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Abstract

In this study, we proposed a new radiomics-based treatment outcome prediction model for cancer 

patients. The prediction model is developed based on belief function theory (BFT) and sparsity 

learning to address the challenges of redundancy, heterogeneity, and uncertainty of radiomic 

features, and relatively small-sized and unbalanced training samples. The model first selects the 

most predictive feature subsets from relatively large amounts of radiomic features extracted from 

pre- and/or in-treatment positron emission tomography (PET) images and available clinical and 

demographic features. Then an evidential k-nearest neighbor (EK-NN) classifier is proposed to 

utilize the selected features for treatment outcome prediction. Twenty-five stage II-III lung, 36 

esophagus, 63 stage II-III cervix, and 45 lymphoma cancer patient cases were included in this 

retrospective study. Performance and robustness of the proposed model were assessed with 

measures of feature selection stability, outcome prediction accuracy, and receiver operating 
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characteristics (ROC) analysis. Comparison with other methods were conducted to demonstrate 

the feasibility and superior performance of the proposed model.

Keywords

Radiomics; Belief Function Theory (BFT); PET images; Treatment outcome prediction; Cancer 
therapy

I. Introduction

Despite significant advances in disease prevention and screening, cancer continues to be an 

important world-wide public health problem [1]. Accurate outcome prediction before or 

during cancer therapy is of great clinical value [2] to provide guidance for treatment plan 

adaptation and potentially support personalized treatment.

Radiomics is the high-throughput extraction and analysis of numerous features from medical 

images. It represents a highly promising approach for characterizing tumor phenotypes, 

providing an unprecedented opportunity to support and improve clinical decision-making 

[3]. Positron emission tomography (PET) radiomic features have been shown to have 

discriminative power for cancer recurrence prediction on several tumor sites, e.g., lung and 

cervix [4], [5]. However, the reliable and efficient usage of radiomic features for cancer 

treatment outcome prediction still remains a very challenging problem, in part, due to 

inadequate management of several intrinsic difficulties of using radiomic features [6]. First, 

the redundancy, heterogeneity, and uncertainty of radiomic features hinders the selection of 

predictive feature subsets. Second, a relatively small number of training samples compared 

to the highdimensional radiomic feature space can result in over-fitting and degrade the 

prediction performance on unseen patient data. Third, unbalanced training samples due to 

different treatment outcome rates can cause higher false prediction rate on patients within 

minor class (the class having relatively less number of instances).

Not all radiomic features are useful and some of them might even mislead prediction [7]. 

Therefore, a subset of the most predictive radiomic features should be selected and 

employed for treatment outcome prediction. Conventional machine-learning methods have 

inherent problems for feature selection [8]–[10], such as lack of consideration of intrinsic 

properties and complementarity of features, and neglecting patient data imbalance. Several 

feature selection algorithms have been proposed with the hope to overcome these problems. 

As an example, FAST (Feature Assessment by Sliding Thresholds) method selects features 

by evaluating the prediction performance with the metric of the area under the receiver 

operating characteristic curve and through a sliding threshold strategy [11]. Some other 

methods have been proposed to evaluate feature subsets instead of separately considering the 

discrimination power of each individual feature. For example, kernel class separability 

(KCS)-based feature selection method ranks feature subsets based on their class separability 

[12]. Differently, Guyon et al. [10] proposed a support vector machine (SVM)-based 

recursive feature elimination strategy to progressively eliminate the least promising features 

until a certain number of features remain.
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Recently, sparsity-based learning methods, which have been successfully applied in other 

fields for large-dimensional feature selection, present an exciting alternative solution that 

can effectively model the dependency among features and help select predictive features 

[13], [14]. However, their applications in selecting radiomic features remain relatively 

unexplored. Robustness of the selected features is also another desirable property of feature 

selection methods in order to produce a consistent feature subset under varying conditions, 

especially when only small-sized training samples are employed during the training process.

A powerful classifier is also required to seamlessly fuse the predictive information obtained 

from the selected features for outcome prediction. Classification commonly is performed by 

statistical methods (mean estimation, etc.) [15], machine learning methods (K-nearest 

neighbors, Fuzzy C-means, etc.) [16], or model-based methods (Bayesian reasoning, etc.) 

