
Disruptions in White Matter Maturation and Mediation of 
Cognitive Development in Youths on the Psychosis Spectrum

Catherine E. Hegarty, Dietsje D. Jolles, Eva Mennigen, Maria Jalbrzikowski, Carrie E. 
Bearden, Katherine H. Karlsgodt
Department of Psychology (CEH, DDJ, CEB, KHK) and Department of Psychiatry and Behavioral 
Sciences (EM, CEB), Semel Institute for Neuroscience and Human Behavior, and Center for 
Neurobehavioral Genetics (CEB), University of California, Los Angeles, Los Angeles, California; 
and Department of Psychiatry (MJ), University of Pittsburgh, Pittsburgh, Pennsylvania.

Abstract

BACKGROUND: Psychosis onset typically occurs in adolescence, and subclinical psychotic 

experiences peak in adolescence. Adolescence is also a time of critical neural and cognitive 

maturation. Using cross-sectional data from the Philadelphia Neurodevelopmental Cohort, we 

examined whether regional white matter (WM) development is disrupted in youths with psychosis 

spectrum (PS) features and whether WM maturation mediates the relationship between age and 

cognition in typically developing (TD) youths and youths with PS features.

METHODS: We examined WM microstructure, as assessed via diffusion tensor imaging, in 670 

individuals (age 10–22 years; 499 TD group, 171 PS group) by using tract-based spatial statistics. 

Multiple regressions were used to evaluate age × group interactions on regional WM indices. 

Mediation analyses were conducted on four cognitive domains—executive control, complex 

cognition, episodic memory, and social cognition—using a bootstrapping approach.

RESULTS: There were age × group interactions on fractional anisotropy (FA) in the superior 

longitudinal fasciculus (SLF) and retrolenticular internal capsule. Follow-up analyses revealed 

these effects were significant in both hemispheres. Bilateral SLF FA mediated the relationship 

between age and complex cognition in the TD group, but not the PS group. Regional FA did not 

mediate the age-associated increase in any of the other cognitive domains.

CONCLUSIONS: Our results showed aberrant age-related effects in SLF and retrolenticular 

internal capsule FA in youths with PS features. SLF development supports emergence of specific 

higher-order cognitive functions in TD youths, but not in youths with PS features. Future 

mechanistic explanations for these relationships could facilitate development of earlier and refined 

targets for therapeutic interventions.
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Schizophrenia (SZ) has a lifetime prevalence of 0.75% (1), but, consistent with our 

understanding of a psychosis continuum (2,3), psychotic-like experiences (PLEs) are 

reported more frequently (5%–8% of the population) (4,5). These subclinical symptoms are 

qualitatively similar to the hallmark psychotic symptoms of SZ but with decreased severity 

and frequency. Although below the clinical threshold, such symptoms are still distressing 

and are associated with lower reported happiness (6), increased suicidality (7,8), and 

significant occupational and social impairments (9). PLEs also share etiological risk factors, 

cognitive correlates, and symptom profiles with SZ (3) and can precede subsequent full-

blown illness. Similar to transition rates for clinical high-risk youths (10), up to 25% of 

individuals who report PLEs convert to a diagnosed psychotic disorder by adulthood (11,12). 

In individuals who do not convert to a diagnosed psychotic disorder, approximately 30% to 

40% continue to experience PLEs into early adulthood (13,14) and potentially throughout 

life (15).

