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Abstract

In a clinical setting, pain is reported through either self-report or via an observer. Such measures 

are: 1) subjective, and 2) give no specific timing information. However, coding pain as a series of 

facial action units (AUs) can avoid these issues as it can be used to gain an objective measure of 

pain on a frame-by-frame basis. Using video data from patients with shoulder injuries, in this 

paper we describe an Active Appearance Model (AAM) based system that can automatically 

detect the frames in video in which a patient is in pain. This pain dataset highlights the many 

challenges associated with spontaneous emotion detection, especially that of expression and head 

movement due to the patient’s reaction to pain. In this paper, we show that the AAM can deal with 

these movements and can achieve significant improvements in both AU and pain detection 

performance compared to the current-state-of-the-art approaches which utilize similarity-

normalized appearance features only.
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I. INTRODUCTION

Reliably assessing and managing pain in a clinical setting is difficult. Patient self-report has 

become the most widely used technique to measure pain because it is convenient, does not 

require advanced technology or special skills. It is typically evaluated either through clinical 

interview or by using a visual analog scale (VAS). With the VAS, the intensity of pain is 

indicated by marking a line on a horizontal scale, anchored at each end with words such as 

“no pain” and “the worst pain imaginable”.

While useful, self-report measures have significant limitations [1], [2]. These include 

inconsistent metric properties across scale dimensions, reactivity to suggestion, efforts at 

impression management or deception, and differences between clinician’s and sufferers’ 

conceptualization of pain [3]. Moreover, self-report cannot be used in important populations, 

such as young children, patients who have limited abilities to communicate, the mentally 

impaired, and patients who require assisted breathing. In these situations, an observer rating 

is required where the observer chooses a face on the “faces of pain” scale which best 

resembles the facial expression of the patient [4]. This is highly impractical and inefficient if 

the observer is required for long periods of time which could be the case for a patient in an 

intensive care unit (ICU).

In addition to self-report and observer measures being highly subjective, these measures do 

not give a continuous output over time, as the only output measured coincides when the 

patient is at their emotional apex (e.g. highest pain intensity). They do not provide 

information on the patient’s emotional state other than these peak periods. In an effort to 

address these shortcomings, many researchers have pursued the goal of obtaining a 

continuous objective measure of pain through analyzes of tissue pathology, neurological 

“signatures”, imaging procedures, testing of muscle strength and so on [5]. These 

approaches have been fraught with difficulty because they are often inconsistent with other 

evidence of pain [5], in addition to being highly invasive and constraining to the patient.

Another potential solution is to code pain using facial actions, which is analogous to the 

“faces of pain” approach. Over the past two decades, significant efforts have been made in 

identifying such facial actions [6], [7], [8]. Recently, Prkachin and Solomon [8] developed a 

Facial Action Coding System (FACS) [9] based measure of pain which can be gained at each 

time step (i.e. each video frame), which is the only such available measure. A caveat on this 

approach is that it must be performed offline, where manual observations are both timely 

and costly, which makes clinical use prohibitive. However, such information can be used to 

train a real-time automatic system which could potentially provide significant advantage in 

patient care and cost reduction.
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In this paper, we describe an Active Appearance Model (AAM) based computer vision 

system which can automatically detect pain based on facial expressions coded using FACS. 

We demonstrate its use on the UNBC-McMaster Shoulder Pain Archive which contains 

patients with rotator-cuff injuries, eliciting spontaneous facial expressions associated with 

pain which are not posed or feigned. These facial actions vary in duration and intensity and 

often coincides with abrupt changes in head position as shown in Figure 1. Using an AAM 

approach, we show that both shape (i.e. contour) and appearance (i.e. texture) are both vital 

for gaining accurate detection performance. We also highlight the difficulties associated with 

detecting spontaneous data such as pain, where there is a lot of head motion. This is a 

particular problem for systems which use similarity-normalized appearance features (i.e. 

normalized for translation, rotation and scale), as some parts of the face may not be visible, 

inhibiting accurate detection.

The key contributions of this paper are:

1) We describe a system which can automatically detect pain from a patient’s face 

using an AAM approach on a frame-by-frame basis (Section V).

2) We show that using the common similarity-normalized appearance features on 

spontaneous data is problematic due to the major facial expressions and head 

motion and using an AAM approach can yield significant improvement (Section 

IV & V).