[17]. These methods attempt to classify an object by directly seeking its maximal probability 

of belonging to a specific class. To the best of our knowledge, there are no effective 

solutions to address the partial imprecision of training samples classes and seamlessly fuse 

the information carried by different data sets (e.g., imaging and clinical features).

In this study, we proposed a belief-function theory (BFT)-based outcome prediction model 

based on our previous studies [4], [18]. We demonstrated the efficiency of the proposed 

model on patient cases collected from four different tumor sites (lung, esophagus, lymph 

node, and cervix). We compared the performance of the proposed method with several other 

existing methods and for these four patient cohorts. The influence of PET-based radiomics 

features on local tumor control prediction is analyzed, and suggestions on its clinical 

applications are provided as well.

II. Radiomics-based Outcome Prediction Model

A. Overview of the Proposed Outcome Prediction Model

We developed a treatment outcome prediction model based on belief function theory (BFT) 

and sparse learning. As shown in Fig. 1, the proposed model includes three steps: 1) 

preparation of radiomic and other features for each patient case; 2) selection of the most 

predictive feature subset; and 3) treatment outcome prediction with a BFT-based Evidential 

k-NN (EK-NN) classifier [19], given as input the selected feature subset.

B. Feature Preparation

We extracted features from image data using a procedure that combines methods outlined in 

recently published papers [20]. We combined an open-source image processing package 

(plastimatch) with in-house code developed with MATLAB. About 400 to 600 features are 

extracted, which include SUV-based, textural and clinical features.

SUV-based features.—For patient cases with longitudinal images, we first registered the 

in-treatment images acquired at different time points to the pre-treatment PET image via a 

rigid registration method [21]. Given the metabolic tumor volume (MTV) on PET images of 

each patient case, we calculate five types of SUV-based features. These features include 

maximum uptake in MTV (SUVmax), average uptake in MTV (SUVmean), average uptake 

in the neighborhood of SUVmax (SUVpeak), MTV volume size, and total lesion glycolysis 
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(TLG). We also calculated the temporal changes of these features between the baseline 

images and the follow-up PET images as additional features [4].

Textural features.—Textural features have been proven to be useful and important for 

accurate cancer treatment outcome prediction [22]. With the feature extraction package [20], 

we used the gray-level co-occurrence matrices (GLCMs), gray-level run-length matrices 

(GLRLMs), and gray level size-zone matrices (GLSZM) to extract texture features [23]. The 

temporal changes of these features from baseline and the follow-up acquisitions are 

calculated as additional features.

Clinical features.—Besides the imaging features, we also considered features from other 

sources of information, including patients clinical characteristics and available genomics 

expressions, as additional candidate features.

C. BFT-based Predictive Feature Subset Selection

The feature subset selection is achieved through the minimization of a pre-defined loss 

function, which can be trained with a set of training samples based on Belief-function theory 

(BFT) [24]. BFT, referred to as evidence theory, is a generalization of both probability 

theory and set-membership approach. It provides a formal framework for dealing with both 

imprecise and uncertain data and reasoning under uncertainty based on the modeling of 

evidence.

1) Mass Function: Without loss of generality, let {Xi, Y i}i = 1
N  be a data set consisting of 

N patient samples, Xi ∈ ℝV is the feature vector for the i-th training sample and Yi ∈ Ω is the 

corresponding outcome class label. Let Ω = [ω1, ⋯ , ωC] be the collection of all possible 

class labels, and A is a subset of Ω. Based on BFT theory [24], The evidence about the class 

label of a sample Xi is A can be represented by a mass function mi (A) defined from the 2Ω 

to the interval [0, 1]. mi (A) represents a degree of belief that supports the actual label of 

sample Xi in A, and

∑
A ⊆ Ω

mi(A) = 1 . (1)

For any two samples Xi and Xj, the distance di,j between Xi and Xj is defined as

di, j = ∑
v = 1

V
λvdi j, v

2 , (2)

where dij,v = ∣xi,v − xj,v ∣ represents the difference between the v-th feature of Xi and Xj, 1 ≤ 

v ≤ V. λv can be a binary value 0 or 1 to represent the selection/non-selection of the v-th 

feature, or performs as a weighting factor to represent the importance of the v-th feature. Let 

Xj with class label Yj = ωc, the mass function provided by Xj for Xi (supports that the label 

of Xi belongs to ωc), is defined as
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mi, j({ωc}) = e
−γcdi, j