The onset period for SZ begins in late adolescence, and similarly, subclinical psychotic 

symptoms peak during adolescence (3), coinciding with periods of dynamic change in 

cognition and brain connectivity, including white matter (WM) maturation. The typical 

linear increase in WM volume from childhood until early adulthood (16,17) is thought to 

reflect axon growth, organization of axons into bundles, and myelination (18). WM integrity 

is putatively reflected by the principal diffusion tensor imaging (DTI) measure, fractional 

anisotropy (FA) (19–22). DTI studies have shown regional age-related changes with the 

overarching trend of FA increasing into adulthood (23,24). Although both early-onset and 

chronic SZ have been associated with reduced FA [for review see (25,26)], whether and how 

developmental trajectories of WM in youths who develop SZ diverge from those in typically 

developing (TD) youths is unknown. In this study, we used TD and psychosis spectrum (PS) 

groups from the Philadelphia Neurodevelopmental Cohort (PNC) to explore how psychosis 

affects age-associated regional changes in WM. One previous study reported an age × group 

interaction on regional gray matter volume in this cohort (27); however, no studies have 

investigated such interactions on DTI-assessed WM indices.

As with SZ, PLEs have been associated with cognitive deficits, both generally and in 

specific domains (28–32). However, despite the demonstrated link between psychosis and 

cognition and the known relationship of WM to cognitive development (33–35), it is not yet 

established whether regional WM mediates the relationship between age and cognitive 

deficits associated with psychosis. To address these questions, we first evaluated whether the 

age-related pattern of regional WM development was disrupted in youths with elevated 

PLEs. We then conducted post hoc analyses on tracts with significant interactions to evaluate 

whether FA mediated the relationship between age and cognition and whether that 

relationship differed between TD youths and youths with PS features.
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METHODS AND MATERIALS

Participants

The PNC is a publicly available population-based sample of more than 9500 individuals (age 

range: 8–22 years) [for description see (36)]. All subjects provided medical history, clinical, 

and cognitive data. A subset of participants underwent neuroimaging, with DTI scans 

acquired for 1312 individuals. All data presented here were collected at the University of 

Pennsylvania and analyzed at the University of California, Los Angeles. Psychopathology 

self-report and parent-report ratings and medical histories were obtained from the 

GOASSESS structured computerized instrument.

In addition to the PNC’s exclusion for medical problems impacting brain function (36), 

participants were excluded if they had more than 2.5 mm of total Euclidean distance 

movement during the DTI scan (n = 44), a history or current diagnosis of autism spectrum 

disorder (n = 13), or other neurological or nonpsychotic psychiatric diagnoses (n = 452) (see 

Supplement). Owing to the limited number of younger individuals with PS features, 

participants younger than 10 years of age (n = 122) were also excluded to match groups for 

age distribution. After excluding participants who met one or more of the aforementioned 

criteria, 707 individuals remained for analysis.

Subclinical Grouping

Psychosis screening and classification of individuals into groups were performed as 

described by Calkins et al. (37) (see Supplement). Although our primary analysis consisted 

of PS and TD groups, we included a third group, limited PS (LPS), with symptom severity 

between TD and PS in secondary analyses to allow for preliminary investigation of subtle 

dimensional changes. These individuals were included only in secondary analyses owing to 

the small sample size. In our sample of 707 youths, 499 were in the TD group, 171 were in 

the PS group, and 37 were in the LPS group.

Cognitive Data

Cognitive testing was administered via the Computerized Neurocognitive Battery developed 

at the University of Pennsylvania. Scores for complex cognition (language reasoning, 

nonverbal reasoning, and spatial ability), executive control (mental flexibility, attention, and 

working memory), episodic memory (verbal memory, face memory, and spatial memory), 

and social cognition (emotion identification, emotion differentiation, and age differentiation) 

were calculated as previously described (38). Our analyses focused on efficiency scores—

obtained via the PNC data release and based on the entire neurocognitive sample (N = 9138)

—which reflect the sum of Z scores for accuracy and speed. Analyses of covariance, with 

age and sex as covariates, were used to evaluate group differences in efficiency scores. A 

Bonferroni correction for each of the four domains was applied, resulting in a significance 

threshold of p < .05/4 = .0125.

