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Abstract

Publication bias, more generally termed as small-study effect, is a major threat to the validity of 

meta-analyses. Most meta-analysts rely on the p-values from statistical tests to make a binary 

decision about the presence or absence of small-study effects. Measures are available to quantify 

small-study effects’ magnitude, but the current literature lacks clear rules to help evidence users in 

judging whether such effects are minimal or substantial. This article aims to provide rules of 

thumb for interpreting the measures. We use six measures to evaluate small-study effects in 29,932 

meta-analyses from the Cochrane Database of Systematic Reviews. They include Egger’s 

regression intercept and the skewness under both the fixed-effect and random-effects settings, the 

proportion of suppressed studies, and the relative change of the estimated overall result due to 

small-study effects. The cutoffs for different extents of small-study effects are determined based 

on the quantiles in these distributions. We present the empirical distributions of the six measures 

and propose a rough guide to interpret the measures’ magnitude. The proposed rules of thumb may 

help evidence users grade the certainty in evidence as impacted by small-study effects.
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Introduction

Meta-analyses are powerful tools to combine and compare information from multiple 

sources and provide the most comprehensive evidence for decision-making. They have been 

frequently applied to facilitate evidence-based medicine, and innovative approaches have 

been increasingly developed to meet contemporary needs of decision makers and overcome 

various challenges.1,2 An essential difficulty in meta-analyses is to reduce potential bias 

from individual studies, as well as from the process of combining them. The PRISMA 
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statement guides the conduct and reporting of the systematic review process3,4, the Cochrane 

Collaboration provides instructions on assessing the risk of bias of individual studies5,6, and 

the GRADE Working Group has established approaches to rating the certainty of evidence.
7,8 Most efforts aim to avoid unwarranted strong inference based on misleading or low-

quality evidence.9 Nevertheless, compared with handling bias within studies, it is more 

challenging to effectively detect or even correct publication bias. Studies with statistically 

significant results or results in certain directions may be more likely published10–13, which 

can seriously bias meta-analytic conclusions.

An ideal method to remedy publication bias is to retrieve unpublished studies from various 

sources besides published journal articles. These sources include clinical trial registries, drug 

or device approving agencies, scientific conference abstracts and proceedings.14 However, 

this method is not always feasible. For example, the unpublished sources may not be 

available, and the retrieval process may be cumbersome and time-consuming. Also, 

unpublished databases have not been peer-reviewed, and their quality is not guaranteed. 

Even if some unpublished data were incorporated into a meta-analysis, the likelihood of 

publication bias remains. Therefore, when using such non-statistical methods to deal with 

publication bias, meta-analysts need to pursue a tradeoff between time, effort, costs, and the 

importance of unpublished data.15

Consequently, in addition to searching for unpublished databases, statistical methods have 

been popular to assess publication bias.16–18 These include Egger’s regression19, the trim-

and-fill method20, and a recently proposed skewness of the collected studies.21 Meta-

analysts usually determine the presence or absence of publication bias based on these tests’ 

significance, while the bias direction and magnitude can also deliver critical information.22 

Although Egger et al.19 suggested to measure the bias direction and magnitude using their 

proposed regression’s intercept, most meta-analysts reported only this regression test’s p-

value, not the intercept itself. Such a measure has been insufficiently reported primarily 

because researchers lack an intuitive guide to interpret the measure’s magnitude.

Of note, most statistical methods, including Egger’s regression, are designed based on 

examining the funnel plot’s asymmetry. Such asymmetry is sometimes termed as small-

study effect, rather than publication bias, to remind meta-analysts that publication bias may 

not be the only cause of the asymmetry.18 Many other factors may also lead to an 

asymmetrical funnel plot (e.g., due to heterogeneity or simply by chance). Consequently, we 

use the term small-study effects throughout this article to more accurately describe the 

statistical methods’ results. We cautiously note that the statistical methods may only assist 

the assessment of small-study effects, rather than ascertaining publication bias. The funnel 

plot’s asymmetry should be carefully interpreted on a case-by-case basis from both 

statistical and clinical perspective, e.g., using the comprehensive guidelines provided by 

Sterne et al.18

This article summarizes six measures for small-study effects and presents their empirical 

distributions based on many meta-analyses in the Cochrane Database of Systematic Reviews 
(CDSR). We provide rules of thumb to quantitatively help decision makers evaluate the 

magnitude of small-study effects.
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Methods

Data Collection

The Cochrane Collaboration provides a large collection of systematic reviews in healthcare. 