2

mi, j(Ω) = 1 − e
−γcdi, j

2 , (3)

where parameter γc is set as the inverse of the mean distance between samples from the 

same class, and c ∈ C. Large di,j represents negligible information provided by the mass 

function, meaning mi,j (Ω) ≈ 1. Therefore, the mass functions offered by the first K nearest 

neighbors of each Xi are sufficient to be used in order to improve the computational 

efficiency. K = 10 is selected in this study. Let {Xi1 ,…, XiK} be the selected neighbors for 

Xi. Correspondingly, {mi,i1, … , mi,iK} are the related mass functions. {Xi1, … , XiK} is 

then assigned into different groups according to their outcome labels. When C = 2 and ϴc ≠ 

∅ (c = 1 or 2), the resulting mass function mi
Θc can be represented as

mi
Θc({ωc}) = 1 − ∏Xik ∈ Θc

k = 1, …, K 1 − e
−γcdi, ik

2

mi
Θc(Ω) = ∏Xik ∈ Θc

k = 1, …, K 1 − e
−γcdi, ik

2 , (4)

where mi
Θc(Ω) = 1 when ϴc is empty. A global mass function Mi regarding the class 

membership of Xi can be calculated as

Mi({ω1}) = mi
Θ1({ω1}) ⋅ mi

Θ2(Ω)

Mi({ω2}) = mi
Θ2({ω2}) ⋅ mi

Θ1(Ω)

Mi(Ω) = mi
Θ1(Ω) ⋅ mi

Θ2(Ω)

Mi(∅) = mi
Θ1({ω1}) ⋅ mi

Θ2({ω2})

. (5)

2) Loss Function for Feature Subset Selection: Based on the global mass function 

for all training samples to a to-be-tested sample, an loss function is defined for selecting 

predictive features as a group. Three requirements of the qualified predictive features is 

considered. First, these features should provide high prediction accuracy. Second, they 

should yield low uncertainty. Third, they should enable sparsity to reduce over-fitting risk on 

unseen samples. Considering this, we defined the loss function as

L(Λ) = (T1 + T2 + β‖Λ‖) . (6)
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The feature selection is realized by minimizing L(Λ) to find a sparse V dimensional binary 

vector Λ = {λ1, λ2, ⋯ , λV}. Λ determines the optimal features of each feature vector Xi as 

diag(XiΛT) and the v-th feature is selected when λv = 1.

T1 in L(Λ) measures the mean squared error of outcome label estimation accuracy, which 

supports the hypothesis that the estimated class label Y i is the same as the known label Yi of 

the i-th training sample. It is defined as

T1 = 1
N ∑

i = 1

N
∑

c = 1

C
{Mi({ωc}) − Y i, c}

2, (7)

where Mi({ωc}) is a global mass function regarding the class label of Xi [18], and Yi,c is the 

c-th element of the class label, with Yi,c = 1 if and only if Yi = ωc.

T2 in L(Λ) penalizes features that only provide equal evidences to support the hypothesis 

that Y i is any class label in Ω, indicating they are non-predictive features and should be 

ignored. It is defined as

T2 = 1
N ∑

i = 1

N
(Mi(∅)2 + Mi(Ω)2), (8)

where Mi(∅) denotes the conflict of Xi with its neighborhood, and Mi(Ω) denotes the 

imprecision of the class label of Xi. The larger Mi(Ω) indicates the higher overlapped area in 

the feature space that Xi is located. Differently, the larger Mi(∅) indicates the farther away 

from all other samples.

The last sparsity regularization term ‖Λ‖ = ∑v = 1
V λv (the number of nonzero entries in Λ) 

forces the selected feature subset to be sparse to reduce over-fitting risk on unseen data. The 

scalar β controls the strength of the sparsity penalty.

The minimization of the loss function is solved by an integer Genetic Algorithm [25], which 

can achieve the global optima without gradient calculation for non-convex problems.