3) We show that fusing all AAM representations together (i.e. similarity 

normalized shape, appearance and canonical normalized appearance 

(synthesized)) using linear logistical regression (LLR), improves both AU and 

pain detection performance (Section IV & V).

A. Related Work

There have been many recent attempts to detect emotions directly from the face, mostly 

using FACS [9]. Comprehensive reviews can be found in [10], [11], [12]. These attempts 

relate mostly to posed data as spontaneous (i.e. real) emotions are subtle and do not occur 

frequently, which makes this pursuit timely and costly. Pain however, is one spontaneous 

emotion that can be captured on cue as it can be elicited. This can be achieved ethically 

through physical movement of a limb or joint which is painful, or through a device such as a 

cold pressor.

Collecting data via a cold pressor, Littlewort et al. [13] used their AU detector which 

consisted of Gabor Filters, Adaboost and SVMs, to differentiate between genuine and fake 

pain. In this work no actual pain/no-pain detection was performed as differentiation between 

genuine, fake and baseline sequences was done via analyzing the various detected AUs. The 

classification for this work was done at the sequence level and a cold pressor was used to 

elicit real pain on the subjects. All images were then similarity-normalized by first coarsely 

locating the face using a Viola-Jones type of approach, then locating the eyes which were 

used to scale, rotate and crop the image according to a predefined inter-ocular distance.
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In terms of pain/no-pain detection, Ashraf et al. [14] used the UNBC-McMaster Shoulder 

Pain Archive which contains data with patient’s moving both their injured and uninjured 

shoulders, to classify video sequences as pain/no-pain. Ashraf et al. [15] then extended this 

work to the frame-level to see how much benefit would be gained at labeling at the frame-

level over the sequence-level. Even though they found that it was advantageous to have the 

pain data labeled at the frame-level, they proposed that this benefit would be largely 

diminished when encountering large amounts of training data. In these works, all images 

were registered using an AAM.

Other than pain, there have been a few other relevant works published on detecting 

spontaneous facial expressions and emotions. The first one is based on the RUFACS dataset 

[16], which consists of 34 subjects participating in a interview (≈ 2mins) where they are 

being asked to take a position on a particular issue (either truthfully or not). This dataset 

contains a lot of head motion and subtle facial actions, which is indicative of natural human 

behavior. Due to these challenges, Bartlett et al. [16] found that the performance of their AU 

detection system greatly diminished compared to the posed scenario1. All images in this 

work were similarity-normalized as per the Littlewort et al. [13] system described above.

More recently, Whitehill et al. [18] published their work on robust smile detection across all 

environments, motivated for the use in digital cameras. For this work, they collected the 

GENKI dataset, which contains over 63,000 static images from the internet, which were all 

frontal. Again, all images were similarity normalized as previously described, however, this 

work had a greatly improved eye detector which improved the registration of the images. 

Even with this improved image registration and little head motion, the authors blamed the 

loss in alignment accuracy de creased smile detection performance up to 5%.

Even though these above works all acknowledge the importance of registration of input 

images for spontaneous facial expression and emotion detection, none have quantified to the 

extent in which this effects overall performance. In this paper, we do such an analysis for 

both AU and pain detection, which will be very important if spontaneous expression 

detection systems such as pain detectors are used in commercial applications in the future.

II. FACIAL EXPRESSIONS OF PAIN

A. Defining Pain via Facial Action Units

Much is known about how humans facially express pain from studies in behavioral science 

[6], [7], [8]. Most of these studies encode pain from the movement of facial muscles into a 

series of AUs, based on FACS. An example of the facial actions of a person in pain is shown 

in Figure 2.

In 1992, Prkachin [7] conducted a study on facial expressions and found that four actions - 

brow lowering (AU4), orbital tightening (AU6 and AU7), levator contraction (AU9 and 

AU10) and eye closure (AU43) - carried the bulk of information about pain. In a recent 

1In terms of area under the ROC curve (A’), the mean AU detection rate for RUFACS dataset was 71.0 compared to 92.6 for the posed 
data of the Cohn-Kanade database [17]

Lucey et al. Page 4

IEEE Trans Syst Man Cybern B Cybern. Author manuscript; available in PMC 2020 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



follow up to this work, Prkachin and Solomon [8] confirmed these four “core” actions 

contained the majority of pain information. They defined pain as the sum of intensities of 

brow lowering, orbital tightening, levator contraction and eye closure. The Prkachin and 

Solomon pain scale is defined as:

Pain = AU4 + (AU6 AU7) + (AU9 AU10) + AU43 (1)

That is, the sum of AU4, AU6 or AU7 (whichever is higher), AU9 or AU10 (whichever is 

higher) and AU43 to yield a 16-point scale2. Frames that have an intensity of 1 and higher 

are defined as pain. For the example in Figure 2, which has been coded as AU4B + AU6E + 

AU7E + AU9E + AU10D + AU12D+ AU25E + AU43A, the resulting pain intensity would 

be 2+5+5+1 = 13. This is because AU4 has an intensity of 2, AU6 and AU7 are both of 

intensity 5 so just the maximum is taken, AU9 is of intensity 5 and AU10 is of intensity 4 so 

again the maximum is taken which is 5, and AU43 is of intensity 1 (eyes are shut).

The Prkachin and Solomon [8] FACS pain scale is currently the only metric which can 

define pain on a frame-by-frame basis. All frames that were used in this study were coded 

via this metric.

B. UNBC-McMaster Shoulder Pain Expression Archive Database

The UNBC-McMaster Shoulder Pain Expression Archive database was used for this work. It 

contains video of the faces of adult subjects (129 subjects - 63 male, 66 female) with rotator 

cuff and other shoulder injuries. Subjects were recorded during movement of their affected 

and unaffected shoulder during active and passive conditions. In the active condition, 

subjects initiated shoulder rotation on their own. In the passive condition, a physiotherapist 

was responsible for the movement. In the experiments conducted in this paper, only the 

active condition was used. Within the active condition, tests were performed on both the 

affected and the unaffected shoulder to provide within subject control. The camera angle for 

these tests were approximately frontal. However, moderate head motion was common. Video 

of each trial was rated offline by a FACS certified coder. To assess inter-observer agreement, 

1738 frames selected from one affected-side trial and one unaffected-side trial of 20 

participants were randomly sampled and independently coded. Intercoder percent agreement 

as calculated by the Ekman-Friesen formula [9] was 95%, which compares favorably with 

other research in the FACS literature. For more information on the database, please refer to 

[8].

From the database, we used 203 sequences from 25 different subjects. Overall, there were 

48,398 frames of data analyzed and all of these frames were used in our experiments. Out of 

this data, according to the pain metric given in the previous subsection, 83.6% of the frames 

had a pain score of 0, and 16.4% had frames in which had a person in pain (pain score ≥ 1). 

Examples of this data are given in Figure 3. Clearly, considerable head movement occurs 

during the sequence. To quantify how much head movement occurred, we used the 3D 

2Action units are scored on a 6-point intensity scale that ranges from 0 (absent) to 5 (maximum intensity). Eye closing (AU43) binary 
(0 = absent, 1 = present). In FACS terminology, ordinal intensity is denoted by letters rather than numeric weights, i.e., 1 = A, 2 = 
B, . . . 5 = E.
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parameters from the AAM (see Section III–C for details) to estimate the pitch, yaw and roll. 

The histograms of these parameters are shown in Figure 4. As you can see from this figure, 

there is quite a bit of variance in terms of the pitch, yaw and roll. Upon inspection of the 

data, it appeared that a lot of head movement occurred when a patient was in pain. To gauge 

this relative to the pain score, we have generated Table I to display the variation in head 

position as a function of pain. From this it appears when a patient was in pain (pain score ≥ 

1), the variance of head position for pitch, yaw and roll was much greater than when a 

person was not in pain. In terms of how much variation there was, we have produced Table 

II which shows the proportion of frames that differed from the fully frontal view. As can be 

seen from this table, close to 90% were within 10 degrees of being fully frontal and over 

99% were within 20 degrees from the fully frontal view.

III. AUTOMATIC DETECTION SYSTEM

In our system, we employ an Active Appearance Model (AAM) based system which uses 

AAMs to track the face and extract visual features. We then use support vector machines 

(SVMs) to classify individual AUs and pain. An overview of our system is given in Figure 5. 

We describe each of these modules in the following subsections.

A. Active Appearance Models (AAMs)

Active Appearance Models (AAMs) have been shown to be a good method of aligning a pre-

defined linear shape model that also has linear appearance variation, to a previously unseen 

source image containing the object of interest. In general, AAMs fit their shape and 

appearance components through a gradient-descent search, although other optimization 

methods have been employed with similar results [19].

