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Abstract

Soils underpin terrestrial ecosystem functions, but they face numerous anthropogenic pressures. 

Despite their crucial ecological role, we know little about how soils react to more than two 

environmental factors at a time. Here we show experimentally that increasing the number of 

simultaneous global change factors (up to 10) caused increasing directional changes in soil 

properties, soil processes and in microbial communities, though there was greater uncertainty in 

predicting the magnitude of change. Our study provides a blueprint for addressing multi-factor 

change with an efficient, broadly applicable experimental design for studying the impacts of global 

environmental change.

Global environmental change is a multifactorial phenomenon, and the concurrent action of 

multiple factors gives rise to large uncertainty in predicting effects (sensu (1)). Soils are 

affected by multiple factors, but we do not know the effects of these factors when they act in 

concert. Understanding soils is important, since they provide a range of ecosystem functions, 

including carbon storage, and are central to agriculture and sustainable management. To 

address the impact of multiple drivers of global change, ecologists have used many tools, 

including observational approaches, such as studying complex environmental gradients (2), 

long-term time series (3), as well as modeling (4). However, in the canon of ecological 

approaches, experiments occupy a key role because they help establish causality between 

drivers and response (5).
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Given the multiple pressures that soils experience, we first asked how ecologists have 

experimentally approached the study of global change in the context of soils. We conducted 

a systematic survey (Fig. 1), screening the literature on experimental studies of how global 

change factors affect soil biota and processes. For each paper in our survey (1228 papers 

matched our inclusion criteria out of 4202 papers screened; (6)), we counted the number of 

global change factors included in the experiment. About 80% of studies examined only a 

single factor, 19% looked at the interaction of two factors, and only very few papers (<2%) 

tested the effects of 3 or more factors.

Thus, although global change involves many factors, soil ecologists typically have 

conducted experiments varying only one or two factors at a time (Fig. 1A), a pattern that 

shows no signs of change over time (Fig. 1B), and that is unlikely to be unique to the study 

of soils (7). These studies are dominated by certain factors (e.g., fertilization, likely due to 

ease of application; Fig. 1C), and by certain factor combinations, to the exclusion of others 

(Fig. 1D). The reasons for these patterns, which shape our present knowledge of soil and 

ecosystem ecology, include logistical limitations and cost, but it is also clear that the main 

tool for addressing the interaction of multiple factors, the factorial experiment, starts to 

break down because of the combinatorial explosion problem, i.e. the rapid increase in 

possible combinations with the number of factors (8).

While examining a particular factor combination may provide mechanistic insights, we 

propose that it is also useful to ask how soils might change when exposed to an increasing 

number of factors. Here, we experimentally show that an increasing number of global 

change factors causes directional change in soil properties, processes and microbial 

communities, but that predicting the magnitude of the changes remains challenging.

We examined the effects of an increasing number of these factors in combination using a 

design that takes inspiration from studies of biodiversity-effects on ecosystem function (6, 

9). In these designs, species are randomly selected from a pool along a gradient of species 

number (richness) in order to draw general conclusions about how changes in species 

number would affect ecosystem functions overall, regardless of species identity. 

Analogously, we here use a pool of ten global change factors, from which we randomly 

selected a gradient of increasing factor number (also see (10)), namely the levels 2, 5, 8 and 

10 factors, each replicated 10 times, thus testing if patterns of biodiversity and ecosystem 

processes show a consistent directional trend along the number of factors (Fig. 2). We tested 

abiotic factors (including temperature), resource availability, chemical toxicants and 

compounds (inorganic and synthetic organic), and an agent of physical change 

(microplastics). A system would rarely encounter all 10 factors simultaneously, but it may 

encounter many of them, e.g., in intensive farming systems. Each replicate in these ‘factor 

richness’ levels had a different, randomly determined combination of factors.