DTI Processing

The PNC protocol divides a 64-direction diffusion-weighted imaging set into two 

independent 32-direction sequences (b value: 1000 s/mm2) [see Supplement and (36) for 
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parameter details]. The two sequences were concatenated before applying standard 

preprocessing using tools from FMRIB Software Library’s Diffusion Toolbox. Specifically, 

Eddy Correct was used to correct for distortions due to eddy currents and head motion. 

Registered b0 and concatenated files were skull stripped and masked using Brain Extraction 

Tool. FA images were calculated by fitting a diffusion tensor model at each voxel with 

DTIFit. We then implemented tract-based spatial statistics (39) in accordance with the 

ENIGMA-DTI pipeline (http://enigma.ini.usc.edu/protocols/dti-protocols) (40) and 

extracted regions of interest (ROIs) from the Johns Hopkins University White-Matter 

Tractography Atlas (41–43). Bilateral ROIs were generated by averaging across both 

hemispheres. We tested the average FA for 25 total ROIs (Supplemental Figure S1; 

Supplemental Table S1).

FA was our principal measure of interest. Additional diffusivity measures were examined in 

follow-up analyses. Axial diffusivity (AD) reflects diffusivity parallel to the axon and is 

thought to reflect fiber organization (44). Radial diffusivity (RD) is perpendicular to axons 

and an indirect measure of myelination (44). Mean diffusivity (MD) is an average of 

diffusivity across all three axes (20). AD, MD, and FA were calculated by DTIFit, whereas 

RD was computed as the average of the second and third eigenvalue images. Non-FA DTI 

measures also underwent ENIGMA tract-based spatial statistics processing.

Statistical Analysis

Statistical analyses and graphical representations were performed using Stata 15 software 

(StataCorp LP, College Station, TX). For each tract, individuals whose FA exceeded 1.5 

interquartile ranges (IQRs) either below the first quartile (Q1 − [1.5 × IQR]) or above the 

third quartile (Q3 + [1.5 × IQR]) were deemed outliers and excluded from subsequent 

analysis of that tract. The number of individuals used in analysis of each tract is reported in 

Supplemental Table S1. To test for an age × group interaction and main effect of group on 

regional FA, a regression model including age, sex, and group (TD and PS) was used. The 

regression was followed by evaluation of marginal effects, computed at 1-year age intervals, 

for interaction analyses. A corrected significance threshold for all regression analyses was 

set at p < .05/25 = .002, which corrects for the 25 tracts analyzed.

In tracts where significant age × group interactions for FA were detected, we conducted a 

series of follow-up analyses. To conduct preliminary exploration of whether the extent of 

PLEs affected age-associated FA changes, analyses including youths with LPS features as a 

third group were conducted to determine if an age × group (TD, LPS, and PS) interaction 

was still present. Post hoc contrasts compared the slope of marginal effects between groups 

to determine whether LPS represented an intermediate phenotype. We also tested for age × 

group interactions on hemispheric FA and non-FA measures. A significance threshold of p 
< .05/2 = .025 was applied to account for the two tracts undergoing follow-up analyses.

Post Hoc Mediation Analyses

For tracts with significant age × group interactions, we conducted post hoc mediation 

analyses to evaluate whether the relationship between age and any of the cognitive domains 

was mediated by FA and, if so, whether that mediation differed between TD and PS groups. 
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Individuals missing a score for a given cognitive domain were excluded from mediation 

analyses for that particular domain.

Mediation was tested using methods described by MacKinnon et al. (45). Path coefficients 

between the independent (X), dependent (Y), and mediator (M) variables were determined 

using three regression equations (Figure 1). We first determined whether initial criteria for 

mediation were met. Specifically, whether path coefficients a (effect of age on FA), b (effect 

of FA on cognition), and c (effect of age on cognition) all were significant (Figure 1). If 

these criteria were satisfied, we continued to test the significance of the indirect (i.e., 

mediated) effect, computed as the product of regression coefficients a and b (46). We used a 

bootstrapping approach, in which data were resampled with replacement 1000 times, to 

assess for significance of the indirect effect. Bootstrapping allows for confidence intervals to 

be built from resampled data without assumptions of normality. To reduce the chance of type 

I errors, we increased our confidence interval to 99%. Confidence intervals including 0 were 

deemed as nonsignificant. Finally, we determined the proportion of the total effect that was 

mediated by dividing the indirect effect (ab) by the total effect (c = c′ + ab).