We searched for all reviews in the CDSR from 2003 Issue 1 to 2018 Issue 5 and downloaded 

their data on 27 May 2018 via the R package “RCurl”. Each Cochrane review corresponded 

to a distinct healthcare-related topic and usually contained multiple meta-analyses on 

different outcomes and/or treatment comparisons. We pooled all meta-analyses from all 

reviews and classified them into two groups based on their outcomes (binary and non-

binary). For meta-analyses with binary outcomes, regardless the effect sizes used in the 

original Cochrane reviews, we assessed their small-study effects based on (log) odds ratios 

so that the associated measures could be more consistent across meta-analyses. For meta-

analyses with non-binary outcomes, we used the originally reported effect sizes (e.g., mean 

differences, standardized mean differences, rate ratios), because it was impossible to 

transform them into a common type of effect size using the available data from the CDSR. 

Finally, it was difficult to justify small-study effects in meta-analyses with few studies16,23, 

so we only considered meta-analyses with at least five studies.

Meta-analyses in the same Cochrane review often shared some common studies, so their 

results were possibly correlated. In addition to the full database as collected above, we 

considered a reduced database by selecting the largest meta-analysis (with respect to the 

number of studies) from each Cochrane review. The meta-analyses in the reduced database 

could be considered independent, and they were used as a sensitivity analysis.

Measures for Small-Study Effects

We measured small-study effects using six methods briefly described in Table 1 for each 

Cochrane meta-analysis. The first four measures were based on Egger’s regression. We 

considered the regression intercept (originally introduced by Egger et al.19) and the recently 

proposed skewness of the regression errors.21 Egger’s regression was originally described 

under the fixed-effect (FE) setting.24 However, heterogeneity often existed between studies, 

and it was commonly modeled using random effects (RE) with additive between-study 

variances.25,26 We considered the regression intercept and the skewness under both the FE 

and RE settings, denoted as TI
FE and TI

RE, and TS
FE and TS

RE, respectively. Under the RE 

setting, we first used the Q test to examine the significance of heterogeneity. If its p-value 

<0.05, the between-study variance was estimated using the DerSimonian–Laird method27; 

otherwise, it was set to zero.

The other two measures were based on the trim-and-fill method20, which could use the 

observed n studies in a meta-analysis to impute the suppressed studies and thus adjust for 

small-study effects. We estimated the number of suppressed studies k0, and the overall effect 

sizes before and after correcting small-study effects, denoted as θpublished data and θ total data, 

respectively. Consequently, small-study effects were measured using the proportion of 

suppressed studies, PTF = k0/ n + k0 × 100%, and the relative change of the estimated 

overall effect size, RTF = θpublished data/θ total data − 1 × 100%.14
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All six measures were theoretically zero when no small-study effects presented. The five 

measures except PTF can be positive or negative; their signs indicated small-study effects’ 

direction, and their absolute values implied the effects’ magnitude. Positive regression 

intercepts or skewness indicated that studies with more negative results (i.e., on the funnel 

plot’s left side) tended to be suppressed; negative ones indicated that suppressed studies 

tended to be in the positive direction. When using RTF, determining the small-study effects’ 

direction depended on the overall effect size’s direction. Moreover, unlike the above five 

measures, PTF lied within 0–100%; it informed only small-study effects’ magnitude, not 

their direction.

Deriving Rules of Thumb for Small-Study Effects’ Magnitudes

The six measures’ empirical distributions were obtained using the Cochrane meta-analyses. 

