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Abstract

Rhythmic neural activity has been proposed to play a fundamental role in cognition. Both healthy 

and pathological aging are characterized by frequency-specific changes in oscillatory activity. 
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However, the cognitive relevance of these changes across the spectrum from normal to 

pathological aging remains unknown. We examined electroencephalography (EEG) correlates of 

cognitive function in healthy aging and two of the most prominent and debilitating age-related 

disorders: Type-2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). Relative to HC, AD 

patients were impaired on nearly every cognitive measure, while T2DM performed worse mainly 

on learning and memory tests. A continuum of alterations in resting-state EEG was associated 

with pathological aging, generally characterized by reduced alpha (α) and beta (β) power 

(AD<T2DM<HC) and increased delta (δ) and theta (θ) power (AD>T2DM>HC), with some 

variations across different brain regions. There were also reductions in the frequency and power 

density of the posterior dominant rhythm in AD. The ratio of (α+β)/(δ+θ) was specifically 

associated with cognitive function in a domain- and diagnosis-specific manner. The results thus 

captured both similarities and differences in the pathophysiology of cerebral oscillations in T2DM 

and AD. Overall, pathological brain aging is marked by a shift in oscillatory power from higher to 

lower frequencies, which can be captured by a single cognitively relevant measure of the ratio of 

(α+β) over (δ+θ) power.
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Introduction

Some subtle neurocognitive changes occur with normal aging (Harada et al., 2013), while 

others are more severe and associated with specific pathophysiological processes. The most 

extreme example is dementia due to Alzheimer’s disease (AD). AD is associated with 

progressive alterations including the accumulation of beta-amyloid plaques and 

neurofibrillary tangles, cortical hypometabolism, and eventually widespread atrophy (Braak 

and Braak, 1998; Jack et al., 2013). Among AD risk factors (Burns and Iliffe, 2009), one of 

the most prominent is Type-2 Diabetes Mellitus (T2DM) (Biessels and Kappelle, 2005). 

T2DM is a chronic metabolic disorder characterized by abnormal glucose metabolism and 

insulin resistance, and is associated with myriad physiological complications, including in 

the central nervous system (CNS) (Alberti and Zimmet, 1998; Awad et al., 2004; Biessels 

and Kappelle, 2005; Gispen and Biessels, 2000; Koekkoek et al., 2014; Roberts et al., 2014; 

Saedi et al., 2016; Stewart and Liolitsa, 1999; Strachan et al., 2011). Mild deficits in 

memory, executive function and perceptual processing speed have been observed in T2DM 

(Cheng et al., 2012; Marseglia et al., 2016; Mooradian et al., 1988; Palta et al., 2014; 

Takeuchi et al., 2012; van den Berg et al., 2010). While the impact of T2DM on the CNS is 

likely multifactorial, microvascular damage and impaired insulin signaling have been 

identified as probable mediators in the higher risk for AD and vascular dementias (Biessels 

et al., 2014; Ohara, 2011; Toth, 2014). However, understanding of how T2DM fits into the 

spectrum from normal cognitive aging to AD remains incomplete (de la Monte, 2014).

Electroencephalography (EEG) permits noninvasive measurement of temporally 

synchronized (i.e., oscillatory) neural activity, a ubiquitous characteristic of the brain 
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(Buzsaki et al., 2013) which has been proposed as a mechanism for encoding and transfer of 

information (Bonnefond et al., 2017; Fries, 2015). These proposals are based on reliable 

associations between frequency-specific oscillations and various cognitive functions (Ward, 

2003), as well as their implication in various neuropsychiatric disorders (He et al., 2007; 

Oswal et al., 2013; Schnitzler and Gross, 2005; Uhlhaas and Singer, 2006). Systematic 

changes in neural oscillations occur with normal cognitive aging (Babiloni et al., 2006b; 

Marshall and Cooper, 2017; Rossini et al., 2007; Stomrud et al., 2010; Vlahou et al., 2014). 

For instance, alpha-band (8-13 Hz) activity decreases in both amplitude (Babiloni et al., 

2006b; Marshall and Cooper, 2017) and peak frequency (Klimesch, 1999; Mierau et al., 

2017; Knyazeva et al., 2018) throughout adulthood. However, changes in lower frequency 

(<8 Hz) activity, and the relationship with cognitive function, appear to be less consistent 

(Babiloni et al., 2006a; Cummins and Finnigan, 2007; Klass and Brenner, 1995; Leirer et al., 

2011; Marshall and Cooper, 2017).

Oscillatory abnormalities have been consistently observed in pathological aging (Assenza et 

al., 2017; Babiloni et al., 2004, 2006a; Fraga et al., 2013; Neto et al., 2016; Voytek and 

Knight, 2015). In AD, the most prominent EEG finding is a shift in power from higher to 

lower frequencies: an increase in power in delta (δ; 1-4 Hz) and theta (θ; 4-8 Hz) frequency 

bands, and a concomitant decrease in power in alpha (α; 8-13 Hz) and beta (β; 13-30 Hz) 

bands, along with reduction of the individual peak α frequency (Babiloni et al., 2004; 

Bennys et al., 2001; Brenner et al., 1986; Coben et al., 1983; Moretti et al., 2004). The 

relationship between these oscillatory changes and cognitive dysfunction remains unclear, 

though some studies have reported correlations with individual tests of cognitive functions 

(Babiloni et al., 2007; Moretti et al., 2009; van der Hiele et al., 2007). While fewer studies 

have examined oscillatory changes in T2DM, there is some evidence of a similar shift in 

power from higher to lower frequencies (Bian et al., 2014; Cooray et al., 2011; Cui et al., 

2014; Wen et al., 2016; Zeng et al., 2015).

The aim of the current study was to compare resting-state EEG oscillatory activity, and its 

relationship with neuropsychological function, across healthy and pathological aging 

(T2DM and AD). We hypothesized that neuropsychological testing and resting-state 

oscillatory activity would reveal a pattern of neurocognitive dysfunction from healthy 

controls (HC) to T2DM to AD. Additionally, we predicted that resting-state EEG measures 

(i.e. power density and peak frequencies) would be associated with domain-specific 

cognitive performance both within and across groups, with AD showing the strongest 

relationships (Babiloni et al., 2018, 2015).