For tracts that significantly mediated a cognitive domain, supplementary analyses were 

conducted to determine if non-FA measures mediated the age-cognition relationship and 

whether FA mediated cognition accuracy and speed (rather than the combined efficiency 

score) (see Supplement).

RESULTS

Participants

There were no significant differences between groups in age or sex distribution (Table 1).

DTI Analysis

Multiple regression analyses, including age, sex, and group, for each of the 25 tracts 

revealed that only the superior longitudinal fasciculus (SLF) and retrolenticular internal 

capsule (RLIC) showed a significant age × group interaction (TD vs. PS; p < .002). The SLF 

(Figure 2A) was the only tract with a significant main effect of group (Supplemental Table 

S1). Additional tracts showed age × group interactions meeting the thresholds for trend-level 

significance (p < .004) and uncorrected significance (p < .05) (Supplemental Table S2).

Superior Longitudinal Fasciculus.—All three variables (age, sex, and group) in the 

regression model significantly explained SLF FA (R2 = .14, F4,660 = 26.86, p = 1.15 × 

10−20), with a significant interaction between age and group (β = −.002, F1,660 = 13.20, p = 

3.0 × 10−4) (Figure 2B) and each variable independently significantly contributing to the 

model (Supplemental Table S3). Evaluation of regression coefficients for each group 

revealed that whereas FA increased with age in the TD group (β = .003, p = 3.68 × 10−19), 

there was no significant relationship in the PS group (β = 4.9 × 10−4, p = .48). Confirmatory 

analyses indicated no significant group × sex (F1,660 = 2.04, p = .15) or age × group × sex 

(F1,657 = 1.18, p = .28) interactions on SLF FA.

Hegarty et al. Page 5

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2020 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Secondary analyses revealed significant age × group interactions in both the right (β = −.

0032, F1,660 = 15.51, p = 1.0 × 10−4) and the left (β = −.0022, F1,660 = 8.51, p = .0036) SLF. 

Of the three non-FA SLF diffusivity measures, both RD (β = 3.30 × 10−6, F1,660 = 17.21, p 
= 3.8 × 10−5) (Figure 2C) and MD (β = 2.54 × 10−6, F1,660 = 13.46, p = 2.6 × 10−4)(Figure 

2D) showed a significant age × group interaction. Youths in the TD group showed 

significant decreases in RD (β = −4.47 × 10−6, p = 3.8 × 10−32) and MD with age (β = 

−3.82 × 10−6, p = 6.8 × 10−32). Youths in the PS group also showed lower RD (β = −1.36 × 

10−6) and MD (β = −0.13 × 10−6) with increasing age, but this association was not 

significant (p > .025). There was no significant interaction between age and group for AD 

(Figure 2E).

Analyses including youths with LPS features as a third group in the regression also resulted 

in a significant age × group interaction (F2,695 = 6.68, p = .0013) (Figure 2F). Post hoc 

contrasts revealed that the slope of the relationship between age and FA for the LPS group 

did not significantly differ from the TD (t1,695 = 0.43, p = .664) or the PS (t1,695 = −0.144, p 
= .149) group.