We determined the cutoffs for different magnitudes of small-study effects based primarily on 

the quantiles in these distributions. We roughly classified the magnitudes into four levels, 

i.e., unimportant, moderate, substantial, and considerable; each level contained roughly 30% 

of the distribution. Also, we permitted the levels’ ranges to overlap, because the importance 

of small-study effects depended on many factors (e.g., disease outcome) and strict cutoffs 

without overlapped ranges might be misleading. Also, we rounded the selected quantiles to 

be in simple forms (with few digits after the decimal point) so that they could be easily 

summarized and applied. These labels of magnitudes and the approach of overlapping 

categories have been similarly used with the I2 statistic for heterogeneity.6,28

Results

We obtained 18,562 eligible meta-analyses with binary outcomes and 11,370 ones with non-

binary outcomes. The reduced database contained 1960 and 1342 meta-analyses with binary 

and non-binary outcomes, respectively. Figure 1 presents the flow chart of the selection 

process.

Meta-Analyses with Binary Outcomes

Figures S1 and S2 in the Supplementary Material present the empirical distributions of 

measures for small-study effects and their absolute values (except PTF) among meta-

analyses with binary outcomes. The vertical dashed lines depict the null value (zero) of no 

small-study effects. The distributions of Egger’s regression intercept and the skewness were 

approximately symmetrical around zero. The averages of the regression intercepts TI
FE and 

TI
RE were −0.14 and −0.16 with standard deviations (SDs) 2.04 and 3.30, respectively; both 

had a median around −0.14. Also, 55.2% and 55.0% meta-analyses had negative TI
FE and 

TI
RE, respectively, and 44.8% and 45% meta-analyses had positive ones. The regression 

intercept was extreme in a few meta-analyses. Specifically, 279 (1.5%) and 254 (1.4%) 

meta-analyses had TI
FE less than −4 and greater than 4, respectively. Using the regression 

intercepts under the RE setting, more meta-analyses had extreme measures: TI
RE was less 

than −4 in 560 (3.0%) meta-analyses and was greater than 4 in 495 (2.7%) meta-analyses.
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Compared with the regression intercept, the skewness was more concentrated and 

symmetrical around zero. The averages of both TS
FE and TS

RE were close to zero with SDs 

around 0.50; their medians were also near zero. Moreover, 49.9% and 49.8% of the meta-

analyses had negative TS
FE and TS

RE, respectively, and 50.1% and 50.2% had positive ones. 

Only 14 and 11 (< 0.1%) meta-analyses had TS
FE and TS

RE greater than 2 in absolute 

magnitude.

When calculating PTF and RTF, the trim-and-fill algorithm did not converge in one meta-

analysis with binary outcomes. Also, it did not identify any suppressed studies in 6099 

(32.9%) meta-analyses; thus, their PTF and RTF were exactly zero and their empirical 

distributions had high frequencies massed at zero. The average of PTF was 13.6% with SD 

11.6%; its median was 14.3%. The PTF was less than 40% in all meta-analyses. The average 

of RTF was 57.0% with a huge SD 8087.9%, and its median was zero. The RTF was negative 

in 28.9% meta-analyses and was positive in 38.2% meta-analyses. The empirical distribution 

of the absolute RTF had a decreasing trend, which was similar to those of the absolute 

regression intercept and skewness, while its frequency at zero was much higher. The 

empirical distribution of PTF did not have an obvious decreasing trend as the measure 

increased.

Meta-Analyses with Non-Binary Outcomes

Figures S3 and S4 in the Supplementary Material present the measures’ empirical 

distributions among meta-analyses with non-binary outcomes. Compared with those with 

binary outcomes, Figure S3 indicates that more meta-analyses had extreme measures for 

small-study effects, especially when using the regression intercept. The averages of TI
FE and 

TI
RE were −0.26 and −0.40 with SDs 2.74 and 17.89, respectively; their medians were 

around −0.24. The large SD of TI
RE was due to its distribution’s long tails. Many meta-

analyses had extreme regression intercepts. Moreover, 56.2% and 55.8% meta-analyses had 

negative TI
FE and TI

RE, respectively, and 43.8% and 44.1% had positive ones. In one meta-

analysis, all studies had equal effect sizes, so all measures for small-study effects were 

exactly zero.