Methods and Materials

Human Participants

This is an analysis of 72 adults who participated in research at the Berenson-Allen Center 

for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center between 2012 

and 2015. The local Institutional Review Board approved the study. All participants 

provided written informed consent prior to enrollment according to the Declaration of 

Helsinki. Participants were drawn from the following groups:
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Alzheimer’s disease.—18 participants (11 females, aged 52-86) with a probable 

diagnosis of mild-to-moderate AD according to DSM-V/NINCDS-ADRDA criteria 

(McKhann et al., 2011), with a clinical dementia rating (CDR) of 1.0 and a mini-mental 

status exam (MMSE) (Folstein et al., 1975) score between 18-24. Six patients were 

medicated with Cholinesterase inhibitors, nine were on Cholinesterase inhibitors and 

Memantine, while 3 were not taking dementia-specific medications.

Type-2 diabetes mellitus.—27 participants (12 females, aged 50-78) had a clinical 

diagnosis of T2DM, and had normal cognition as indicated by a MMSE score ≥ 27 (Rosa et 

al., 2018), with no subjective cognitive complaints. All had their diabetes at least moderately 

controlled (hemoglobin A1c; HbA1c < 10) through some combination of diet, exercise, 

Metformin, insulin, or insulin homologues.

Healthy control.—27 participants (13 females, aged 50-77) had normal cognition (MMSE 

≥ 27) and glucose metabolism (HbA1c < 6.5%).

General inclusion criteria included: age-adjusted score ≥ 80 on the 50-item Wechsler Test of 

Adult Reading (W-TAR; as a surrogate measure of premorbid IQ); no other unstable medical 

or neuropsychiatric conditions (apart from AD or T2DM). All participants underwent 

equivalent testing, including a structured neurological exam, medical history review, formal 

neuropsychological testing, and an EEG visit. Participant characteristics (Supplementary 

Table S1), including age, education, and premorbid IQ, were compared across groups using 

one-way analyses of variance (ANOVAs) with Tukey’s Honestly Significant Difference 

(HSD) post hoc comparisons. MMSE scores were compared using a non-parametric 

Kruskal-Wallis test. Gender proportions were compared using Fisher’s Exact Test. As the 

AD group was significantly older, Age was added as a covariate to all subsequent between-

group analyses. Additionally, to verify that the main results were not confounded by 

between-group age differences, we reran several of the primary analyses on a cohort of 17 

age-matched participants per group (see Supplementary Material for more details).

This and all subsequent analyses were performed in JMP Pro (v12.0, http://www.jmp.com) 

using a normal distribution and a two-tailed 95% confidence interval.

Neuropsychological testing

Neuropsychological testing was performed on a separate visit from the EEG recording by a 

trained psychometrist. Tests and inventories were drawn from the National Alzheimer’s 

Coordination Center’s Uniform Data Set version 1.1 (NACC-UDS) (Beekly et al., 2007). 

The following neuropsychological tests were employed: the 15-item Geriatric Depression 

Scale (GDS); a 23-item Activities of Daily Living inventory (ADLs); the Digit Symbol 

Substitution Test (DSST; number of correct substitutions in 90 sec); Digit Span Forward and 

Backward tasks (longest set length repeated); the Logical Memory, Story-A (number of 

items recalled immediately and after a 30-minute delay without cueing) from the Wechsler 

Memory Scale-Revised; the Trail Making Test (difference in time and in errors between 

parts B and A; TMTB-A) from the Halstead-Reitan Battery; the “animals” category of the 

Semantic Fluency Test (number of unique words generated in one min); and the 30-item 

Boston Naming Test (number of correctly named objects with semantic cue). In addition, the 
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70-item Cognitive subscale of the Alzheimer’s disease Assessment Scale (ADAS-Cog) 

(Mohs et al., 1983) was administered to measure global cognitive function, and a 10-item 

version of the Rey Auditory Verbal Learning Test (RAVLT; percent correct during learning, 

20-min delayed recall, and delayed recognition trials) (Rosenberg et al., 1984) was 

administered to further probe verbal learning and memory ability (Calero and Navarro, 

2004). All measures were Z-transformed by subtracting the overall mean (across all three 

populations) of all subjects from each individual’s score and dividing it by the overall 

standard deviation in order to equalize the scale across measures, and facilitate data 

visualization and statistical analysis. Z-scores for the ADAS-Cog, GDS, and TMT were 

inverted so that in all measures, higher scores reflect better performance. To investigate the 

relationship between the EEG Spectral Power Ratio and cognitive function, three composite 

scores were computed by averaging together Z-scores of tests that tap into similar cognitive 

processes or measures: Dementia severity (ADAS-Cog, ADLs; measuring general cognitive 

functioning and functional independence), Executive functions (Digit Span forward and 

backward, TMTB-A Semantic fluency, DSST; measuring attention, working memory, set-

shifting, strategic thinking and psychomotor processing speed); and Learning and memory 
(RAVLT, Logical Memory; measuring the acute ability to learn and recall verbal information 

with and without context). This approach—modelled after one from the Alzheimer’s Disease 

Neuroimaging Initiative (Crane et al., 2012; Gibbons et al., 2012) and used in a prior 

neuroimaging study (Buss et al., 2018)— allowed oscillatory activity to be related to broad 

categories of cognitive processing rather than to specific tests.

Electroencephalography acquisition and preprocessing

Resting-state EEG was recorded using a 64-channel system (eXimia EEG, version 3.2, 

Nexstim Ltd, Finland) with a sampling rate of 1450Hz. EEG was acquired using an extended 

version of the “International 10-20 system” (Supplementary Figure S1). Ground and 

reference electrodes were placed on the forehead and two additional electrooculography 

electrodes (EOG) were placed below and at the outer canthi of the left eye to identify 

vertical and horizontal eye movements. Impedances for all electrodes were kept below 5 kΩ. 

A 5-minute resting-state EEG recording was obtained while subjects sat in a semi-reclined 

armchair with their eyes closed. During recordings, the participants were instructed to 

remain quiet with their face muscles relaxed. The participant and EEG were monitored for 

signs of drowsiness at which point the participant was asked to blink their eyes a few times 

before closing them again. EEG data preprocessing was performed offline using a 

combination of the EEGLab toolbox (Delorme and Makeig, 2004a) and custom scripts in 

Matlab 2016a (Mathworks, USA). Data were filtered for line noise using a 55-65 Hz notch 

filter. Additional low-pass (100 Hz) and high-pass (1 Hz) filters were applied using a zero-

phase second-order Butterworth filter. Filtered recordings were divided into 3-second epochs 

for visualization. Faulty or excessively noisy channels were visually detected and removed 

(average ±SD channels removed = 3.9 ±2.3; range = 0-9) and the remaining data were re-

referenced to the average of all channels. After re-referencing, noisy epochs were identified 

semi-automatically and those containing excessive artifacts were rejected after visual 

inspection (average ±SD epochs removed = 25.9 ±20.5; range = 2-88), resulting in 48-116 

usable epochs per participant with an average (±SD) of 86.9 (±14.0). Independent 

components analysis (ICA) was performed on cleaned data using fastICA (Rogasch et al., 
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2014), and components corresponding to blink/oculomotor, muscle or transient electrode 

artifacts were subtracted from the data. After component rejection, previously rejected 

channels were interpolated using a spherical spline interpolation and the data were down-

sampled to 1024Hz.