The shape s of an AAM [19] is described by a 2D triangulated mesh. In particular, the 

coordinates of the mesh vertices define the shape s = x1, y1, x2, y2, …, xn, yn , where n is the 

number of vertices. These vertex locations correspond to a source appearance image, from 

which the shape was aligned. Since AAMs allow linear shape variation, the shape s can be 

expressed as a base shape s0 plus a linear combination of m shape vectors si:

s = s0 + ∑
i = 1

m
pisi (2)

where the coefficients p = p1, …, pm
T are the shape parameters. These shape parameters 

can typically be divided into rigid similarity parameters ps and non-rigid object deformation 

parameters po, such that pT = ps
T, po

T . Similarity parameters are associated with a geometric 

similarity transform (i.e. translation, rotation and scale). The object-specific parameters, are 

the residual parameters representing non-rigid geometric variations associated with the 

determing object shape (e.g., mouth opening, eyes shutting, etc.). Procrustes alignment [19] 

is employed to estimate the base shape S0.

Keyframes within each video sequence were manually labelled, while the remaining frames 

were automatically aligned using a gradient descent AAM fitting algorithm described in 
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[20]. Figure 6 shows the AAM in action, with the 68 point mesh being fitted to the patient’s 

face in every frame.

B. Feature Extraction

Once we have tracked the patient’s face by estimating the shape and appearance AAM 

parameters, we can use this information to derive features from the face. From the initial 

work conducted in [14], [21], we extracted the following features:

• SPTS: The similarity normalized shape, sn, refers to the 68 vertex points in sn for 

both the x- and y- coordinates, resulting in a raw 136 dimensional feature vector. 

These points are the vertex locations after all the rigid geometric variation 

(translation, rotation and scale), relative to the base shape, has been removed. 

The similarity normalized shape sn can be obtained by synthesizing a shape 

instance of s, using Equation 2, that ignores the similarity parameters p. An 

example of the similarity normalized shape features, SPTS, is given in Figure 

6(3rd row).

• SAPP: The similarity normalized shape, an, refers to the where all the rigid 

geometric variation (translation, rotation and scale) has been removed. It 

achieves this by using sn calculated above and warps the pixels in the source 

image with respect to the required translation, rotation and scale. An example of 

the similarity normalized shape features, SAPP, is given in Figure 6(4th row). 

This is the type of approach is employed by most researchers [16], [18], as only 

coarse registration is required (i.e. just face and eye locations). From viewing the 

examples, it can be seen that when head movement is experienced some of the 

face is partially occluded which can affect performance, also some non-facial 

information (such as the background) is included due to occlusion.

• CAPP: The canonical normalized appearance a0 refers to where all the non-rigid 

shape variation has been normalized with respect to the base shape s0. This is 

accomplished by applying a piece-wise affine warp on each triangle patch 

appearance in the source image so that it aligns with the base face shape. For this 

study, the resulting 87×93 synthesized grayscale image was used. An example of 

these features, CAPP, is given in Figure 6(Bottom row).

C. Gaining 3D Information from an AAM

From the 2D shape model we can derive the 3D parameters using non-rigid structure from 

motion. If we have a 2D AAM, a sequence of images It(u) for t = 0,..., N, and have tracked 

through the sequence with the AAM, then denote the AAM shape parameters at time t by 

pt = p1
t , …, pm

t . Using Equation 2 we can compute the 2D AAM shape vectors st for each 

time t:

st =
u1

t u2
t … un

t

v1
t v2

t … vn
t

(3)
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A variety of non-rigid structure-from-motion algorithms have been proposed to convert the 

tracked feature points in Equation 3 into 3D linear shape models. In this work we stack the 

2D AAM shape vectors in all N images into a measurement matrix:

W =

u1
0 u2

0 … un
0

v1
0 v2

0 … vn
0

⋮ ⋮ ⋮ ⋮
u1

N u2
N … un

N

v1
N v2

N … vn
N

(4)

If this data can be explained by a set of 3D linear shape modes, then W can be represented as

W =

P0 p1
0P0 … pm

0 P0

P1 p1
1P1 … pm

1 P1

⋮ ⋮ ⋮ ⋮
PN p1

NPN … pm
NPN

s0
s1
⋮
sm

(5)

which = MB, where M is a 2(N + 1) × 3(m + 1) scaled projection matrix and B is a 

3(m + 1) × n shape matrix (setting the number of 3D vertices n to equal the number of AAM 

vertices n). Since m is the number of 3D shape vectors, it is usually small and the rank of W 

is at most 3(m + 1).