3) Feature Pre-selection and Data Balancing: Considering the large number, 

redundancy and uncertainty of the prepared radiomic features, we pre-determined a number 

of predictive features from the extracted features before employing the above BFT-based 

feature selection process. This feature pre-selection procedure can improve the efficiency of 

the BFT-based feature selection and the stability of the selected feature subsets. Considering 

1) the small-sized training samples used in this study and 2) the clinical value of SUV-based 

features for assessing treatment outcome [26], we incorporated the SUV-based features as 

pre-defined prior knowledge. In this study, we used a feature ranking method (RELIEF [8]) 

with a cut-off threshold of 0.9 to pre-select all the extracted features, and required the top-

ranked SUV-based features to be included as well.

In addition, the prediction model learned from unbalanced training data might yield high 

false negative prediction rates on samples belonging to minority class (the class having 
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relatively less number of instances). It might induce the issues of over generalization and 

variance [27], over-fitting [28], and lose of useful information. We used ADAptive 

SYNthetic sampling (ADASYN) strategy to over-sample data within the minority class, 

considering that it can adaptively generate synthetic samples in a data-driven manner [29].

D. Outcome Prediction Based on the Selected Feature Subset

In order to predict treatment outcome, the optimal feature subset selected by the method 

described in Section II-C should feed into a classifier for outcome prediction. Theoretically, 

any case-based methods, e.g., K-NN and SVM classifiers, can be used as the classifier. We 

used a BFT-based classifier, evidential K-NN method [19], [30]–[32] in this study 

considering its ability of utilizing the imperfect knowledge learned from the training samples 

for classification.

Let Xi = [x1, ⋯ , xV′]T be the i-th (i ∈ N) training sample with the V′ selected features, 

where V′ << V, and Yi ∈ {ω1, ⋯ , wC} is the corresponding class label. Given a query 

instance Xt, its class membership can be determined by the EK-NN method through the 

following steps. First, each neighbor of Xt is considered as an item of evidence that supports 

certain hypotheses regarding the class membership of Xt. Let Xj be one of the K nearest 

neighbors with class label Yj = ωc. The mass function induced by Xj, which supports the 

decision that Xt also belongs to ωc, is calculated by Eq. 3. The parameters in Eq. 3 is 

optimized via minimizing a performance criterion constructed on training data. Then, 

Dempsters rule is performed to combine all neighbors knowledge and obtain a global mass 

function for Xt. The lower and upper bounds for the belief of any specific hypothesis are 

then quantified via the credibility and plausibility values, respectively. Corresponding to a 

normalized mass function m, credibility and plausibility functions Bel(·) and Pl(·) from 2Ω to 

[0, 1] are defined as

Bel(A) = ∑
B ⊆ A

mi(B), Pl(A) = ∑
B ∩ A ≠ ∅

mi(B), (9)

where Bel (A) represents the degree to which the evidence supports the hypothesis ω ∈ A, 

while Pl(A) represents the degree to which the evidence is not contradictory to that 

hypothesis. Functions Bel(·) and Pl(·) are linked by the relation Pl(A) = 1 − Bel(A) , and in 

one-to-one correspondence with the mass function m. In the case of {0, 1} losses, the final 

decision on the class label of Xt can be made alternatively through maximizing the 

credibility, the plausibility, or the pignistic probability, as defined in the literature [33].

III. Study Population

Clinical data from 25 lung, 36 esophagus, 45 lymphoma, and 63 cervical cancer patient 

cases were included in the retrospective study. The first three patient cohorts were collected 

form The Center of Henri-Becquerel (Rouen, France) [34]–[36], while the last patient cohort 

from Washington University (St. Louis, USA) [37], Details regarding these patient cases are 

provided in TABLE I.
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Lung Cancer Data.

A cohort of twenty-five patients with inoperable stage II or III non-small cell lung cancer 

(NSCLC) were collected. These patients are treated with curative-intent chemotherapy or 

radiotherapy. The total radiation therapy (RT) dose for those patient cases were 60-70 Gy, 

and has been delivered in daily fractions of 2 Gy and five days a week. Each patient had 

histological proof of invasive NSCLC. The collected images include a FDG-PET scan at 

initial staging (i.e., PET0, the baseline), the first follow-up PET scan (PET1) obtained after 

induction chemotherapy and before RT, the second follow-up PET scan (PET2) obtained 

during the fifth week of RT (approximately at a total radiation dose of 40-45 Gy). The 

treatment response was systematically evaluated and followed-up at three months and one 

year after RT, or if there was a suspicious relapse. Local/distant relapse (LR/DR) vs. 

complete response (CR) at one year were set as the endpoint. Nineteen LR/DR patients were 

grouped into the recurrence class (majority class), while the remaining six CR patients were 

labeled as no-recurrence (minority class). Additional details regarding the patient data can 

be found in [18], [34].

