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Cytokine-induced apoptosis inhibitor 1 (CIAPIN1), known as 
an anti-apoptotic and signal-transduction protein, plays a 
pivotal role in a variety of biological processes. However, the 
role of CIAPIN1 in inflammation is unclear. We investigated 
the protective effects of CIAPIN1 in lipopolysaccharide 
(LPS)-exposed Raw 264.7 cells and against inflammatory 
damage induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) 
in a mouse model using cell-permeable Tat-CIAPIN1. Transduced 
Tat-CIAPIN1 significantly reduced ROS production and DNA 
fragmentation in LPS-exposed Raw 264.7 cells. Also, Tat- 
CIAPIN1 inhibited MAPKs and NF-B activation, reduced the 
expression of Bax, and cleaved caspase-3, COX-2, iNOS, IL-6, 
and TNF- in LPS-exposed cells. In a TPA-induced animal 
model, transduced Tat-CIAPIN1 drastically decreased inflam-
mation damage and inhibited COX-2, iNOS, IL-6, and TNF- 
expression. Therefore, these findings suggest that Tat-CIAPIN1 
might lead to a new strategy for the treatment of inflammatory 
skin disorders. [BMB Reports 2019; 52(12): 695-699]

INTRODUCTION

Inflammation is a natural defense response to infection or 
injury, and it may lead to various human diseases, including 
cancer (1). Under the inflammatory responses, macrophages 
are activated and secrete pro-inflammatory mediator proteins, 
such as cyclooxygenase-2 (COX-2), inducible nitric oxide 

synthase (iNOS), and reactive oxygen species (ROS) as well as 
pro-inflammatory cytokines, including interleukin (IL)-6, IL-1, 
and tumor necrosis factor- (TNF-) (2-5). Several studies have 
demonstrated that the nuclear factor-kappa B (NF-B) and the 
mitogen-activated protein kinases (MAPKs) signaling pathways 
play a pivotal role in inflammatory responses, suggesting that 
modulation of NF-B and MAPKs is a key point for therapeutic 
approaches to inflammatory diseases (6-10).

Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) is known 
as an anti-apoptotic and signal-transduction protein, and many 
studies have revealed that CIAPIN1 may suppress apoptosis 
and regulate tumorigenesis (11-14). Park et al. (2011) reported 
that the CIAPIN1 protein protects neuronal MN9D cells 
against oxidative stress-induced cell death by increasing the 
expression of anti-apoptotic proteins (15). Wang et al. (2015) 
have shown that transfected CIAPIN1 genes in human multiple 
myeloma significantly inhibited the growth and proliferation of 
tumor cells, suggesting that CIAPIN1 is a potential tumor 
suppressor (16) and several studies have reported that chronic 
inflammation can lead to cancer by increasing pro-inflam-
matory mediators, ROS, intracellular signaling-pathway mediators, 
and transcription factors (17-19). Although the CIAPIN1 
protein may be associated with the suppression of cancer and 
inflammation, there is no evidence about its exact roles in 
inflammation until now. Therefore, we investigated the effects 
of Tat-CIAPIN1 on inflammation with lipopolysaccharide 
(LPS)-exposed Raw 264.7 cells and a 12-O-tetradecanoylphorbol- 
13-acetate (TPA)-induced mouse edema model.

RESULTS AND DISCUSSION

Transduction and effects of Tat-CIAPIN1 against LPS-induced 
cytotoxicity in Raw 264.7 cells
Since it is known that protein transduction domains (PTDs) can 
deliver proteins into cells, many studies have suggested that 
PTDs can be used for application of therapeutic proteins to 
treat various diseases (20-30). Purified Tat-CIAPIN1 protein 
was identified (Supplementary Fig. S1). We showed that 
Tat-CIAPIN1 transduced into the Raw 264.7 cells concentration- 
and time-dependently as well as transduced Tat-CIAPIN1 
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Fig. 1. Effects of transduced Tat-CIAPIN1 protein on LPS-induced 
ROS production and DNA fragmentation. The localization of 
transduced Tat-CIAPIN1 protein was examined by confocal 
fluorescence microscopy (A). Scale bar = 20 m. Cells were 
treated with Tat-CIAPIN1 (3 M) or CIAPIN1 protein for 1 h 
before treatment with 1 g/ml of LPS for 3 h or 14 h. Then, 
intracellular ROS levels (B) and DNA fragmentation (C) were 
measured by DCF-DA staining and TUNEL staining. Fluorescence
intensity was quantified using an ELISA plate reader. Scale bar = 
50 m. *P ＜ 0.05, compared with LPS-treated cells. 