We perform a Singular Value Decomposition (SVD) on W and factorize it into the product 

of a 2(N + 1) × 3(m + 1) matrix M and a 3(m + 1) × n matrix B. This decomposition is not 

unique, and is only determined up to a linear transformation. Any non-singular 

3(m + 1) × 3(m + 1) matrix G and its inverse couild be inserted between M and B and their 

product would still equal W. The scaled projection matrix M and the shape vector matrix B 
are then given by:

M = MG, and
B = GB (6)

where G is the corrective matrix. Once G has been determined, M and B can be recovered. 

So to summarize, given that we have the 2D tracking results, the 3D shape modes can be 

computed from the 2D AAM shape modes and the 2D AAM tracking results. See [22] for 

full details.

D. Support Vector Machine Classification

Support vector machines (SVMs) have been proven useful in a number of pattern 

recognition tasks including face and facial action recognition. SVMs attempt to find the 

hyperplane that maximizes the margin between positive and negative observations for a 
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specified class. A linear SVM classification decision is made for an unlabeled test 

observation x∗ by,

wTx* > true b
< false

(7)

where w is the vector normal to the separating hyperplane and b is the bias. Both w and b are 

estimated so that they minimize the structural risk of a train-set, thus avoiding the possibility 

of overfitting to the training data. Typically, w is not defined explicitly, but through a linear 

sum of support vectors. A linear kernel was used in our experiments due to its ability to 

generalize well to unseen data in many pattern recognition tasks [23]. LIBSVM was used for 

the training and testing of SVMs [24].

E. Fusion of Scores Using Linear Logistical Regression (LLR)

In classification, a decision is based on a score from a classifier such as a SVM. In the case 

of the SVM the score relates to the distance from the decision hyperplane, which works well 

for a single decision. However, these scores have no real meaning when comparing them 

from different SVMs. As such, comparing or combining these scores does not make sense 

and can lead to erroneous results. Calibrating the scores into a common domain is required 

so that comparisons and fusion can take place. Logistical linear regression is one method of 

doing this [25].

Given we have N AU detectors with output scores (s1,s2,...,sN), LLR calibrates all the 

individual scores through learning the weights (a0,a1,...,aN) via logistic regression so that 

FN = a0 + a1s1 + a2s2 + … + aNsN, where the constant a0 improves the calibration through 

regularization.

To train the weights, a set of supervised training scores and an objective function needs to be 

set. In [25], they used a logistic regression objective that is normalized with respect to the 

proportion of positive examples to negative examples (K : L), which are weighted to the 

synthetic prior P = 0.5 3. The objective is stated in terms of a cost, which must be 

minimized:

Cwlr = P
K ∑

j = 1

K
log 1 + e

− f j − logitP

+ 1 − P
L ∑

j = 1

L
log 1 + e

g j + logitP
(8)

where the fused target and non-target scores are respectively:

f j = a0 + ∑
i = 1

N
aisi j, g j = a0 + ∑

i = 1

N
airi j (9)

3The value of P has a small effect and 0.5 is a reasonable choice for the task of AU and pain detection.
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and where

logitP = log P
1 − P (10)

and sij is an N by K matrix of scores that each of the N component systems calculated for 

each of the K target trails, and rij is an N by L matrix of scores that each of the N component 

systems calculated for each of the L non-target trials.

The fused score f is then used for detection. The FoCal package was used for calibrating and 

fusing the various AU SVM scores together using LLR [25].

F. Performance Measurement

In all experiments conducted, a leave-one-subject-out strategy was used and each AU and 

pain detector was trained using positive examples which consisted of the frames that the 

FACS coder labelled containing that particular AU (regardless of intensity, i.e. A-E) or pain 

intensity of 1 or more. The negative examples consisted of all the other frames that were not 

labelled with that particular AU or had a pain intensity of 0.

In order to predict whether or not a video frame contained an AU or pain, the output score 

from the SVM was used. As there are many more frames with no behavior of interest than 

frames of interest, the overall agreement between correctly classified frames can skew the 

results somewhat. As such we used the receiver-operator characteristic (ROC) curve, which 

is a more reliable performance measure. This curve is obtained by plotting the hit-rate (true 

positives) against the false alarm rate (false positives) as the decision threshold varies. From 

the ROC curves, we used the area under the ROC curve (A′), to assess the performance. The 

A′ metric ranges from 50 (pure chance) to 100 (ideal classification)4. An upper-bound on 

the uncertainty of the A′ statistic was obtained using the formula s = A′ 100 − A′
min np, nn

 where 

np,nn are the number of positive and negative examples [26], [18].