Esophageal Cancer Data.

A cohort of thirty-six patients with histologically confirmed esophageal squamous cell 

carcinomas (ESCC), were collected for the study. These patients were treated with definitive 

three-dimensional conformal RT for a total dose of 50 Gy delivered 2 Gy per fraction. The 

initial tumor staging was evaluated based on oesophagoscopy with biopsies, PET/CT scans, 

and endoscopic ultrasonography. Each patient also underwent a FDG-PET/CT scan at initial 

tumor staging. The patients were evaluated and followed-up for five years. Thirteen patients 

were grouped to the disease-free class (minority class), since neither locoregional nor distant 

disease was detected on them. The remaining twenty-three patients were labeled as disease-

positive (majority class). Additional details regarding the patient data can be found in [18], 

[35].

Lymph Cancer Data.

A cohort of forty-five patients with diffuse large B-cell lymphoma (DLBCL), treated with 

chemotherapy only, were collected as well. For each patient, FDG-PET scans before the 

chemotherapy and after three/four cycles of chemotherapy were acquired. The treatment 

response was evaluated according to the International Workshop Criteria (IWC) for non-

Hodgkin lymphoma (NHL) response and according to IWC+PET three weeks after the 

chemotherapy. Thirty-nine patients were grouped to the class of complete remission 

(majority class); while the remaining six patients with refractory or partial response were 

grouped to the class of non-complete remission (minority class). More details of this patient 

cohort is reported in [36].

Cervical Cancer Data.

A cohort of sixty-three patients with stage II or III cervical cancer were collected. Patients 

were staged clinically according to International Federation of Gynecology and Obstetrics 

staging. Pre-treatment PET images were used to extract imaging features in the current 

study. Metabolic tumor volumes (MTVs) were initially defined on diagnostic PET images by 
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SUV thresholding within a suitable region-of-interest followed by manual editing. All 

patients were treated with concurrent chemotherapy and radiation therapy. Chemotherapy 

consisted of cisplatin (40 mg/m2 weekly for six cycles). Forty-six patients were labeled as 

non-recurrence (majority class) while the remaining seventeen patients were grouped to the 

recurrence class (minority class). The radiation treatment was based on standard treatment 

practices of external intensity-modulated RT irradiation and HDR brachytherapy for cervical 

cancer at Washington University in St. Louis [37].

IV. Experimental Results

A. Statistical Analysis

We applied the proposed method on the four different patient cohorts. Fifty-two features for 

lung dataset, 29 features for esophagus dataset, 27 features for lymph dataset, and 73 

features for cervix dataset are pre-selected from all extracted features and used as the input 

of the BFT-based feature selection method. The ADASYN strategy is totally conducted 3 

times to deal with the random nature of the data balancing procedure. The optimal feature 

subset is determined as the most frequently subset that occurred in the three independent 

runs. The sparsity parameter β was empirically determined by performing extra cross 

validation on the training set.

Considering the limited number of training samples of these four patient cohorts and for a 

comprehensive and fair assessment, all the compared methods were evaluated by the .632+ 

Bootstrapping. The .632+ Bootstrapping can ensure low biased and variable estimation of 

classification performance on smallsized datasets [38]. At each run of the .632+ 

Bootstrapping, the training set is a bootstrap generated by sampling from the whole patient 

cohort, while the testing set consists of the rest of samples in the patient cohort that do not 

exist in the bootstrap. Statistically, only 63.2% of the original data are used for training in 

each run. The final evaluation is then determined by combining the average performance of 

all runs (pessimistically biased estimation) with the performance of training and testing both 

on the original dataset (optimistically biased estimation). The feature selection stability is 

defined as the overlap of common selected features for all test patients with all selected 

features [39]. The prediction performance were assessed with accuracy [40], and receiver 

operating characteristics (ROC) analysis [41].