Experimental design and Statistical Analysis

Electroencephalography—After EEG preprocessing, mean absolute power spectral 

density across epochs was calculated for each frequency band (1-40 Hz, 0.5 Hz resolution) 

at all electrodes using the spectopo EEGlab function (window-size = 1024 samples, 

window-overlap = 512 samples) (Delorme and Makeig, 2004b). The power estimates for 

each frequency band were further divided by the sum of estimates across all frequencies in 

order to calculate the relative power of each frequency within the spectrum. To investigate 

group differences in EEG power, an analysis of covariance (ANCOVA) was performed at all 

electrode-frequency (1:40 Hz) points. The ANCOVA model included EEG power as the 

outcome measure, Diagnosis (HC, T2DM, AD) as a grouping variable, and Age as a 

continuous predictor to control for its effects on group differences in EEG power. Follow-up 

pairwise contrasts between groups were calculated using the Tukey-Kramer method. To 

control for the large number of multiple comparisons across electrode-frequency space, a 

non-parametric cluster based permutation approach was adopted (Maris and Oostenveld, 

2007). Calculation of the test statistics involved the following: based on the initial 

ANCOVA’s and follow-up contrasts performed at all electrode-frequency points, data points 

corresponding to an uncorrected p-value < 0.05 were formed into clusters by grouping 

together adjacent significant electrode-frequency points. Note that for a sample to be 

included in a cluster it was required to have at least 1 neighboring significant sample in 

either frequency or space. The spatial neighborhood of each electrode was defined as all 

electrodes within 4 cm, resulting in a mean of 2.9 (min = 1, max = 4) and median of 3 

neighbors per electrode. The F-values (overall ANCOVA) or t-values (follow-up contrasts) 

within each identified cluster were summed to produce a cluster-level statistic. For the 

follow-up contrasts, the cluster-building procedure was performed separately for data points 

with positive and negative t-values (two-tailed test). Subsequently, this cluster-building 

procedure was repeated across 2000 permutations of the data. On each iteration, diagnostic 

group labels were randomly shuffled, thereby cutting the hypothesized relationship between 

diagnostic group and EEG power. The most extreme cluster-level F- or t-score was retrieved 

on each iteration to build data-driven null hypothesis distributions, separately for both the 

overall model and for each of the follow-up contrasts. The location of an original real cluster 

statistic within the null hypothesis distribution indicates how probable such an observation 

would be if the null hypothesis were true (F-test: No difference in EEG power between any 

of the groups. Follow-up t-tests: No difference in EEG power between given two groups). 

For the overall model, if a given real cluster had a cluster-statistic > 95% of the respective 

null distribution cluster-statistics, then this was considered a significant effect (5% α level). 

For the follow-up contrasts, if a given negative/positive cluster had a cluster-statistic lower/

higher than 97.5% (2.5% α per tail) of the respective null distribution cluster-statistics, then 

this was considered a significant effect (5% total α level). This entire analysis was 

performed separately for both absolute and relative EEG power.
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EEG frequency bands and Spectral power ratio—For subsequent analyses of EEG 

power, including its relationship with cognitive function, relative and absolute power 

estimates were extracted for each classical frequency band: δ (1-4 Hz), θ (4-8 Hz), α (8-13 

Hz), β (13-30 Hz), and gamma (γ; 30-40 Hz). Absolute power estimates were used to 

compute the Spectral Power Ratio, defined as the ratio of power in α and β to power in δ 
and θ: (α+β)/(δ+θ) (Supplementary Table S2). This approach has been utilized to assess 

alterations in the frequency distribution of EEG power, capturing in a single variable the 

pattern of a general shift in power from higher to lower frequencies that has been previously 

reported in AD (Babiloni et al., 2004; Bennys et al., 2001; Brenner et al., 1986; Coben et al., 

1983; Moretti et al., 2004). In order to assess the spatial distribution of the effects, the 

average of the relative power estimates for each frequency band and the average of the 

Spectral power ratio values were calculated separately for four cortical regions of interest 

(ROIs): Frontal (incorporating electrodes FP1, FPz, FP2, AF1, AFz, AF2, F5, F1, Fz, F2, 

F6), Central (FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, 

CP1, CPz, CP2, CP4, CP6), Temporal (F7, F8, FT9, FT7, FT8, FT10, T3, T4, TP9, TP7, 

TP8, TP10), and Posterior (P9, P7, P3, P1, Pz, P2, P4, P8, P10, PO3, POz, PO4, O1, Oz, O2, 

Iz).

The relative power estimates from each of the four frequency bands plus the Spectral power 
ratio values were assessed independently via five mixed-effects linear regression analyses, 

each with a full-factorial model comprised of the between-subjects factor Group and the 

within-subject factor Cortical ROI (crossed with the random factor Subject to control for 

variance associated with repeated observations within the same individual), plus Age as a 

covariate (for details on the linear regression analysis of Spectral power ratio in the age-

matched subgroup cohort, see Supplementary materials). Each of the five analyses was 

followed by four fixed-effect linear regression analyses to test for group differences within 

each ROI separately. Significance values for these 20 follow-up analyses were adjusted for 

multiple comparisons using Holm-Bonferroni correction. Finally, post-hoc Tukey’s HSD 

tests were used to test for pairwise differences between groups.

Analysis of neuropsychological performance and its relationships with 
Spectral power ratio—Multivariate analyses of variance (MANOVAs) with a Wilk’s 

lambda (λ) distribution were used to compare neuropsychological performance across 

groups (MANOVA-1) and investigate its relationship with the Spectral power ratio across 

ROIs (MANOVA-2).

MANOVA-1 was performed on Z-scores for the individual neuropsychological tests with the 

main factor of Group (HC, T2DM, AD), and Age as a covariate (for details on the 

MANOVA-1 in the age-matched subgroup cohort, see Supplementary materials). Follow-up 

analyses consisted of separate linear regression models for each cognitive measure. Tukey’s 

HSD pairwise comparisons were performed for any regression model that survived a 5% 

false discovery rate (FDR) correction (Benjamini and Yekutieli, 2001).