At the single factor level, some factors had neutral, negative or positive effects on a number 

of key responses, which included soil aggregation (a key component of soil structure), soil 

water repellency (water drop penetration time), decomposition, and soil respiration (Fig. 3, 

A, E, I and M). Therefore, predictions that combine single factor effects often had broad 

confidence intervals (Fig. 3, B, F, J and N; see (6) for how effects were combined). Soil 
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aggregation and soil water repellency changed strongly with 8 or more factors, and effects 

deviated from predictions, indicating synergistic interactions. Nonetheless, in agreement 

with our prediction (Fig. 2), the changes in all response variables showed a consistent 

directional change with the number of factors included (Fig. 3, C, G, K and O; R2=13–52%, 

using random forest machine learning modeling). Knowing factor identity increased the 

amount of variability explained compared to just knowing the number of factors, but not for 

water repellency (Fig. 3, D, H, L and P; fig. S1).

We also examined effects on soil biodiversity as measured by richness, community 

composition, and its dispersion. Here, we focus on soil fungi, which are strongly related to 

the processes we measured (e.g. (11)). We assessed communities of soil fungi using high-

throughput sequencing (Illumina MiSeq), identifying 346 amplicon sequence variants 

(ASVs). A detailed description and analysis of the dataset is available in the Supplementary 

Materials (6). As in the results for soil properties, we find directional changes related to the 

number of factors, namely a reduction in ASV richness and a shift in community 

composition and dispersion (Fig. 4, D, H and L; fig. S2, fig. S3). For community dispersion, 

the magnitude of the changes was unpredictable from the single factor effects (Fig. 4J). 

ASV-poor communities were a subset of those in ASV-rich communities (temperature=7.3, 

SES=-8.3, p=0.001). When exposed to more factors, communities became species poorer 

(being mostly composed of generalist stress tolerant fungi, and losing mainly 

Basidiomycota; figs. S2 and S3).

Our study expands understanding of the effects of multiple global change factors on soils, 

and shows that an increasing number of global change factors cause directional changes in 

soil properties, processes and microbial communities; however, predicting the magnitude of 

change was not always straightforward (fig. S1). We found that there were ‘ecological 

surprises’ that only became apparent at higher levels (especially 8 and 10) of factor 

interaction. This was best illustrated by the soil property ‘water repellency’, which was 

barely affected at the single-factor level, but greatly affected at the multi-factor level. Such 

phenomena clearly render predictions of effects of global change more challenging, but our 

results emphasize that simply projecting the direction of change and recognizing 

unpredictable impacts in the first place is important, and a step towards achieving better 

predictions.

Factors of global change will not be equally strongly expressed in all situations, and in 

reality, different combinations of factors may be at work. Nevertheless, our results offer 

general insights into system responses along such gradients of multiple global changes. As 

well as showing that factor number is important, data distributions also suggest that system 

responses (measured by combining data from all response variables after standardization at a 

given factor combination level) tended to develop in a bimodal-like pattern (fig. S4), and that 

this contributes to the observed unpredictability of the interactions. Such a bimodal pattern 

has been used to infer the occurrence of regime shifts (12). Regime shifts may be triggered 

by increasing diversity of drivers, but most experimental work on regime shifts has focused 

on single factors and has therefore overlooked the possibly greater effects of multiple factors 

(13, 14). Responses converge again at the highest level (10 factors), but this is likely to be an 

artefact because factor level 10 is by necessity a unique factor combination. It remains to be 

Rillig et al. Page 3

Science. Author manuscript; available in PMC 2020 May 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



established if intermediate levels of factor richness have less predictable effects, and how 

this depends on the particular composition of factors.

Our experimental design was such that it could reveal trajectories for important aspects of 

ecosystem and biodiversity properties using a logistically feasible number of replicates (i.e. 