B. Discovery of Predictive Features from Patient Cohorts

The most frequent feature subsets selected by the developed model for all four patient 

cohorts are shown in TABLE II. For the lung patient cohort, the SUVmax during the fifth 

week of RT (PET2) and the longitudinal changes of texture features are selected as the 

predictive radiomic features. Differently, the clinical characteristics (TLG extracted from 

PET0 and patient gender) were selected as the predictive features for the esophageal tumor 

cohort. However, for the cervical cancer patient cohort, the standard deviation of SUVmean 

and shape/size based features were recognized as the valuable features, while the selected 

predictive features for the lymph tumor cohort include both longitudinal SUV-based features 

and genomic features. Although different features were selected for different patient cohorts, 

these selected predictive features have already been proven to yield predictive power in 
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varied clinical studies [9], [10], [12], [42]. TABLE II demonstrates that in addition to 

imaging features, other kinds of features are also selected in each subset can give 

complementary information for these existing measures to improve the prediction 

performance.

C. Performance Comparison with Other Methods

1) Comparison on Feature Selection Stability: Stability of the selected features is 

considered as one of the metrics to evaluate the performance of a feature selection method. 

The comparison on feature selection stability of the proposed method with other nine 

methods (RELIEF [8], FAST [11], SFS [9], SFFS [9], SVMRFE [10], KCS [12], HFS [42], 

EFS [43], and the method using all the predetermined features) is shown in Fig. 2. Each 

feature selection method was optimized based on the strategy proposed in related literature. 

The value of the feature selection stability ranges from 0 to 1, where 1 means all selected 

feature subsets are approximately identical for each run of the .632+ Bootstrapping, while 0 

represents no intersection among each run. As shown in Fig. 2, the BFT-based method 

achieves better performance related to feature selection stability than the other methods. The 

BFT-based method yields the best performance on the cervical patient cohort and the worst 

on the lymph tumor cohort. Table III shows the numbers of the features selected from all 

nine methods. The optimal number of the selected features from different methods also 

varied.

2) Comparison on Discrimination Power of the Selected Features: We 

performed the Andrews plot analysis to compare the discriminative power of the features 

selected with different methods. An Andrews curve applies the following transformation to 

each patient dataset,

f Xn
(t) =

Xn1
2 + Xn2

sin(t) + Xn3
cos(t)

+ Xn4
sin(2t) + Xn5

cos(2t) + ⋯,
(10)

where t ranges from 0 to 1 and Xn1, Xn2, ⋯ represent the selected features from each patient 

dataset Xn. Andrews plot is a graphical data analysis technique for plotting multivariate data, 

and provides a way to visualize information carried by high-dimensional data [44].

Fig. 3 shows the Andrew plots generated with the selected predictive features from the BFT-

based and SVMRFE methods [10] on two patient cohorts of NSCLC and cervical. Blue line 

represents the curve given the feature input of patients labeled as one type of treatment 

outcome while orange line represents those of patients labeled as the other treatment 

outcome. Solid line denotes the median value and dotted line shows the second quartile of 

the resulted fXn (t) from all patient cases. Fig. 3 clearly shows that patients with different 

treatment outcome can be better stratified by the features selected by the BFT-based method 

compared to the SVMRFE method. This illustrates that the features selected from the BFT-

based method yield more predictive information than those selected by other methods.
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D. Comparison on Outcome Prediction Performance

To assess the prediction performance of the BFT-based model, accuracy and AUC metrics 

were computed for the BFT-based method and other nine methods. The general definition of 

accuracy and AUC metrics, as that used in [4], [18], are employed in this study too. Fig. 4 

shows the prediction performance with EK-NN as the default classifier for all methods. The 

BFT-based method achieves better results than other methods on all four patient cohorts. The 

BFT-based model yields lowest prediction accuracy and AUC values on the Esophagus 

patient cohort compared to the other three cohorts.

The method performance by use of EK-NN and SVM as two different classifiers given input 

the features selected by the BFT-based method was compared as well. The results shown in 

Fig. 5 demonstrate that combining BFT-based feature selection with the EK-NN classifier 

can provide higher performance than with other classifiers.

E. Effect of Performing Feature Pre-selection

By use of cervical cancer data as an example, we have performed the test by applying BFT-

based feature selection method and other nine methods directly on all the extracted features 

and without performing the feature pre-selection. Here, total of 657 features were extracted 

for the cervical patient cohort. As shown in Fig. 6, the overall performance of most of the 

tested methods (including BFT) without performing feature pre-selection is worse than that 

after performing feature pre-selection (shown in Fig. 4 above). Also, the result achieved by 

applying the BFT-based method on all features is still slightly better than that from other 

methods. Performing feature pre-selection improves the prediction performance of the BFT-

based method and some other testing methods.