To investigate relationships between the Spectral power ratio and cognitive functions, 

MANOVA-2 was performed on the three composite scores with the factors Group, Cortical 
ROI and Spectral power ratio in a full-factorial model, plus Age as a covariate. Follow-up 
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linear regression analyses were performed for each domain (Learning and memory, 

Dementia severity, Executive functions), with the factors Group and Spectral power ratio in 

a full-factorial model with Age as a covariate (for details on the MANOVA-2 in the age-

matched subgroup cohort, see Supplementary materials). As all effects that included the 

factor Cortical ROI were highly non-significant (see Results), it was excluded from post-hoc 

analyses. For Learning and memory, the Group*Spectral power ratio interaction was highly 

non-significant (see Results), so the model was rerun without that term. From these models, 

an overall correlation coefficient was calculated to express the relationship between the 

composite score and Spectral power ratio across all participants. Lastly, simple linear 

regression analyses were performed to assess the association of Spectral power ratio with 

each composite cognitive score in each group. Individual p-values for these 9 group-specific 

post-hoc analyses were adjusted for multiple comparisons with a 5% FDR.

Individual α and posterior dominant frequencies—During eyes-closed wakefulness, 

one of the most prominent features of the EEG signal is α-band (~8-13Hz) activity, leading 

to the characteristic α peak in the power spectrum (Klimesch, 2012; Keitel et al., 2019). We 

sought to investigate group differences in this dominant frequency, and whether these 

differences were related to cognitive function, using two independent metrics. First, in each 

participant we identified the individual frequency between 5-15 Hz with the highest power 

density across all posterior electrodes using an automated peak-finding algorithm based on 

smoothing of the 2nd order gradient of power spectral density (PSD) estimates with an 11-

point, 3rd order polynomial Savitzky-Golay filter (Savitzky and Golay, 1964; Corcoran et 

al., 2018; Keitel et al., 2018; Benwell et al., 2019). The posterior electrodes included in the 

analysis were P9, P7, P3, P1, Pz, P2, P4, P8, P10, PO3, POz, PO4, O1, Oz, O2 and Iz. This 

approach incorporated a wider band of activity than the typical α range in order to capture 

potentially large shifts in the dominant frequency. Hence, we labelled this the Dominant 
frequency analysis. In parallel, to look specifically at frequency and power changes within 

the classic α-range (8-12 Hz), two clinical neurophysiologists trained to interpret EEG 

(authors PDP and MMS) manually estimated the individual α frequency (IAF) for each 

participant using visibly-identifiable alpha activity from the occipital and parieto-occipital 

electrodes. We labelled this the IAF analysis. For both the Dominant frequency and IAF 
analyses, we obtained both the peak frequency itself and the power density value averaged 

over the peak frequency ± 2.5 Hz. Hence, we were able to test simultaneously for group 

differences in both the peak frequency itself and the surrounding power density. These 

metrics were each entered into separate one-way ANOVAs (with Age as a covariate) to 

investigate group differences and were also correlated with the cognitive composite scores.

Results

Participant characteristics

By design, MMSE scores were lower in the AD group relative to both T2DM and HC. AD 

participants were also significantly older than HC, but not T2DM. The groups were 

equivalent in years of education, pre-morbid IQ, and proportions of men and women (for full 

details on participant characteristics across groups, see Supplementary Table S1).
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EEG Power

The following details the results of the primary analysis of relative EEG power. For 

equivalent analyses of absolute EEG power and their results, see Supplementary Materials 

Section 1 (including Table S2 and Figure S2).

A main effect of Group, controlling for age, was identified in the δ+θ frequency bands (~1–

7 Hz) and also in the α+β (~8.5–21 Hz) and low–γ bands (30–40 Hz, Figure 1A-B). 

Relative δ+θ power were higher for AD compared to T2DM and HC, whereas relative α+β 
power were lower for AD compared to T2DM and HC (Figure 1C). Pairwise contrasts 

(Figure 1D-F) demonstrated higher relative δ+θ power in AD than both HC and T2DM, and 

lower relative α+β power in AD compared to either HC or T2DM. Additionally, there was 

significantly higher relative power in the low–γ band in AD compared to HC. No clusters 

survived correction for the T2DM-HC contrast.

Classic EEG frequency bands across ROIs

Delta: There were significant main effects of Group (F2,68 = 8.7, p < .001) and Cortical ROI 
(F3,207 = 59.1, p < .001), but no Group*Cortical ROI interaction (F6,207 = 1.2, p = .292). 

Follow-up tests showed a similar pattern of group differences across the four Cortical ROIs 

(p values < .015, adjusted), with AD showing greater relative δ power than both HC and 

T2DM (p values < .05).

Theta: There were significant main effects of Group (F2,68 = 12.7, p < .001) and Cortical 
ROI (F3,207 = 3.3, p = .023), but no Group*Cortical ROI interaction (F6,207 = 2.1, p = .060). 

Follow-up tests showed a similar pattern of group differences across the four ROIs (p values 

< .004, adjusted), with AD showing greater relative θ power than both HC and T2DM (p 
values < .05).

Alpha: There were significant main effects of Group (F2,68 = 9.9, p < .001) and Cortical 
ROI (F3,207 = 61.7, p < .001), as well as a Group*Cortical ROI interaction (F6,207 = 4.9, p 
< .001). Follow-up tests showed somewhat different pattern of group differences across the 

four ROIs (p values < .013, adjusted). Relative α power was lower in AD than HC across all 

ROIs. Relative α power was also lower in AD than in T2DM in the Frontal, Temporal, and 

Posterior (but not Central) ROIs. T2DM had significantly lower α power than HC in the 

Temporal ROI only (all p values < .05).

Beta: There was a significant main effect of Cortical ROI (F3,207 = 47.5, p < .001), while 

Group (F2,68 = 1.1, p = .337) and Group*Cortical ROI were not significant (F6,207 = 1.8, p 
= .094). Follow-up tests showed a similar pattern of equivalent β power across groups, 

regardless of the ROI (p values > .7, adjusted).

Spectral power ratio: There were significant main effects of Group (F2,68 = 9.2, p < .

001) and Cortical ROI (F3,207 = 20.8, p < .001), as well as a Group*Cortical ROI interaction 

(F6,207 = 3.3, p = .004). Follow-up analyses showed a pattern of group differences in 

Posterior ROI (HC > AD; p = .012, adjusted) that was distinct from the other ROIs (HC, 

T2DM > AD; p values < .008, adjusted) (Figure 2). These results indicate a shift of power 
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from higher frequencies to lower frequencies in AD and suggest a similar pattern may be 

emerging in T2DM. Of note, an equivalent analysis in the age-matched sub-cohort 

demonstrated essentially identical findings (see Supplementary materials Section 2).