The skewness was mostly lied between −2 and 2. The TS
FE and TS

RE had averages around 

−0.04 with SDs 0.64 and 0.61, respectively, and their medians were around −0.03. The TS
FE

and TS
RE were negative in 52.4% and 52.5% meta-analyses and were positive in 47.6% and 

47.4% ones, respectively. Only 1.1% and 0.8% meta-analyses had TS
FE and TS

RE greater than 

2 in absolute magnitude. These proportions were slightly greater than those with binary 

outcomes.

The trim-and-fill method did not identify any suppressed studies in 5168 (45.5%) meta-

analyses, whose PTF and RTF were zero. The PTF had an average 11.0% with SD 11.6%, and 

its median was 10.0%. It was also less than 40% in all meta-analyses as in those with binary 
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outcomes. The average of RTF was 4.4% with SD 838.6%, and its median was 0%. The RTF
was negative in 26.1% and positive in 28.4% meta-analyses, respectively.

Rules of Thumb for Magnitudes of Small-Study Effects

Table 2 provides rules of thumb for interpreting small-study effects’ magnitudes based on 

the measures’ empirical distributions. In absolute magnitude, small-study effects might be 

unimportant if the regression intercepts TI
FE and TI

RE, the skewness TS
FE and TS

RE, the 

proportion of suppressed studies PTF, and the relative change RTF were less than 0.6, 0.2, 

4%, and 2%, respectively. Around 25% to 45% meta-analyses with either binary or non-

binary outcomes had measures within these ranges. The PTF and RTF generally indicated 

unimportant small-study effects in more meta-analyses than the other measures. If the six 

measures’ absolute values were within 0.4–1, 0.15–0.4, 2%–18%, and 1%–25% accordingly, 

small-study effects might be moderate; around 20% to 35% Cochrane meta-analyses had 

measures within the ranges. Small-study effects might be substantial if the absolute 

measures were within 0.8–2, 0.35–0.7, 16%–26%, and 20%–80% accordingly, and might be 

considerable if they were at least 1.8, 0.65, 24%, and 75% accordingly. The regression 

intercepts and skewness indicated substantial small-study effects in around 30% to 35% 

meta-analyses, and considerable small-study effects in around 20% to 40% ones. The PTF
and RTF implied substantial and considerable small-study effects in less meta-analyses than 

the other measures.

Sensitivity Analysis

Figures S5–S8 in the Supplementary Material show the measures’ histograms among the 

reduced database. The shapes of the histograms were similar to their counterparts in Figures 

S1–S4 using the full database.

Discussion

Main Findings

We have presented rules of thumb for interpreting measures for small-study effects based on 

their empirical distributions among many Cochrane meta-analyses. The results can aid 

decision makers who are tasked with appraising evidence and determining the certainty 

warranted by the evidence. Using the GRADE approach, small-study effects lead to rating 

down certainty. Using the proposed rules of thumb, the certainty in evidence to support a 

decision may not need to be rated down if small-study effects’ magnitude was small or if the 

effects’ direction was inconsistent with exaggerated study results.22

As Egger’s regression test is often considered more statistically powerful than the trim-and-

fill method in many situations,16 the regression intercept and skewness may be preferred 

measures than the trim-and-fill-based PTF and RTF, although the latter two may be more 

straightforward than the former ones. Also, despites its intuitive interpretation as the 

proportion of suppressed studies, PTF has several drawbacks. First, it accounts only for the 

number of suppressed studies, not their weights in the estimated overall result. If the 

suppressed studies are small, small-study effects may have little influence on the meta-
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analysis, and PTF might exaggerate small-study effects. Second, PTF does not take 

continuous values like other measures; instead, it must be fractions. If a meta-analysis has 

five studies, PTF is at least 16.7% (1/6 × 100%) even when only one suppressed study is 

identified.