Retrolenticular Internal Capsule.—In the RLIC (Figure 3A), all three variables in the 

multiple regression analysis collectively explained FA (R2 = .037, F4,657 = 6.24, p = .0001), 

with a significant interaction between age and group on RLIC FA (β = −.002, F1,657 = 

10.44, p = .0013) (Figure 3B) but no significant main effect of group (p > .002) 

(Supplemental Table S4). Evaluation of regression coefficients for each group indicated that 

TD and PS groups exhibited opposite patterns, with a gradual linear increase in RLIC FA 

across development for the TD group (β = .001, p = .001) and a nonsignificant decrease in 

the PS group (β = −.001, p = .062) with increasing age. Confirmatory analyses indicated no 

significant group × sex (F1,657 = 0.21, p = .644) or age × group × sex (F1,654 = 0.17, p = .

681) interactions.

Secondary analyses of RLIC FA indicated there were significant age × group interactions in 

both the left (β = −.0021, F1,654 = 7.72, p = .0056) and the right (β = −.0024, F1,647 = 9.40, 

pROI = .0023) hemispheres. Of the three non-FA diffusivity measures, both RD (β = 2.92 × 

10−6, F1,657 = 14.21, p = 2.00 × 10−4) (Figure 3C) and MD (β = 7.58 × 10−7, F1,656 = 7.90, 

p = .0051) (Figure 3D) showed a significant age × group interaction. TD youths showed a 

significant decrease in RLIC RD (β = −2.5 × 10−6, p = 9.1 × 10−13) and MD (β = −2.9 × 

10−6, p = 3.4 × 10−16) with increasing age. In youths with PS features, there were no 

significant relationships between age and RLIC RD (β = 4.97 × 10−7, p = .50) or MD (β = 

−6.8 × 10−7, p = .39). Neither group showed a significant age × group interaction on AD 

(Figure 3E).

Inclusion of youths with LPS features as a third group in the regression model also resulted 

in a significant age × group interaction (F2,692 = 5.36, p = .0049) (Figure 3F). Post hoc 

contrasts revealed that the slope of the relationship between age and FA for the LPS group 

did not significantly differ from the TD (t1,692 = −0.02, p = .982) or the PS (t1,695 = −0.166, 

p = .097) group.
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Neurocognitive Efficiency Results

Youths in the PS groups had significantly (p < .0125) lower efficiency scores in all four 

cognitive domains (Figure 4; Supplemental Table S5).

Post Hoc Mediation Analyses

Superior Longitudinal Fasciculus.—The PS group did not satisfy initial requirements 

for mediation of the effect of age on any cognitive domain, as both a (coefficient for effect of 

age on SLF) and b (coefficient for effect of SLF on cognition) were nonsignificant (p > .05) 

for all domains. However, in the TD group, path coefficients a and b were significant for 

complex cognition and episodic memory; scores increased with both age and SLF FA (Table 

2). Evaluating mediation in TD with a bootstrapping approach indicated that only the 

relationship between age and complex cognition was significantly mediated by SLF FA, 

with SLF FA accounting for 27.6% of the total effect between age and complex cognition. 

(See Supplement for path coefficients of mediation analyses for executive control and social 

cognition [Supplemental Table S6], complex cognition by non-FA SLF measures 

[Supplemental Table S7], and complex cognition accuracy and speed by SLF FA 

[Supplemental Table S8]).

Retrolenticular Internal Capsule.—In contrast to the SLF, the effect of age on RLIC 

FA (a) was significant for both TD (β = −3.75 × 10−6, F1,491 = 46.18, p = 3.13 × 10−11) and 

PS (β = −3.03 × 10−6, F1,164 = 4.99, p = .027) groups. However, RLIC FA did not 

significantly explain any cognitive score in either the TD group or the PS group (p > .05). 

Thus, criteria for the mediation of the relationship between age and each cognitive domain 

were not met, and no further analyses were conducted.

DISCUSSION

Our results provide compelling evidence that subclinical PLEs are associated with disrupted 

age-related changes of WM in the SLF and RLIC. We have also demonstrated that WM 

development in the SLF partially mediates the relationship between age and complex 

cognition in TD youths but not in youths with PS features. These findings suggest that 

alterations in WM neurodevelopment may potentially contribute to cognitive deficits in 

psychosis.