Neuropsychological function and relationship to EEG spectral power

Group averaged neuropsychological test scores (z-scored) are displayed in Figure 3.

MANOVA-1 (Table 1) demonstrated that the variance in cognitive scores was different 

between the groups after controlling for Age, F(30, 86)=6.7, η2
p=0.70, p<0.001, while Age 

itself was not a predictor of cognitive function, F(15,43)=1.7, η2
p=0.37, p=0.096. Follow-up 

linear regression analyses yielded significant variance by Group for each neuropsychological 

measure after controlling for Age (F’s>5.7, p’s<0.006: see Supplementary Table S3). All 

measures survived a 5% FDR correction. For equivalent analyses in the age-matched sub-

cohort with similar findings, see Supplementary materials Section 2.

Following Tukey’s HSD comparisons, two major patterns emerged (Figure 3): For scores on 

the DSST, RAVLT learning and delayed recognition trials, Logical Memory immediate and 

delayed recall trials, there were significant differences between all three groups with AD < 

T2DM < HC (p’s<0.03). By comparison, on the ADAS-Cog, ADLs, Semantic fluency, TMT 

time, TMT errors, Digit Span backward, RAVLT delayed recall, Boston Naming Test, and 

GDS, the AD group performed worse than either the HC or T2DM groups (p’s<0.04), while 

the latter two groups did not differ from each other (p’s>0.2). Lastly, on the Digit Span 

forward test was there a difference only between HC and AD (p=0.004) with T2DM not 

different from either HC or AD (p>0.1).

Concerning the association of cognitive function with the Spectral power ratio, MANOVA-2 

(Table 1) indicated a main effect of Group, Wilks’ λ=0.55, F(6,522)=30.2, η2
p=0.26, 

p<0.001, and an overall relationship between the composite neuropsychological scores and 

the Spectral power ratio, F(3,261)=36.1, η2
p=0.29, p<0.001. In addition, there was a 

Group*Spectral power ratio interaction, F(6,522)=29.1, η2
p=0.25, p<0.001, indicating that the 

overall relationship between cognition function and (α+β)/(δ+θ) differed between groups. 

Importantly, none of the effects that included Cortical ROI as a factor were significant (F 
ratios < .7, p values > .78), indicating that the overall relationship between the (α+β)/(δ+θ) 

and cognitive function did not vary as a function of cortical region. In contrast to 

MANOVA-1, Age was a predictor of cognitive function after controlling for Group, Cortical 
ROI, and Spectral power ratio, F(3,261)=6.2, p<.001. Post-hoc linear regression analyses 

showed that across all participants, Spectral power ratio had significant positive associations 

with Learning and memory (R67=0.27, p=0.040), Dementia severity (R65=0.44, p<0.001), 

and Executive functions (R65=0.43, p<0.001) (Figure 4); partial correlation coefficients were 

calculated from a model that included Group, Age, and the Group*Spectral power ratio 
interaction (except Learning and memory, for which the interaction term was highly non-

significant, p=0.954).

Considering cognition-EEG relationships within each group separately, higher Spectral 
power ratio was associated with better Learning and memory performance in HC (Figure 

4A; p=0.018, uncorrected). In AD, higher (α+β)/(δ+θ) was associated with lower Dementia 
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severity (Figure 4B) and better Executive function performance (Figure 4C), p’s<0.05, 

uncorrected). In contrast to HC and AD, no significant relationships were observed for 

T2DM (p’s>0.1). After subjecting p-values to a 5% FDR, the relationship between Spectral 
power ratio and Executive function in AD remained significant (p’s<0.05).

Individual alpha and posterior dominant frequencies

Dominant frequency (see Figure 5A):  A main effect of Group, controlling for Age, was 

identified (F(2,68) = 6.26, η2
p = 0.22, p = 0.001). The Dominant frequency was significantly 

lower in AD (mean = 8.2 Hz) compared to both T2DM (9.4 Hz: p = 0.002) and HC (9.3 Hz: 

p = 0.003). There was no significant difference between T2DM and HC (p = 0.99).

Power density at dominant frequency (see Figure 5B):  A main effect of Group was 

identified (F(2,68) = 3.41, η2
p = 0.09, p = 0.039). Power density in the Dominant frequency 

band was significantly lower in AD compared to HC (p = 0.05) but not compared to T2DM 

(p = 0.47). There was no significant difference between T2DM and HC (p = 0.08).

Similar results were found for the IAF analysis (see supplementary Section 3 and Figure 

S3). Hence, there was a shift of the dominant rhythm towards lower frequencies in AD 

relative to both T2DM and healthy controls. However there is also a reduction in power at 

both the Dominant frequency and the IAF in AD. Intriguingly, T2DM showed significantly 

higher Dominant frequency and IAF values compared to AD (in line with HC), but did not 

show any significant difference in terms of power density at either the Dominant frequency 
or the IAF (in contrast to HC). This suggests that, unlike in AD, the frequency of the 

dominant posterior rhythm in T2DM is indistinguishable to that observed in HC. However, 

in terms of power density at the dominant rhythm, T2DM resembled AD more closely than 

HC.

In contrast to the Spectral power ratio, there was no significant relationship between any of 

the composite cognitive measures and either the Dominant Frequency or IAF.

Discussion

The present study compared oscillatory power and neuropsychological function (and their 

relationship) between HC, AD and T2DM in order to better understand pathophysiological 

signatures of cognitive aging. Cognitively, AD was associated with deficits across almost all 

neuropsychological tests, whereas T2DM was associated with selective deficits in verbal/

episodic learning, memory and psychomotor processing speed. Neurophysiologically, there 

was a pattern of shifting EEG power from higher to lower frequencies in AD, and evidence 

that a similar shift is also apparent to a lesser degree in T2DM, particularly over temporal 

regions. Capturing this shift as a single measure (the ratio of α+β/δ+θ power) across 

participants allowed us to investigate the relevance of these oscillatory changes for cognitive 

aging. This Spectral power ratio was uniquely associated with executive functions and 

dementia severity in the AD group, and with learning and memory function in the HC group. 