F. Effect of Performing Data Re-balancing

We evaluated the performance improvement with and without data rebalancing. As shown in 

Fig. 7, performance is improved on all four patient cohorts by applying data rebalancing. 

When the dataset is severely imbalanced (e.g., the lung tumor example), the data balancing 

procedure is especially significant for the improvement of prediction performance.

G. Sparsity of the Selected Features

The sparsity term β in the loss function in Eq. 6 plays an important role to find a sparse 

feature subset which can lead to high prediction accuracy on unseen data. Larger β yields 

greater sparsity. The number of neighbors, K, in the EK-NN classifier can also affect the 

prediction performance. We evaluated the prediction performance of the EK-NN classifier 

with respect to K(1 ≤ K ≤ 10) under different sparsity degree of 0.01, 0.03, and 0.07. Results 

on NSCLC and cervical patient cohorts are shown in Fig. 8 as two examples. For all four 

patient cohorts, the BFT-based method consistently leads to better classification performance 

than using directly all the input features, and also improves the robustness of the EK-NN 

classifier in terms of parameter K. Also, when β equals 0.03 to 0.07, the proposed method 

can achieve better classification performance compared to other β across all the studied 

datasets.
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H. Computational Complexity

Computational complexity of the BFT-based method mainly depends on the optimization of 

L(Λ) and the size of input features V. Let O(L) be the computational complexity of 

calculating loss function L(Λ), O(L) depends on the calculation of T1, T2 and ∥Λ∥ in L, 

which relate to the number of patient data samples N, the number of all possible class labels 

C, the number of neighbors K for computing mass functions, and the number of input 

features V. V is much larger than N, C, and K. The computational complexity of the BFT-

based method is in the order of O(V).

V. Discussion

A. The Proposed BFT-based Prediction Method

Compared with traditional probability theory that only considers probabilities on individual 

outcome classes, BFT allows to estimate the probability of the training sample belonging to 

each individual outcome class and the sets of outcome classes from each feature. The 

estimations from all features are then combined to a global estimation. Therefore, the 

uncertainty of the predictive information carried by each feature of each training sample is 

implicitly integrated into the loss function. The probabilities relating to sets of outcome 

classes are assigned to each individual class with the pignistic probability transformation and 

can maximize the final estimation accuracy.

The performance of the BFT-based method on four different patient cohorts was 

investigated. Different image features were utilized by the prediction method for the 

different patient cohorts. For the lung patient cohort, radiomic features extracted from pre-, 

in, and after-treatment PET images were utilized. For cervical cancer patient cohort, only 

radiomic features extracted from pre-treatment PET images were utilized. Differently, for 

the esophagus and lymphoma patient cohort, in addition to pre- and post-treatment PET 

image data, clinical characteristics and genomic features were utilized. As shown in Table II, 

the most predictive features were selected for different patient cohorts are different. The 

feature subsets determined by the method are in consistency with the predictors that have 

been verified in reported clinical studies [9], [10], [12], [42]. It was observed that clinical 

and genomic features might yield complementary information to radiomic features and 

potentially improve the prediction performance.

It was also observed that longitudinal features extracted from in- and post-treatment PET 

images can provide complementary information and improve the prediction performance. 

Another interesting finding was observed with the cervical patient cohort. Although only 

pre-treatment PET images were employed for this patient cohort, the feature selection 

stability and predication performance of the method on this cohort was the best. This might 

relate to the relatively large size of this patient cohort, but further investigations are needed 

to confirm this conjecture.

B. Future Work

As shown in Fig. 8, an appropriate control parameter is helpful for the determination of the 

feature subset. As one of the future work, the strategy to automatically selecting parameters 
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of the model will be investigated. The effect of treatment methodology and treatment dose 

on prediction performance of tumor control will be investigated as well.