Moreover, the regression intercept might be extreme, possibly because of outliers, while the 

skewness was mostly within a reasonable range. Under the RE setting, the regression 

intercept was more extreme in some meta-analyses. This may be due to poor between-study 

variance estimates affected by small-study effects.29

Limitations

This article has several limitations. First, many limitations are inherent to the available 

statistical methods for small-study effects. These methods are often underpowered and 

require strong assumptions. For example, the trim-and-fill method may perform poorly in 

the presence of high heterogeneity or when its assumption about suppressed studies is 

seriously violated.30,31 In such cases, meta-analysts may avoid using PTF and RTF to 

quantify small-study effects. Also, Egger’s regression may have inflated false positive rates 

in certain cases.17 The inflation is due to the intrinsic association between effect sizes and 

their within-study variances; such effect sizes include odds ratios, risk ratios, risk 

differences, as well as standardized mean differences.17,32–37 These issues need to be 

carefully taken into account when exploring publication bias. Although alternative methods 

may control false positive rates better than Egger’s regression in some cases17, they may be 

also seriously underpowered and not applicable to generic effect sizes. As an illustrative 

article for interpreting small-study effects’ magnitude based on empirical evidence, we did 

not comprehensively consider all available alternative methods; assessing the measures for 

small-study effects based on the alternatives will be one of our future studies.

Second, our analysis was restricted to the Cochrane meta-analyses, which focused on 

healthcare-related topics. However, many meta-analyses were performed to investigate 

diverse (e.g., ecological and educational) topics.2 Therefore, our findings may not be directly 

generalized to those meta-analyses.

Third, we considered Cochrane meta-analyses containing at least five studies, because it was 

difficult to justify small-study effects in very small meta-analyses. However, it is infeasible 

to establish a widely-accepted eligibility criterion on the number of studies for appropriately 

assessing small-study effects. The cutoff may be some other values, say ten.18

Finally, although we classified small-study effects’ magnitudes into four levels, their true 

importance relates to the disease outcome’s type and its context. For example, unimportant 

increase in mortality may be important in certain meta-analyses. Furthermore, our 

classifications were based roughly on the quantiles of the measures’ empirical distributions; 

however, no gold standard of small-study effects can be feasibly applied to examine their 

true magnitudes in all meta-analyses in the large database. Therefore, the proposed rules of 

thumb may serve as auxiliary assessment of small-study effects; to ascertain such effects or 
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publication bias, meta-analysts should carefully investigate individual studies on a case-by-

case basis.18

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart of selecting the Cochrane meta-analyses.
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Table 1.

Statistical methods for assessing small-study effects.

Method Description

Funnel plot Presenting the study-specific effect size against its standard error (or the inverse of standard error). It is roughly 
symmetrical around the overall effect size if no small-study effects appear.

Regression test SND = α + β × precision + error. Under the fixed-effect setting, SND (standard normal deviate) = y/s and precision 

=1/s; under the random-effects setting, SND = y/ s2 + τ2 and precision =1/ s2 + τ2. Here, y and s are the 

study-specific effect size and its standard error within studies, respectively, and τ2 is between-study variance due to 
heterogeneity. It tests for whether α = 0.

Regression intercept 

(TI
FE or TI

RE)
An estimate of the intercept α of the regression test under the fixed-effect (TI

FE) or random-effects (TI
RE) setting.

Skewness (TS
FE

 or 

TS
RE

)

An estimate of the skewness of the study-specific errors of the regression test under the fixed-effect (TS
FE

) or 

random-effects (TS
RE

) setting.

Trim-and-fill method Estimating the suppressed studies and thus correcting small-study effects based on funnel plot’s asymmetry.

Proportion of 
suppressed studies 
(PTF)

PTF = k0/ n + k0 × 100%, where n is the number of studies in the original meta-analysis, and k0 is the 

estimated number of suppressed studies using the trim-and-fill method.

Relative change of 
overall result by 
incorporating imputed 
suppressed studies 
(RTF)

RTF = θpublished data/θ total data − 1 × 100%, where θpublished data is the estimated overall result in the 

original meta-analysis of published studies, and θ total data is that after incorporating imputed suppressed studies 

using the trim-and-fill method.
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