The results suggest that a shift in EEG power from higher to lower frequencies represents a 

candidate biomarker for specific cognitive deficits associated with aging and brain-related 

diseases.
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Some of the results replicate findings from previous studies which, particularly given recent 

concerns about the reproducibility of scientific findings in both neuroimaging (Poldrack et 

al., 2017) and psychology (Open Science Collaboration, 2015), is of great importance in 

establishing the reliability of the reported effects. Moreover, the current findings go beyond 

replication to extend prior work by collapsing the spectral power distribution into a single 

easily obtainable summary metric, and then examining how this metric relates to specific 

domains of cognitive function. We contribute several important novel insights into the 

pathophysiology of cerebral oscillations in AD and T2DM relative to normal cognitive 

aging. The novel aspects include (1) a direct comparison of EEG activity and 

neuropsychological performance between AD, T2DM and healthy controls, (2) extensive 

testing of group differences in both absolute and relative EEG power across all electrodes 

and a wide range of frequencies (1-40 Hz), (3) a parsing of the relationship between 

oscillatory abnormalities and specific cognitive domains (i.e. memory versus executive 

function) across the different groups, (4) evaluation of the distribution of frequency changes 

across different brain regions, and (5) analyses of shifts in the Dominant frequency, as well 

as in the power density at this individually-defined dominant frequency.

Differences in cognitive function associated with AD and T2DM

AD participants showed marked neuropsychological deficits relative to both HC and T2DM. 

The most prominent deficits were observed on learning, memory and executive function 

tests. AD participants also reported impaired function in activities of daily living and 

increased symptoms of depression compared to both HC and T2DM. These symptoms are 

well established in AD (Burns and Iliffe, 2009).

Additionally, a pattern of performance differences was observed from HC to T2DM to AD 

on verbal/episodic learning (RAVLT and Logical Memory) and psychomotor processing 

speed (DSST). These findings accord with previous reports of mild decrements in memory, 

motor function and attention and perceptual processing speed in T2DM relative to HC 

(Cheng et al., 2012; Marseglia et al., 2016; Mooradian et al., 1988; Palta et al., 2014; 

Takeuchi et al., 2012; van den Berg et al., 2010). Thus, T2DM may affect these cognitive 

domains first, and the effects are detectable using commonly employed neuropsychological 

tests. It is important to acknowledge that cognitive impairment in T2DM is likely modulated 

by many variables, including vascular risk factors (Marseglia et al., 2016), presence of the 

apolipoprotein ε4 allele (Ravona-Springer et al., 2014) and glycemic control (Yaffe et al., 

2012). These factors were not controlled for here, and may have contributed to the observed 

cognitive deficits. However, the current results provide evidence that mild 

neuropsychological deficits are detectable in T2DM even when participants report no 

cognitive impairment.

Changes in oscillatory activity and relationship with cognition in AD

The present study suggests that both AD and T2DM are associated with abnormal neural 

oscillations, relative to HC. In AD, we observed reduction in α+β power and increase in δ+θ 
power, in line with previous findings (Babiloni et al., 2016; Bennys et al., 2001; Brenner et 

al., 1986; Coben et al., 1990, 1983; Dierks et al., 1995; Fraga et al., 2013; Jeong, 2004; 

Moretti et al., 2004; Neto et al., 2016). There was a similar pattern of higher δ+θ power (HC 
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< AD), and a similar pattern of lower α+β power (HC > AD), across all ROIs. These 

oscillatory signatures, as captured by the ratio of (α+β)/(δ+θ) power, correlated with 

learning and memory function across all groups combined, though the correlation was 

relatively weak within each group and only significant in HC. In AD, the Spectral power 
ratio was strongly associated with executive function performance and dementia severity, 

with the degree of change being positively correlated with symptom severity. Previous 

studies have found a correlation between band-specific EEG power and the severity of 

cognitive deficits in AD (Babiloni et al., 2007, 2006a; Dierks et al., 1995; Helkala et al., 

1991; Luckhaus et al., 2008; Moretti et al., 2009; van der Hiele et al., 2007). The current 

results confirm and expand on this literature, suggesting that the ratio of (α+β)/(δ+θ) power 

is a strong predictor specifically of executive function in AD (accounting for more than 55% 

of the variance). Notably, the Spectral power ratio was also associated with overall dementia 

severity, suggesting that deficits in executive functions (as opposed to learning and memory) 

may be more closely tied to global indicators of dementia. Intriguingly, similar neural 

changes are predictive of progression from MCI to dementia (Babiloni et al., 2011; 

Grunwald et al., 2001; Jelic et al., 2000, 1996; Rossini et al., 2006) and have been associated 

with cognitive deficits in disorders such as ADHD (Barry et al., 2003), dyslexia (Penolazzi 

et al., 2008), schizophrenia (Bates et al., 2009; Boutros et al., 2008) and Parkinson’s disease 

(Klassen et al., 2011; Olde Dubbelink et al., 2014).

In line with previous studies (Moretti et al., 2004; Poza et al., 2007; Babiloni et al., 2015), 

we found lower dominant posterior frequencies in AD (mean = 8.2 Hz) relative to both HC 

and T2DM, who showed typical mean dominant frequencies in the α-band (Klimesch, 1999; 

Mierau et al., 2017; Knyazeva et al., 2018). However, in contrast to the Spectral power ratio, 

we found no relationship between the posterior dominant frequency or IAF and performance 

on any of the composite cognitive scores. This suggests that pathophysiological changes in 

power density in AD are more cognitively relevant than changes in peak frequency.

Changes in oscillatory activity and relationship with cognition in T2DM

Interestingly, α+β power density in T2DM participants was intermediate between HC and 

AD participants. This finding replicates and extends the results of Cooray et al. (2011), who 

found that α+β power was reduced in T2DM compared to HC. We also found that T2DM is 

specifically associated with a reduction of α power in the temporal regions, with no 

significant differences observed in other brain regions relative to HC. This is notable insofar 

as deficits in temporal α power have previously been linked to impairments in learning and 

memory in AD (Babiloni et al., 2009). Interestingly, a subset of T2DM participants in the 

study of Cooray et al. (2011) who received a 2-month glycemic control treatment showed an 

increase in α power, associated with improvements in visuospatial and semantic memory 

performance. Collectively, these results highlight alterations in brain function and α power 

associated with T2DM (Fried et al., 2017; Strachan et al., 2011).

No difference was found between T2DM and HC in either the Dominant posterior frequency 
or the IAF. However, despite the peak frequency remaining intact, a tendency was observed 

for a reduction in power density at both the Dominant posterior frequency and the IAF, with 

the power density profile in T2DM more closely resembling AD than HC. To our 
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knowledge, this represents the first analysis of peak frequencies in T2DM. Though we found 

no link between these power density changes and neuropsychological performance in the 

current sample, future longitudinal studies may investigate further whether they are 

cognitively relevant and potentially prodromal of later changes in peak frequency.