The calculation of some radiomic features depends on the MTV delineation, which might 

induce some uncertainties in radiomics features. This might affect the model prediction 

accuracy on patients in different ways. As an interesting future work, two uncertainties will 

be investigated, including 1) MTV delineation on PET images, (2) limited accuracy of the 

affine transformations used to map MTVs from PET to other images. Radiomic features 

calculated from different MTV subregions might yield different prediction accuracy and 

additional features might affect predictive accuracy compared to that calculated on the whole 

MTV. The MTV will be separated into a set of sub-regions and calculate features for each 

subregion.

Multi-modality radiomic features derived from PET, CT, and MR imaging have individually 

been reported as predictive biomarkers [3], [45], [46]. However, very little research has 

focused on developing an integrated prediction model to seamlessly fuse the predictive 

information carried by multimodal features for more accurate outcome prediction. BFT 

enables various fusion rules to combine predictive information represented by multi-source 

radiomic features to achieve more accurate prediction (classification) [47]–[50]. The 

performance improvement by use of multi-modality features in comparison to each single 

modality will be investigated, and the importance of each modality images will be validated. 

In addition, the importance of features extracted from images acquired at different time 

points throughout the treatment will be validated as another future work.

VI. Conclusions

The current study shows that PET-based radiomic features are associated with local tumor 

control in cancers. As an integrated framework to extract, process, select, and learn from 

radiomic features, the developed prediction model can provide a complete strategy to 

improve the accuracy and stability of outcome prediction, and ultimately cancer patient care. 

The model will guide patient-specific treatment by identifying patients for whom 

conventional treatment will likely fail as well as people who are candidates for de-escalated 

treatment with associated reduced normal tissue toxicity.
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Fig. 1: 
The proposed treatment outcome prediction model.
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Fig. 2: 
Comparison on feature selection stability.
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Fig. 3: 
Andrews plot of the selected features by use of the SVMRFE and BFT-based methods on 

two patient cohorts. (a) Stage II-III NSCLC (b) Stage II-III cervical cancer
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Fig. 4: 
Prediction accuracy and AUC of different feature selection methods with EK-NN used as the 

classifier. (a) Prediction Accuracy (b) AUC
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Fig. 5: 
Comparison of using either EK-NN or SVM as the classifier.
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Fig. 6: 
Prediction performance without feature pre-selection.
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Fig. 7: 
The effect of data re-balancing.
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Fig. 8: 
Prediction performance of the EK-NN classifier with respect to different K under different 

sparsity degrees. (a) NSCLC (b) Stage II-III cervical cancer
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TABLE I:

Characteristics of four patient cohorts.

Datasets

Recurrence,
Disease-positive,

Non-complete
remission

Non-recurrence,
Disease-free,

Remission

Stage II-III NSCLC 19 6

ESCC 23 13

Lymph tumor 6 39

Stage II-III Cervical 17 46
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TABLE II:

Selected feature subsets for four patient cohorts

Cohorts Selected features

Stage II-III NSCLC

1 SUV-based: SUV max extracted from PET2

2 GLSZM-based: Gray-level-non-uniformity change between PET2 & PET0

3 GLSZM-based: change of zone-percentage between PET1 & PET0

4 GLSZM-based: change of zone-percentage between PET2 & PET0

ESCC

1 SUV-based: TLG extracted from PET0

2 Clinical characteristic: Tumor staging as II

3 Clinical characteristic: Patient gender

Lymph tumor

1 SUV-based: Change of SUV max between PET1 & PET0

2 SUV-based: SUV max extracted from PET0.

3 Gene expression: MME Gene relates to tumor subtype

4 Gene expression: SLC2A5 Gene relates to glucose transportation

Stage II-III Cervical Cancer

1 SUV-based: Standard deviation of SUV in tumor volume

2 Shape and Size based: Ratio of surface area to tumor volume

3 GLCM-based: Dissimilarity of gray level co-occurrence matrix

4 GLCM-based: Sum average of gray level co-occurrence matrix

5 GLRLM-based: Run percentage of gray level run-length matrix
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TABLE III:

The number of selected features.

Methods Lung Esophagus Lymphoma Cervix

All 52 29 27 73

RELIEF 7 6 4 3

Fast 10 25 15 14

SFS 5 2 1 2

SSFS 5 5 5 5

SVMRFE 5 5 5 5

KCS 29 3 2 38

HFS 3 5 3 7

EFS 4 3 4 5

BFT 4 3 4 5
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