IV. SPONTANEOUS ACTION UNIT DETECTION

A. AU Detection Results

We conducted detection for ten AUs (4, 6, 7, 9, 10, 12, 20, 25, 26 and 43)5. The results for 

the AU detection with respect to the similarity-normalized shape (SPTS) and appearance 

(SAPP) and the canonical appearance (CAPP) features are shown in Table III. In terms of 

the overall average accuracy of the AU detection (bottom line of the table), the SAPP (72.0) 

features performed worse than the SPTS (74.4) and the CAPP (75.3) features. The 

differences may not be large, but they are significantly significant (p < 0.05). This result is 

quite interesting because in the majority of works conducted in the field (see Section I.B) 

have used these features for AU and emotion detection. However, it is not surprising as the 

pain data used in these experiments contains quite a bit of head motion which corresponds to 

4In literature, the A′ metric varies from 0.5 to 1, but for this work we have multiplied the metric by 100 for improved readability of 
results
5These AUs had more than 20 frames coded, all other AUs with less than this were omitted due to lack of sufficient training data).
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poor image registration as can be seen in Figure 6 (fourth row). Conversely, it is not 

surprising that the CAPP features achieved the best performance as they couple together 

both the shape and appearance representations. This synthesized view captures both the 

geometric and shape features of the face so that no non-face information is incorporated in 

the representation. It must be noted though that for the majority of the time the patient’s 

were relatively frontal (±20o), so that is why the results for the SAPP were as close as they 

were.

In terms of individual AU detection, it can be seen depending on the AU, the best 

performing feature set varies. When comparing SPTS and SAPP, the SPTS features yielded 

the higher detection rates for AUs 4, 20, 25 and 43. Conversely, for AUs 9 and 10 where the 

SAPP features obtained significantly better performance. The other AUs, 6, 7 and 12 

achieved comparable rates. Other than the poor registration of the SAPP features, another 

explanation of these results can stem from the AAM 2-D mesh. For AU4 (brow lowering), 

20 (lip stretcher), 25 (lips part) and 43 (eye closing), the areas of the face in which 

movement pertaining to these AUs occurs lie on the 2-D mesh. So it is intuitive that the most 

discriminating features for these actions would relate to the shape features. For AUs 9 (nose 

wrinkler) and 10 (lip raiser), these correspond with a lot of textural change in terms of 

wrinkles and not so much in terms of contour movement, which would suggest why the 

SAPP features performed better than the SPTS for these even with the poor registration. 

Though again we see the benefit of the canonical view where the textural features are 

synthesized back to the base mesh where most AU obtained an improvement in performance 

(although there seems some degradation with AU10, which suggests that the AAM misses 

important information around the upper lip when transforming the appearance back to the 

base mesh, also with AU4 where the mask used sometimes cuts off the top of the eyebrows).

These results are backed up by the experience of human FACS coders, where the relative 

importance of shape and appearance varies with type of AU. Specific examples are that of 

brow lowering (AU 4), where FACS coders look for strong changes in shape and variable 

changes in appearance. The mixed contribution of appearance features results from 

individual differences in facial furrows and wrinkles. Some people have a smooth brow at 

rest, while others have permanent facial furrows of different intensity and shape. Such 

individual differences can complicate the use of appearance features for AU detection. 

Cheek raising (AU 6), on the other hand, produces changes in shape that are easily 

confusable with closely related actions (AU 7 especially). Thus, the information value of 

shape or appearance for human FACS coders varies by action unit.

From these results, it would seem that there exists complimentary information in all the 

AAM representations. To test this hypothesis, we fused all these features together using LLR 

fusion [25]. The results are given in Table IV. As can be seen from the results this seems to 

be the case as the fusion of all the AAM representations yields the best performance. Again 

the difference is not great but is significant at p < 0.05 when comparing them across all 

combinations.

The improvement is rather more pronounced when you compare the fusion of all 

representations (ALL) result to just the SPTS in Table III, where the difference is 6.0 (72.0 

Lucey et al. Page 11

IEEE Trans Syst Man Cybern B Cybern. Author manuscript; available in PMC 2020 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vs 78.0), which suggests that applying an AAM approach for spontaneous AU detection 

would yield better performance than current methods used today, which is intuitive and 

backs up literature suggesting as much [18].