Differences in cognitive relevance of oscillatory signatures between AD and T2DM

Though T2DM confers an increased risk for developing AD (Biessels and Kappelle, 2005; 

Barbagallo and Dominguez, 2014), little is known about the mechanistic underpinnings that 

link the two disorders (Chatterjee and Mudher, 2018; Chornenkyy et al., 2019). In contrast 

to AD, we found no correlation between the Spectral Power Ratio and the degree of 

cognitive impairment in T2DM for any of the neuropsychological tests in our battery. It is 

possible that this highlights the domain-specific nature of the EEG–cognition link, as the 

T2DM group showed no marked deficits on the executive function tests, which were most 

strongly related to the Spectral Power Ratio in AD. A related possibility concerns the 

multifactorial nature of T2DM-related impact on the brain. Despite some similarities in the 

observed EEG changes associated with AD and T2DM, the electrophysiological signatures 

linked to cognitive deficits may not be the same due to differing neurodegeneration and 

cerebrovascular pathologies. This proposal could be tested in future studies by combing 

resting-state EEG recordings and comprehensive neuropsychological testing with structural 

magnetic resonance imaging (MRI) in both AD and T2DM samples. This may allow for the 

establishment of a physiological link between oscillatory activity, structural abnormalities 

and cognitive functions. Such an approach would shed further light on similarities and 

differences in the neuropathological processes underlying cognitive impairment in T2DM 

and AD.

EEG oscillations and cognition

Oscillatory EEG activity reliably co-varies with cognitive functions in a band- and domain-

specific manner (Basar et al., 2001). For example, α-band activity has been associated with 

memory (Bonnefond and Jensen, 2012; Klimesch, 1999; Palva and Palva, 2007), attention 

(Benwell et al., 2017, 2018; Foxe and Snyder, 2011), and arousal (Benwell et al., 2018; 

Cantero et al., 1999; Sadaghiani et al., 2010), while β-activity is believed to play a role in 

sensorimotor functions (Pfurtscheller et al., 1996) and the maintenance of top-down 

attention (Buschman and Miller, 2007; Engel and Fries, 2010). These findings have led to 

suggestions that oscillations are computationally relevant for neuronal synchrony/

communication and higher-order cognition (Canolty and Knight, 2010).

Hence, changes in EEG power associated with pathophysiology may reflect abnormal 

synchronization of large-scale networks of pyramidal cortical neurons and consequent 

impairment of information transfer required for cognitive functions. Recent studies 

employing both structural neuroimaging and EEG/MEG suggest that increases in δ+θ power 

(and reductions in α power) correlate with neurodegenerative processes associated with AD 

such as atrophy of sub-cortical white matter, cortical gray matter and hippocampus (Babiloni 

et al., 2013, 2006b; Fernandez et al., 2003; Helkala et al., 1996).
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From a functional perspective, one theory linking frequency ratio changes with cognitive 

impairment suggests a possible reciprocal relationship between α-band and low-frequency 

(δ+θ) activity (Knyazev, 2012, 2007). Specifically, α-activity is implicated in controlling 

adaptive functional inhibition (Klimesch et al., 2007), facilitating goal-directed sensory and 

behavioral regulation. Accordingly, when this reciprocal relationship is unbalanced, through 

reductions in α-mediated inhibition and/or abnormal increases in low-frequency activity, 

pathological disinhibition occurs with consequent cognitive and behavioral impairments 

(Knyazev, 2012, 2007). Notably, differences in the spectral ratio between T2DM and HC 

were primarily driven by reduced power in higher (α+β) frequencies in T2DM, without a 

strong increase in low-frequency (δ+θ) power. If reduction in α-power indexes decreased 

functional inhibition relevant for cognitive performance, then this may be prodromal in 

T2DM of subsequent increase in low-frequency activity and accelerated cognitive decline. 

Unfortunately, due to the single time-point/cross-sectional nature of the current study, the 

results cannot provide evidence as to the existence of any causal link between T2DM and 

AD. It is crucial to acknowledge that the causal factors underlying cognitive impairments 

may not be shared across the disorders; hence, we cannot yet ascribe the EEG differences to 

a single underlying cause. Future longitudinal, prospective studies are however warranted 

given existing epidemiologic data and the reported cross-sectional findings here. 

Longitudinal measurements of EEG power and neuropsychological performance in 

individuals with T2DM could test the prognostic power of EEG changes in terms of 

subsequent cognitive decline, including progression to AD (Gispen and Biessels, 2000; 

Stewart and Liolitsa, 1999).

Additional limitations of the current study include a lack of older participants, particularly in 

the T2DM and HC groups. Future studies should look to recruit from a wider range of older 

adults. It is important to note that, despite no individuals scoring as clinically impaired on 

the MMSE, we were unable to fully rule out the possibility of pre-clinical AD being present 

in the HC and T2DM groups. It would also be of benefit to collect more potentially relevant 

demographic details which were not available here, including smoking status, comorbid 

psychiatric symptomology and time since diagnosis. Additional information regarding 

medication use might be of particular value given that T2DM treated with medications may 

not experience equivalent neurocognitive consequences to those controlling the disease 

through exercise and diet (Walker and Harrison, 2015; Ngandu et al., 2015). Furthermore, 

we did not consider the potential association between γ-band (~30-100 Hz) oscillations and 

cognitive function in either T2DM or AD, despite previous research suggesting γ-band 

activity to be cognitively relevant (van Deursen et al., 2008; Başar et al., 2016). We chose 

not to include EEG-measured γ because it is often contaminated by muscle (Whitham et al., 

2007) and eye-movement artifacts (Yuval-Greenberg et al., 2008). An optimal approach to 

investigate pathophysiological signatures of γ activity in future studies would be to employ 

magnetoencephalography, in which cerebral γ activity can be more clearly and robustly 

identified than in EEG (Mandal et al., 2018).

