted gene-based GWAS test, weights capturing genetic component of an imaging QT

[74] Joint association between multiple SNP sets and an imaging QT, linear mixed-effects model, Bayesian latent variable selection
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TABLE IV

Example studies using multi-trait methods, where single-SNP-multi-QT or multi-SNP-multi-QT associations 

are examined.

Ref Notes

[80] Sum of powered score tests (SPU(γ)), adaptive SPU test for multi-trait-single-SNP associations (aSPU), selection of most powerful 
weighted test via adjusting weights to the studied data

[87] Sum of powered score tests (SPU(γ1, γ2)), adaptive SPU test for multi-trait-multi-SNP associations (aSPUset), selection of most 
powerful weighted test via adjusting weights to the studied data

[88] Adaptive SPU test for multi-trait-single-SNP associations (aSPU) under a proportional odds model (POM) instead of the generalized 
estimation equations (GEE) framework used in [80].

[44] Brain-wide ROI QTs as a multivariate response, distance covariance between QT set and each SNP, local FDR modeling

[89] Functional GWAS (FGWAS), multivariate varying coefficient model (MVCM), global sure independence screening (GSIS), GWAS of 
functional QTs including curves, surfaces and volumes
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TABLE V

Example studies using pathway and network enrichment methods, which aim to detect high-level imaging 

genomic associations related to pathways, networks or brain circuits.

Ref Notes

[91] A review of pathway and network analysis of genomic data

[93] Pathway analysis of memory impairment, GSA-SNP software

[95] ROI enrichment analysis based on voxelwise findings

[90] Two dimensional Imaging Genetic Enrichment Analysis (IGEA)

[99] Tissue-specific network (specific to the imaging QT), network module detection, NetWAS re-prioritization
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TABLE VI

Example studies using interaction methods, which aim to examine epistatic effects of genetic variants or their 

interaction effects with nongenetic factors on imaging QTs.

Ref Notes

[109] QMDR, IMP, targeted epistatic analysis guided with statistical filtering and functional genomics knowledge

[112] GWIA, targeted analysis using the KEGG gene-gene interaction patterns, linear regression using the INTERSNP software

[114] GWIA, sure independence screening algorithm (called EPISIS), ridge regression, extended Bayesian Information Criterion (BIC)

[117] Kernel machine method (KMM), joint modeling of epistatic and collective effect from a SNP set, collective effect of non-genetic 
factors, and interaction between genetic and non-genetic factors

[118] Set-based mixed effect model for gene-environment interaction (MixGE) on imaging QT, score statistics for fast computation
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TABLE VII

Example studies using multivariate regression, which aim to reveal complex imaging genomics associations 

between multivariate SNP data and imaging QT data.

Ref Notes

[106] P-GLAW (pathways group lasso with adaptive weights), multi-SNP-single-QT, group lasso, SNPs grouped by pathway

[146] TGSL (tree-guided sparse learning), multi-SNP-single-QT, group lasso, tree-like group structure (SNPs grouped by LD block, LD 
blocks grouped by gene)

[147] DAMM (diagnosis-aligned multimodal regression), single-SNP-multi-QT, select ROIs with genetic effects at most modalities, learning 
diagnosis-related components in the projected space

[148] G-SMuRFS (Group-Sparse Multi-task Regression and Feature Selection), multi-SNP-multi-QT, group l2,1 for feature selection at LD 
block level, l2,1 for feature selection at SNP level.

[151] TCLSR (task-correlated longitudinal sparse regression), longitudinal imaging QTs to predict SNPs, each time point treated as a task, 
trace norm for weight matrix rank minimization, l2,1 norm for selecting imaging QTs with effects at most of the time points

[149] TSAL (temporal structure auto-learning), longitudinal imaging QTs to predict SNPs, Schatten p-norm for weight matrix rank 
minimization, l2,0+ norm for selecting imaging QTs with effects at most of the time points

[153] JPLSR (joint projection learning and sparse regression), multi-SNP-multi-QT, projecting SNP and QT data into a joint latent space, 
SNP and QT components aligned with diagnosis, l2,1 norm for selection of SNP and QT features

[154] SRRR (sparse reduced rank regression), multi-SNP-multi-QT, reduced rank loss function, l1 norm for selecting SNP and QT features, 
evaluation on ROI-based simulation data

[155] SRRR (sparse reduced rank regression), multi-SNP-multi-QT, reduced rank loss function, penalized LDA to select diagnosis-related 
QT, l1 norm and re-sampling for SNP identification, evaluation on voxelwise ADNI data

[107] P-SRRR (pathways SRRR), integration of P-GLAW and SRRR, group lasso on SNP side, SNPs grouped by pathway, identifying QT-
related pathways

[156] S-SRRR (structured SRRR), reduced rank loss function, l2,1 norm for selecting SNP and QT features