Psychosis has been increasingly conceptualized as having a neurodevelopmental component 

(47), with an age-related progression from high-risk and prodromal stages to first-episode 

and, eventually, chronic illness [for review see (48)]. Longitudinal imaging studies relate this 

evolution of illness in part to disruptions in traditional WM trajectories, particularly when 

the disease onset occurs in childhood or adolescence [for review see (49)]. Understanding 

the link between the trajectories of psychosis and WM at all stages of the disease is 

necessary for developing age-appropriate targeted interventions. We contribute to 

elucidating this relationship by identifying aberrant age-related effects in specific WM 

tracts.

Of the 25 tracts evaluated, only the SLF and RLIC reached the corrected threshold for a 

significant age × group interaction. The SLF is an associative tract with ipsilateral 
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frontoparietal connections (50) that shows pronounced development across adolescence 

(24,51,52) and has a well-established role in fundamental cognitive processes, such as 

working memory, language, and attention (53–55). The RLIC is a projection tract containing 

motor and sensory fibers that carry projections from the thalamic pulvinar and lateral 

geniculate nuclei to association and visual cortices (56). Consistent with existing studies of 

WM maturation during typical development (24), we found a linear increase in FA in both 

the SLF and the RLIC in the TD group. The PS group, however, did not show any significant 

age-related changes in either SLF FA or RLIC FA, suggesting disrupted maturation. 

Together with our findings of age × group interactions for RD, these results collectively 

suggest that the altered relationships in youths with PS features may be driven by decreased 

regional myelination, rather than axonal degeneration or differences in tract organization 

(57–59).

Reduced SLF integrity has previously been reported in youths with risk factors for psychosis 

(60), subclinical symptoms (61,62), recent-onset SZ (47,63), and first-episode SZ (64,65) 

and adults with established SZ (66). Furthermore, a longitudinal study indicated that high-

risk individuals who converted to psychotic disorders had reduced SLF FA at baseline 

relative to individuals who did not convert (67). Our results extend on these previous 

findings, collectively suggesting that age-associated alterations of SLF development as early 

as late childhood may be associated with subclinical psychosis and serve as a putative early 

biomarker for SZ, although this possibility awaits confirmation in longitudinal studies. 

Furthermore, these collective results suggest that abnormalities in SLF FA associated with 

SZ may be independent of illness confounds, such as medication.

FA of association tracts, such as the SLF, have previously been related to general cognitive 

function (68–72) as well as development of higher-level cognition during adolescence (33–

35,73,74). However, the relationship between the SLF and cognition has been less frequently 

investigated in youths with psychosis. Furthermore, previous studies have typically 

evaluated the relationship between cognition and WM separately from that of cognition and 

age (75) and thus could not rule out that gains in neurocognition may only relate to FA 

because of a shared association with age.

Our analysis took the novel approach of testing the degree to which WM integrity mediates 

cognitive development from childhood through young adulthood and how this relationship 

differs in PS. We found a significant positive relationship of age with complex cognition and 

SLF FA in TD youths, but not in youths with PS features. Additionally, the association 

between age and complex cognition in TD youths was significantly mediated by SLF FA, 

highlighting the importance of the tract in healthy cognitive development. Complex 

cognition is a reflection of nonverbal reasoning, language reasoning, and spatial attention 

(38), making our finding consistent with existing studies in which frontoparietal structural 

connectivity, including the SLF, has been related to attention (76,77), language (77,78), 

spatial working memory (79,80), and reasoning ability (81) in TD youths. Absence of any 

significant age-associated changes in complex cognition and SLF FA, and thus any 

corresponding mediation, in youths with PS features suggests that the presence of 

subclinical PLEs disrupts maturation of the SLF, which, in turn, affects development of 

higher-level cognitive functions, as demonstrated by the overall significantly lower complex 
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cognition observed in youths with PS features relative to TD youths. Critically, mediation 

studies evaluating changes across adulthood into elderly populations found that age-related 

reductions in SLF FA did not mediate corresponding cognitive decline (82,83), suggesting 

that its role as a mediator in TD youths may be specific to emergence rather than decline of 

higher-level cognitive function. The SLF has been divided into as many as five 

subcomponents (84) with functionally distinct roles. We used a predefined ROI that 

predominantly includes the frontoparietal portion [traditionally, SLF I, II, and III (85)] 

without extensive temporoparietal connections. Future tractography studies could extend our 

analyses to investigate these subcomponents individually.