V. AUTOMATIC PAIN DETECTION

The results for automatically detecting pain are given in Figure 7, which shows a clearer 

view of the trend we observed in the AU detection results in Section IV.A. For the individual 

feature sets (in blue) we see the SAPP (75.1) features achieving the lowest performance rate, 

followed by the SPTS (76.9) and then the CAPP (80.9) features again yielding the best 

results.

When we combine the different feature sets (in red), we again see the benefit of fusing the 

various representations together showing that there exists complimentary information 

(although the SAPP+CAPP features is slightly lower than the CAPP features). This is 

highlighted by when all three representations are fused together (in green). This result is 

very significant when we compare the similarity-normalized features (SAPP) which most 

researchers use and compare them to the combined AAM representations as an improvement 

of nearly 10% in the area underneath the ROC curve is achieved (75.1 vs 84.7). This 

highlights the importance of good registration when dealing with spontaneous expressions.

In terms of the relevance to the task of pain detection, these results raise some very 

interesting issues. The most important one is of context. If this system is going to be used for 

a patient who is mobile and expresses a broad gamut of emotions, the current system will be 

of little use as the painful facial actions are easily confused with other emotions (such as 

sadness, fear and surprise). For this to occur, a very large dataset which is captured in 

conditions that are indicative of the behavior to be expected in addition to being accurately 

coded needs to be collected. However, if the context is very limited (such as pain/no-pain), 

then this proposed system would be of use. An example would be in a hospital setting (such 

as an ICU ward) where the patient is severely impaired, with limited ability to express 

emotions other than pain/no-pain. This system would then be able to automatically monitor 

when a patient is in distress and alert care-givers to these periods.

This scenario raises the issue of accuracy, and how much pain does a person have to be in 

for this to trigger an alert. An example of this is shown in Figure 8, where we see that our 

system can easily detect the period (frames 90–140) when the person is in major pain (i.e. 

pain intensity ≥ 10) but for the more subtle pain intensities the decision is still rather 

ambiguous. However, this may not be important though as intensities of 10 and greater may 

only be required. So in this context, the application of this system would be of much use, but 

it is very hard to estimate what would be required in a clinical setting without trailing it.

Another issue is the requirement of the detection in terms of timing accuracy. In our system 

presented here, we detect pain at every frame. However, at what level does this need to be 

accurate at - milliseconds, seconds or minutes? Again this is depends on the context in 

which this system will be used.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have looked at automatically detecting pain at a frame-by-frame level based 

on facial action units. For this work we used the UNBC-McMaster database which contains 

patients with shoulder injuries portraying real or spontaneous pain. A major challenge 

associated with this was the problem of major facial deformation and head motion caused by 

the pain, which makes registering the face and facial features a challenging one. This is quite 

problematic using the common approach of registering the face via the similarity-transform 

(normalize for scale, rotation and translation), as the subsequent features miss some 

important facial information. We have shown this for both AU and pain detection and we 

show that this can be somewhat overcome by using an AAM approach we can yield 

significant improvements in terms of area underneath the ROC curve (72.0 vs 78.0 for 

average AU detection and 75.1 vs 84.7 for pain detection).

The importance of having a system which can automatically detect pain is very important as 

it could greatly improve the efficiency and overheads associated with monitoring patient 

progress in a hospital setting. To this end, we have also raised the issue of context and where 

it would be practical to use such a system and what it would detect (only pain of intensity ≥ 

10) and how it would report it (i.e. second, minutes etc.).

As we have noted on several occasions throughout the paper, head motion is a common 

occurrence though out the dataset. However, it is also indicative of someone in distress. In 

future work we plan to look at using this as a key future in detecting pain. In addition to this, 

we hope to look at other modes of information that can be quantified such as eye gaze and 

body movement (guarding and restlessness). Measuring the overall expressiveness as a 

combination of these modes maybe the next step in gaining a more robust and accurate 

objective of pain. The utilization of the system where a patient is in bed needs to be 

examined as well. This introduces added complexities as the face will be also partially 

occluded due to the angle of the patient’s face to the camera. Using techniques like those 

described in this paper suggest a potential solution.
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Fig. 1. 
In this paper, we develop a system which can detect the frames in a video sequence in which 

the patient is in either a state of (a) “pain” or (b) “no-pain”. When a patient is in pain, it 

often coincides with facial expression change as well as head motion which can be seen 

above.
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Fig. 2. 
An example of facial actions associated when a person in is pain. In this example, AU’s 4, 6, 

7, 9, 10, 12, 25 and 43.