[157] GRS-SRRR (graph-regularized S-SRRR), incorporation of graph self-representation on the SNP side into S-SRRR

[159] RGRS-SRRR (robust GRS-SRRR), robust version of reduced rank loss function and graph self-representation loss function

[161] BGSMTR (Bayesian group sparse multi-task regression), variable selection at both SNP and gene level, full posterior inference

[164] GLRR (Bayesian generalized low rank regression), low rank approximation of weight matrix, dynamic factor model for imaging 
covariance, efficient MCMC algorithm for posterior computation

[165] L2R2 (Bayesian longitudinal low rank regression), SNP effects on longitudinal imaging QTs, low rank approximation of weight matrix 
and gene-age interaction, penalized splines for overall time effect, efficient MCMC algorithm for posterior computation

[166] FNAM (Additive Model via Feedforward Neural networks with random weight), modeling non-linear associations, computational 
efficiency, flexibility and interpretability of additive models

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shen and Thompson Page 85

TABLE VIII

Example studies using bi-multivariate correlation methods, which aim to identify multi-SNP-multi-QT 

associations from high dimensional imaging genomic data.

Ref Notes

[169] S2CCA (structure aware SCCA), group 11 norm on both SNP and QT sides, SNPs grouped by LD block, QTs grouped by ROI

[108] KG-SCCA (knowledge-guided SCCA), group l1 norm on genetic side (SNPs grouped by LD block), graph Laplacian type norm on 
imaging side (ROIs connected by co-expression network)

[171] GNC-SCCA (generic non-convex penalty SCCA), seven non-convex penalties replacing l1 norm to reduce estimation bias

[172] TLP-SCCA (truncated l1-norm penalized SCCA), TGL-SCCA (truncated group lasso SCCA), better approximation of l0 norm, voxels 
grouped by ROI, SNPs grouped by LD block

[174] AGN-SCCA (absolute value based GraphNet SCCA), incorporation of a GraphNet variant into SCCA, joint selection of both positively 
and negatively correlated features

[175] FDR-corrected SCCA, incorporation of FDR concept into SCCA

[177] MTSCCA (multi-task SCCA), relating SNP to multimodal imaging QTs, l2,1 norm for SNP selection and QT selection

[178] TG-SCCA (temporally constrained group SCCA), l1 for SNP selection, l2,1 for ROI selection (over time), fussed lasso for smoothing 
weights between neighbouring time points

[179] T-MTSCCA (temporal multi-task SCCA), l1 and l2,1 for SNP and QT selection, fused pairwise l2,1 norm for smoothing weights 
between neighbouring time points

[180] FSPLS (filtering + sparse Partial Least Square), two step procedure, univariate filtering, sparse PLS with l1 regularization

[181] G-PDC (Greedy projected distance correlation), examination of pairwise gene-ROI associations, an efficient algorithm

[183] DCCA (Distance CCA), identification of SNP set and QT set with the highest distance correlation

[186] pICA (parallel independent component analysis), joint maximization of within-modality component independence and between-
modality component correlation
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TABLE IX

Example studies using machine learning methods for outcome prediction via integrating imaging and 

genomics data.

Ref Notes

[187] Naive Bayes classifier, predicting MCI-to-AD conversion

[188] Composite multivariate polygenic and neuroimaging score, predicting MCI-to-AD conversion

[190] Cox proportional hazard model, predicting time to progression from MCI to AD, integrating PHS, atrophy score and MMSE

[193] JCRMML (joint classification and regression framework for multimodal multitask learning), joint logistic regression and linear 
regression, feature selection at modality level for each outcome, feature selection across all the outcomes

[194] Multiple kernel learning (MKL), high-order graph matching based feature selection (HGM-FS), sparse multimodal learning (SMML), 
AD prediction using MRI, FDG-PET, CSF and SNP data

[198] SSKL (structured sparse kernel learning), sparsity inside modalities, dense combination between modalities

[199] CaMCCo (Cascaded Multi-view Canonical Correlation), supervised multiview CCA with class label as a new variable set

[201] Stage-wise deep neural network, addressing issues such as data heterogeneity, high-dimension-low-sample-size & incomplete data

[202] Neural network model with two hidden layers, AD outcome prediction using 16 imaging QTs and 19 SNPs
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TABLE X

Example studies for joint learning of imaging genomics associations and outcome prediction model.

Ref Notes

[203] DSCCA (discriminative SCCA), disease-relevant imaging proteomics associations, graph laplacian

[204] Three way SCCA among genomics, imaging and outcomes

[205] SCCAR (joint learning by combining SCCA and regression)

[206] MT-CoReg (Multi-Task Collabora-tive Regression), joint regression and SCCA model

[207] Genome-wide mediation analysis, genetic influence on phenotypica outcome mediated by imaging endophenotype

[208] Bayesian model to identify imaging QTs that have genetic basis and are associated to diagnosis
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