140). Therefore, the approach is applicable to more complex systems including plants and 

soil fauna, possibly even in the field (table S2). Our literature survey and experimental 

results suggest the need to rethink global change biology with a focus on the number of 

factors and their higher-order interactions, and such a shift in focus would also benefit many 

other fields in which concurrent multiple factors are common (10, 15–17).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One sentence summary

The number of global change factors can predict trends of ecosystem reactions, soil 

properties and microbial communities.
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Fig. 1. Results from a literature survey on the number of global change factors included in soil 
ecology experiments, covering the years 1957 to 2017.
A. Frequency distribution of the number of factors of global change included in 

experimental studies. For the 19 studies testing 3-way interactions, we counted overall 38 

investigated responses (across studies and variables), and in 21.05% of these authors 

reported a significant interaction. We found 5 studies including 4-way interactions, and in 

none of these was the 4-way interaction term significant. B. Number of experimental studies 

including a given number of factors over the last 50 years. For comparison, the dashed grey 

line (right y-axis) represents the number of published articles per year for the Web of 

Knowledge category “Ecology”. C. Number of papers including a given global change 

factor, for studies with 1-4 combined factors. D. Network graph depicting co-occurrence of 

global change factors in experimental studies, where circle size represents the frequency 

with which the driver was included in the studies and line thickness represents the frequency 

with which the drivers were tested as combinations.
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Fig. 2. Diagrams expressing the idea that the number of global change factors alone might 
predict general trends in changes of biodiversity and ecosystem processes.
A. We hypothesize that biodiversity and ecosystem processes display a consistent directional 

change (this could be either an increase or decline, concave or convex; in the panel we only 

show a decline and only one possible curve shape) along the number of environmental 

factors. B. The rationale behind this prediction is that with an increasing number of factors 

there is an increased chance of including an influential factor (selection effect), that factors 

may increasingly affect different components (complementarity effect), and that factors may 

interact with each other, so strengthening their effect (factor interaction effect).
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Fig. 3. Effects on soil properties of global change factors applied singly and using different 
numbers of factors (2, 5, 8, 10 factors).
For each measured soil property (each row), single factor effects were estimated (1st 

column) and then used to predict multi-factor effects based on three different assumptions on 

how to combine multiple effect sizes (2nd column). An ideal prediction should have a small 

bias (accuracy) and narrow confidence interval (precision), but for the 1st and 2nd rows, 

predictions were neither accurate nor precise, regardless of the assumption used. The 

predictions are made difficult because the single factor effects have large variability and/or 

because there are strong factor interactions. The direction of the treatment effects were 
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consistent with an increasing number of factors for all properties (3rd column). These curves 

were estimated using a random forest machine learning, and their predictability is shown in 

the 4th column (dark blue). Predictability was improved by adding factor identity 

information (0/1 for each factor; dark yellow) or effect size information (predicted values 

based on three assumptions; dark green) to the models as predictors (4th column), but 

predictability did not always improve (see H). Water stable soil aggregates (A-D); soil water 

repellency measured as water drop penetration time (E-H); decomposition rate (I-L); and, 

soil respiration (M-P). Replicates are represented by dots with density ridgeline plots. 

Horizontal dashed lines represent mean values of the control.
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Fig. 4. Effects on the soil fungal community of different global change factors applied singly and 
using different numbers of factors (2, 5, 8, 10 interacting factors).
For each biodiversity property (each row), single factor effects were estimated (1st column) 

and then used to predict multi-factor effects based on certain assumptions (2nd column). As 

with soil functions (Fig. 3), the effect directions were consistent along the number of factors 

for all properties as predicted using random forest machine learning (3rd column). The 

model predictability is shown in the 4th column (dark blue). Adding factor identity (dark 

yellow) or single factor effect size information (dark green) to the model improved 

predictability only for community composition, indicating that factor interactions exist (4th 
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column). Fungal diversity is represented by ASV richness (A-D), community composition 

(E-H) and community dispersion (I-L). Community composition is represented by the 1st 

axis of an unconstrained multivariate ordination (NMDS) of the Bray-Curtis sample pairwise 

dissimilarities.
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