Our findings also revealed an age × group interaction on RLIC FA. Reduced FA in the 

internal capsule of patients with chronic SZ has been consistently reported, with mixed 

findings in first-episode and medication-naïve patients [for review see (26,86)]. To our 

knowledge, there are no studies that focus specifically on the RLIC in relation to psychosis, 

though there is previous evidence for an association of reduced RLIC FA with psychosis. 

Nonhuman adolescent primates receiving daily exposure to ketamine (an N-methyl-D-

aspartate antagonist used to mimic psychotic symptoms) showed reduced FA in multiple 

tracts, including the RLIC and SLF (87). Furthermore, a longitudinal study found that 

patients (20–40 years of age) with SZ showed an attenuated increase in RLIC FA across a 3-

year follow-up relative to control subjects (88). Finally, a meta-analysis reported 

significantly reduced FA in the left RLIC (89), whereas another meta-analysis, using the 

same 25 ROIs, showed that adults with SZ had lower RLIC FA than healthy control subjects, 

though the effect size (d = −.13) did not meet criteria for corrected significance (90). 

Considered with our findings, these studies may suggest that abnormalities in RLIC FA are 

most pronounced during adolescent development, with a compensatory increase occurring 

later in adulthood, or that some other confound in adult patients, such as long-term 

medication, affects this measure. Further study of this tract in developmental and adult 

populations is needed to confirm these results.

Projection tracts such as the internal capsule (and here RLIC) are important for corticospinal 

and sensory communication and have been less frequently investigated in relation to 

psychiatric disease than associative tracts. Previous studies have postulated that reduced 

WM in the internal capsule may lead to functional dysconnectivity between the cortex and 

subcortical structures (91), with corresponding clinically relevant correlates such as 

increased positive symptoms (92) and impairments in emotional stability, motivation, and 

executive function (86,92–94). Although dysfunctional information processing has been 

increasingly implicated in SZ as a putative contributor to impairments in higher-level 

cognitive function (95), we did not find a relationship between RLIC FA and the cognitive 

measures used here. However, there is evidence that motor-related and sensory-related 

symptoms of psychosis emerge before deficits in higher-order cognition (96). The RLIC 

contains both motor and sensory fibers (97), and thus it is possible that RLIC FA mediates 

age-related changes in these systems rather than cognition.

Finally, our exploratory analysis in the LPS group supports the hypothesis that the extent of 

deviation from typical age-related patterns in RLIC and SLF FA relates to the severity of 

PLEs. The LPS group showed an intermediate pattern, with FA values falling between those 
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of the TD and PS groups. This is further evidence that abnormalities in age-associated 

structural changes are emerging even at the lowest end of the psychosis spectrum. However, 

owing to the small LPS sample size, these findings are preliminary and require additional 

studies with larger samples.

Strengths of this study include the population-based cohort that allows us to eliminate 

confounds such as medication and illness chronicity. Our results also expand on our 

evidence of regionally specific FA disruptions by evaluating non-FA measures. Finally, there 

is a paucity of studies examining how regional WM measures may mediate the relationship 

between age and cognitive endophenotypes of SZ. This is likely attributable to the rarity of 

access to both neuroimaging and cognitive data for a sample size of this magnitude that 

spans such a broad age range. Future studies incorporating more precise measures of 

maturation, such as pubertal stage, could help to refine our understanding of these 

relationships. Additionally, future mediation analyses with tasks designed to investigate 

more focal areas of cognition implicated in psychosis, such as processing speed, could 

further elucidate the role of WM in cognitive development. Similarly, additional clinical 

measures, such as individual symptom scales, would be informative when exploring age-

related patterns within subgroups. Finally, the PNC consists of cross-sectional data, which 

limits our ability to evaluate developmental trajectories. Prospective longitudinal data are 

essential to determine neural biomarkers that predict subsequent outcome.