Conclusions

Neuropsychological deficits are widespread in AD and selective in T2DM (with relative 

sparing of executive functions). Relative to HC, AD patients had higher EEG power in lower 
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frequencies and lower power in higher frequencies across all brain regions. In contrast, 

patients with T2DM showed decreases in specifically α power relative to HC restricted to 

the temporal regions. The ratio, (α+β)/(δ+θ), showed a continuum of differences from HC 

to T2DM to AD. This Spectral power ratio correlated with dementia severity and executive 

functioning in AD and learning and memory performance in HC and across all groups 

combined. In contrast, no relationship was found between IAF and cognitive function in any 

of the three groups. Shift in the ratio of relative power (in favor of low frequencies) within 

the EEG power-spectrum represents a candidate neural signature of cognitive deficits 

associated with aging-related diseases including AD and T2DM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Whole-brain analysis of relative power.
A. F-ratios associated with between-group mass univariate analyses of variance (ANOVAs) 

comparing relative electroencephalography (EEG) power between Alzheimer’s disease 

(AD), Type-2 diabetes mellitus (T2DM), and healthy controls (HC) across all electrodes (y-

axis) and frequencies (x-axis). The solid black contour represents data points surviving 

cluster-based multiple comparison correction. B. Topographic representation of the F-ratios 

averaged across the significant frequencies. C. Mean power spectra (with 95% confidence 

intervals; CI) for each group separately at the electrode (CP6) for which group differences 

were maximal. Alpha/beta power showed a linear decrease across groups, being highest for 

HC and lowest for AD with T2DM having intermediate values whereas delta/theta power 

showed a linear increase across groups. D-F. T-values associated with follow-up tests 

comparing relative EEG power between each pair of groups separately. Solid black contours 

indicate data points surviving cluster-correction. G-H. Topographic representation of the t-
values associated with the respective significant effects. Significant electrodes are 

highlighted in gray.
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Figure 2. Spectral Power Ratio.
Figure shows the age-adjusted comparison across groups of the Spectral Power Ratio, (α
+β)/(δ+θ), estimated from each cortical region of interest (ROI). Tukey’s Honestly 

Significant Difference post hoc tests demonstrated that (α+β)/(δ+θ) was lower in 

Alzheimer’s disease (AD) than in Healthy Controls (HC) across all ROIs (p values < 0.001) 

and lower than Type-2 Diabetes (T2DM) in all but the Posterior ROI (p values = 0.0499–

0.063). T2DM was lower than HC across all ROIs though this difference did not reach 

significance (p values = 0.064–0.136). Data shown represent the least squared means and 

standard deviations derived from the linear regression models.
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Figure 3. Group analysis and post-hoc comparisons of cognitive measures adjusted for age.
All data represent least squared means and standard error. Individual neuropsychological 

tests (x-axis) are shown grouped by cognitive domain. Scores (y-axis) were z-normalized 

and inverted (if necessary) so higher numbers reflect better performance/function. Following 

the first omnibus multivariate analysis of variance (MANOVA-1), group performance on 

individual tests was assessed using separate multiple linear regression analyses with age as a 

covariate. All results survived a 5% false discovery rate (FDR). In general, there was a 

continuum of deficits with healthy controls (HC) scoring higher than Type-2 diabetics 

(T2DM), who performed better than Alzheimer’s disease (AD). Post-hoc pairwise 

comparisons were conducted with Tukey’s honestly significant difference (HSD) tests. 

Three patterns were observed: (§) all three groups were significantly different; (†) AD 

scored significantly worse than both HC and T2DM, which were equivalent to each other; 

(^) HC were significantly better than AD, with T2DM not significantly different from either 

group. Additional abbreviations. Alzheimer’s disease Assessment Scale-Cognitive subscale 

(ADAS-Cog); Activities of Daily Living (ADLs); Digit Symbol Substitution Test (DSST); 

Trail Making Test (TMT); Rey Auditory Verbal Learning Test (RAVLT); Geriatric 

Depression Scale (GDS).

Benwell et al. Page 27

Neurobiol Aging. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Relationship between electroencephalography (EEG) Spectral power ratio and 
cognitive function.
Z-normalized scores (higher score indicates better performance) from individual 

neuropsychological tests were averaged together to form three domains: A. Learning & 
memory (Rey Auditory Verbal Learning Test, Logical Memory Story); B. Dementia severity 
(Alzheimer’s disease Assessment Scale-Cognitive subscale, Activities of Daily Living); C. 
Executive function (Digit Symbol Substitution Test, Semantic fluency, Trail Making, Digit 

Span forward and backward). Computed averages were related to the Spectral Power Ratio 

(α+β)/(δ+θ) and plotted separately for the three groups. In healthy controls (HC), higher (α
+β)/(δ+θ) was significantly associated with better Learning & memory performance (p = 

0.018, uncorrected). In Alzheimer’s disease (AD), higher (α+β)/(δ+θ) was significantly 

associated with better Dementia severity and Executive function (p’s < 0.05, uncorrected). 

By contrast, no significant relationships were observed in the Type-2 diabetes mellitus 

(T2DM) group (p’s > 0.1).
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Figure 5. Group analysis of Dominant posterior frequencies.
A. Individual frequency between 5-15 Hz with the highest power density across all posterior 

electrodes (Dominant posterior frequency) as a function of group (Healthy controls (HC), 

Type-2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD)). B. Power density at the 

Dominant posterior frequency (averaged over the peak frequency ± 2 Hz) as a function of 

group. Colored dots denote individual participants, white dots denote group medians and 

background fills represent kernel density estimates.
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Table 1.

Results of Multivariate Analyses of Variance (MANOVAs).

MANOVA-1

Factor Wilks' λ df F ratio P value Partial Eta2

Group 0.090 30,86 6.670 <.001 0.699

Age 0.581 15,43 1.666 0.0958 0.368

MANOVA-2

Factor Wilks' λ df F ratio P value Partial Eta2

Group 0.550 6,522 30.200 <.001 0.260

Spectral Power Ratio 0.399 3,261 36.100 <.001 0.290

Group*Spectral Power Ratio 0.532 6,522 29.100 <.001 0.250

Age 0.215 3,261 6.200 <.001 0.070

In MANOVA-1, the dependent variables included z-normalized, rectified scores on the Alzheimer's disease Assessment Scale-Cognitive Subscale, 
Activities of Daily Living, Digit Symbol Substitution Test, Semantic Fluency Test, Trail Making Test time and errors (difference Part B-Part A), 
Digit Span length forward and backward, Rey Auditory Verbal Learning Test (learning, delayed recall, delayed recognition), Logical Memory story 
(immediate and delayed recall), Boston Naming Test, and Geriatric Depression Scale. In MANOVA-2, the dependent variables include the averaged 
Z-scores of the three cognitive domains (Learning & memory, Dementia severity, Executive function). Spectral Power Ratio refers to a whole-brain 
averaged power ratio [(alpha + beta)/(delta + theta)] obtained from eyes-closed resting-state electroencephalography.
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