Fig. 2. Effects of Tat-CIAPIN1 protein on LPS-induced inflammatory
responses in Raw 264.7 cells. The cells were treated with 
Tat-CIAPIN1 (3 M) or CIAPIN1 protein for 1 h before being 
exposed to LPS (1 g/ml). MAPK and NF-B activation (A) and 
the expression levels of COX-2 (B) and iNOS (C) protein were 
analyzed by Western blotting. Total RNA was extracted from the 
cells. We analyzed cytokines (IL-6 and TNF-) and GAPDH 
mRNA by RT-PCR using specific indicated primers (D). The band 
intensity was measured by densitometer. *P ＜ 0.05, compared 
with LPS-treated cells.

levels persisted in the cells for 12 h (Supplementary Fig. 
S2A-S2C). 

We also assessed the distribution of Tat-CIAPIN1 in Raw 
264.7 cells using immunostaining with Alexa Fluor 488 and 
DAPI. Tat-CIAPIN1 transduced into both the cytosol and the 
nuclei of Raw 264.7 cells. However, CIAPIN1 did not 
transduce into the cells (Fig. 1A). Other studies have reported 
that LPS induces ROS production and DNA damage in various 
cells, including Raw 264.7 cells, finally leading to cell damage 
(2-4, 31). In agreement with these reports, we showed that 
ROS generation and DNA fragmentation levels were 
significantly increased in the cells exposed only to LPS, control 
CIAPIN1, and Tat peptide. However, transduced Tat-CIAPIN1 
markedly inhibited ROS generation and DNA fragmentation in 
LPS-exposed cells (Fig. 1B and 1C). 

Effects of Tat-CIAPIN1 on LPS-induced inflammatory 
responses in Raw 264. 7 cells
Other studies have reported that regulation of NF-B and 
MAPKs signaling pathways are important to protect against 
LPS-induced inflammatory responses in Raw 264.7 cells (32, 
33). To examine the effects of Tat-CIAPIN1 on LPS-induced 
signaling pathways (MAPKs and NF-B), the cells were 
exposed to LPS (1 g/ml). In the LPS-exposed cells, phos-
phorylated MAPKs and p65 expression were higher than in the 
control cells. CIAPIN1 and Tat peptide-exposed cells showed 
similar patterns. In contrast, Tat-CIAPIN1 significantly reduced 
the phosphorylated MAPKs and p65 expression (Fig. 2A). 
Many studies have described that NF-B and MAPKs signaling 
pathways are crucial mediators in various cellular biological 
processes and play a key role in the process of inflammatory 
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Fig. 3. Effects of Tat-CIAPIN1 protein on TPA-induced mice ear 
edema. Ears of mice were treated with TPA (1 g/ear) once a 
day for 3 days. Tat-CIAPIN1 protein (10 g) was topically applied 
to the mouse ears 1 h prior to TPA exposure over 3 days. 
Protective effects of Tat-CIAPIN1 protein were confirmed by 
hematoxylin and eosin staining, changes in ear weight, and ear 
thickness in a TPA-induced mice ear edema model. Scale bar = 
50 m. *P ＜ 0.05, compared with TPA-treated mice.

Fig. 4. Effects of Tat-CIAPIN1 protein on TPA-induced pro-inflam-
matory mediator protein (iNOS and COX-2) and cytokine (IL-6 and 
TNF-) expression in mice ears. Mice were stimulated with TPA (1 
g/ear), after which Tat-CIAPIN1 protein (10 g) was topically 
applied to the mouse ears for 3 days. Mouse ear extracts were 
prepared. After total RNA was extracted from ear biopsies, 
pro-inflammatory mediator proteins (iNOS and COX-2) and cytokine 
(IL-6 and TNF-) expression levels were measured by RT-PCR using 
specific primers (A, B). The expression levels of pro-inflammatory 
mediator protein (iNOS and COX-2) were confirmed by Western 
blotting (C, D). The band intensity was measured by densitometer. 
*P ＜ 0.05, compared with TPA-treated mice.

response by promoting the release of the pro-inflammatory 
cytokines (34-36).