Conclusions

In this population-based sample, youths with PLE showed disrupted development of regional 

WM connectivity and, in contrast to TD youths, did not show mediation of the relationship 

between age and cognition by SLF FA. These findings suggest that disturbances of age-

related changes in SLF and RLIC WM may be an early biomarker for psychosis and that the 

SLF may contribute to cognitive deficits. Future studies should pursue longitudinal 

investigations to determine their predictive validity and preclinical experimental studies to 

provide mechanistic explanations and potentially identify critical temporal and anatomical 

targets for neurotherapeutic interventions.
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Figure 1. 
Schematic of a simple mediation model. We examined whether regional fractional 

anisotropy (FA) significantly mediated the effect of age on cognition. In a mediation model, 

the relationship between an independent variable (X) and a dependent variable (Y) is 

influenced by the (nonobservable) mediator variable (M). Intercepts and residuals for each 

equation are denoted by i and e, respectively. The total effect (c) is the sum of both the direct 

(c′) and mediated (ab) effects. The total effect, c, was determined with equation (1). 

Coefficients a and b were determined with equation (2) and equation (3), respectively. The 

direct effect (c′) was determined with equation (2). Mediation is determined by assessing 

the significance of the mediated effect (ab) with a bootstrapping approach.
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Figure 2. 
Age-associated changes in the superior longitudinal fasciculus (SLF). (A) Three-

dimensional representation of SLF tract. In analyses of typically developing (TD) and 

psychosis spectrum (PS) groups, there was a significant (p < .002) interaction between age 

and group on SLF fractional anisotropy (FA) (B). Follow-up analyses revealed additional 

significant (p < .025) age × group interactions on radial diffusivity (RD) (C) and mean 

diffusivity (MD) (D), but not on axial diffusivity (AD) (E). (F) Follow-up analyses including 

a third group, limited psychosis spectrum (LPS), also revealed a significant age × group 

interaction on SLF FA. Graphs show predicted margins with 95% confidence intervals. 

Significance values represent corrected p values for age × group interactions. p < .025. NS, 

not significant.
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Figure 3. 
Age-associated changes in the retrolenticular internal capsule (RLIC). (A) Three-

dimensional representation of RLIC tract. In analyses of typically developing (TD) and 

psychosis spectrum (PS) groups, there was a significant interaction (p < .002) between age 

and group on RLIC fractional anisotropy (FA) (B). Follow-up analyses revealed significant 

age × group interactions (p < .025) on radial diffusivity (RD) (C) and mean diffusivity (MD) 

(D), but not on axial diffusivity (AD) (E). (F) Follow-up analyses including a third group, 

limited psychosis spectrum (LPS), also revealed a significant (p < .025) age × group 

interaction on RLIC FA. Graphs show predicted margins with 95% confidence intervals. 

Significance values represent corrected p values for age × group interactions. NS, not 

significant.
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Figure 4. 
Group differences in cognitive domains. Youths in the psychosis spectrum (PS) group 

consistently showed significantly (p < .0125) lower efficiency scores in all four cognitive 

domains: (A) executive control, (B) complex cognition, (C) episodic memory, and (D) social 

cognition. Efficiency scores reflect the average Z score (sum of Z score for accuracy and −1 

multiplied by Z score for speed) per group, such that higher scores indicate better 

performance. Error bars represent ± SE of the group average. TD, typically developing.
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