We investigated the effect of Tat-CIAPIN1 against LPS-induced 
Bax, Bcl-2, and Caspase-3 expression levels. Other studies 
have shown that LPS induced apoptosis via a caspase- 
dependent mitochondrial death signaling pathway (37, 38). 
Supplementary Fig. S3A-S3C shows that Bcl-2 and Caspase-3 
expression were reduced in the LPS-exposed Raw 264.7 cells. 
However, Tat-CIAPIN1 significantly increased Bcl-2 and 
Caspase-3 expression more than did those treated with LPS 
alone. In contrast, Bax and cleaved Caspase-3 expression 
showed an effect opposite to that of Bcl-2 and Caspase-3. 
There was no changes in CIAPIN1 and Tat peptide-treated 
cells. Consistent with our results, other studies have shown 
that overexpression of CIAPIN1 reduced cleaved Caspase-3 
expression, whereas Caspase-3 expression was increased in 
CIAPIN1-depleted K562 cells, suggesting that CIAPIN1 has an 
anti-apoptotic function (39, 40). In addition, CIAPIN1 protected 
against neuronal cell death caused by increased Bcl-XL under 
oxidative stress conditions, suggesting that CIAPIN1 plays an 
important role in protecting neuronal cells against cell death 
induced by oxidative stress (15).

We also investigated whether Tat-CIAPIN1 suppresses the 
inflammatory response in LPS-induced Raw 264.7 cells. LPS 

markedly increased COX-2, iNOS, TNF-, and IL-6 expression 
in Raw 264.7 cells. There were no changes in CIAPIN1 and 
Tat peptide-treated cells. However, Tat-CIAPIN1 drastically 
reduced COX-2, iNOS, TNF-, and IL-6 expression in 
LPS-exposed Raw 264.7 cells (Fig. 2B-2D). Several studies 
have reported that LPS activated macrophages via the 
activation of NF-B, MAPKs, pro-inflammatory proteins, and 
cytokines and led to cell death (32, 33, 41-43). These data 
indicate that Tat-CIAPIN plays an important role against 
LPS-induced Raw 264.7 cell injury. However, the precise 
mechanism involved in the target site of Tat-CIAPIN1 in 
inflammatory molecular signal pathways remains to be 
elucidated. 
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Effects of Tat-CIAPIN1 on TPA-induced ear edema model
It has been reported that multiple applications of TPA to the 
ears of mice induce skin inflammation (44). TPA-induced skin 
tumors are highly related to the inflammatory response, 
including production of cytokines, iNOS, and COX-2 proteins 
(45-48). Therefore, we investigated whether transduced 
Tat-CIAPIN1 protects against inflammation in a TPA-induced 
ear edema animal model (Supplementary Fig. S4). As shown in 
Fig. 3, TPA significantly increased ear thickness and weight of 
mice as compared with the control-, CIAPIN1- and Tat 
peptide-treated groups. This increase in ear thickness and 
weight was markedly inhibited by treatment with Tat-CIAPIN1. 
We also examined whether Tat-CIAPIN1 could inhibit 
expression of pro-inflammatory cytokines and proteins. TPA 
markedly increased the COX-2, iNOS, TNF-, and IL-6 
expression in mice ears. CIAPIN1 and Tat peptide did not 
show the protective effects. However, Tat-CIAPIN1 drastically 
reduced the COX-2, iNOS, TNF-, and IL-6 expression in a 
TPA-induced mice model of edema (Fig. 4). Our results 
coincide with those of Chung et al. (2007), who reported that 
pro-inflammatory protein and cytokines expression markedly 
increased in TPA-induced skin inflammation models (49). 

In summary, our study showed that Tat-CIAPIN1 inhibits 
LPS-induced inflammation damage by suppression of 
pro-inflammatory proteins and cytokines expression and of the 
NF-B and MAPK signaling pathways. These finding imply that 
Tat-CIAPIN1 exerts a protective role in the inflammatory 
response. Although further studies are still needed to confirm 
the precise roles of Tat-CIAPIN1 in inflammation, these finding 
suggest that Tat-CIAPIN1 may be a potential therapeutic agent 
for skin inflammatory diseases.

MATERIALS AND METHODS

See supplementary information for this section.
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