Lucey et al. Page 19

IEEE Trans Syst Man Cybern B Cybern. Author manuscript; available in PMC 2020 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Examples from the UNBC-McMaster database, showing the instances of pain and also of 

head pose variation during the sequence.
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Fig. 4. 
Histograms of the pitch, yaw and roll taken from the 3D AAM parameters across the 

UNBC-McMaster Shoulder Pain Expression Archive database.
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Fig. 5. 
Block diagram of our automatic system. The face is tracked using an AAM and from this we 

get both shape and appearance features. Both these features are used for classifying 

individual AUs using a linear SVM. The SVMs output for the AUs can be fused together 

using linear logistical regression (LLR). LLR calibrates the score into a log-likeihood score 

so that the scores are normalized into the same domain so that they can be combined easily. 

This calibration is a supervised process.
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Fig. 6. 
Example of the output of the AAM tracking and the associated shape and appearance 

features: (Top row) the original sequence, (Second row) the AAM tracked sequence, (Third 

row) the similarity normalized shape features (SPTS), (Fourth row) the similarity 

normalized appearance features (SAPP),(Bottom row) the canonical normalized appearance 

features (CAPP).
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Fig. 7. 
The performance of the various features for the task of pain detection (blue = single features, 

red = fused 2 features, green = fuse all 3 features). The upper-bound error for all feature sets 

varied from approximately ±0.67 to 0.80.
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Fig. 8. 
(Top) the frames which coincide with actions of interest, namely: (a) frame 1, (b) frame 101, 

(c) frame 125, (d) frame 160, (e) frame 210, (f) frame 260 and (g) frame 277. (Middle) The 

frame-level FACS coded pain intensity defined by Prkachin and Solomon (as described in 

Section II.A.). (Bottom) The output scores from the SVM for the combined AAM feature 

where the horizontal red line denotes the threshold which the scores have to be above for the 

patient to be deemed to be in pain.
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Lucey et al. Page 26

TABLE I

Mean and variance of the pitch, yaw and roll parameters of the pain data relative to the pain metric. N is the 

number of frames analyzed.

N Pitch Yaw Roll

μ σ2 μ σ2 μ σ2

Pain = 0 40461 −0.25 22.69 −0.29 37.03 −0.01 29.16

Pain > 0 7937 −0.93 26.72 0.12 55.61 −1.12 48.52
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TABLE II

Proportion of frames in which the patient was less than 5, 10, 15 and 20 degrees, as well as greater than 20 

degrees from frontal in terms of pitch, yaw and roll (absolute degrees). N = 40461 for pain score =0 and N = 

7937 for pain score ≥ 1).

Pitch Yaw Roll

Pain No-Pain Pain No-Pain Pain No-Pain

<5 deg 81.0% 81.3% 82.2% 75.4% 78.7% 62.6%

<10 deg 95.7% 95.8% 93.6% 93.8% 95.2% 88.5%

<15 deg 100.0% 99.4% 99.1% 98.5% 99.1% 96.9%

<20 deg 100.0% 99.9% 99.7% 99.8% 99.8% 99.2%

>20 deg 0.0% 0.1% 0.3% 0.2% 0.2% 0.8%
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TABLE III

Results showing the area underneath the ROC curve for the similarity-normalized shape (SPTS) and 

appearance (SAPP) as well as the canonical appearance (CAPP) features. Note the average is a weighted one, 

depending on the number of positive examples.

AU N SPTS SAPP CAPP

4 1074 67.8 ± 1.4 45.9 ± 1.5 47.7 ± 1.5

6 5612 78.9 ± 0.6 79.4 ± 0.5 83.8 ± 0.5

7 3366 66.3 ± 0.8 66.1 ± 0.8 68.0 ± 0.8

9 423 53.4 ± 2.4 76.5 ± 2.1 87.3 ± 1.6

10 525 80.4 ± 1.7 85.7 ± 1.5 73.0 ± 1.9

12 6956 78.5 ± 0.5 79.1 ± 0.5 82.8 ± 0.5

20 706 69.3 ± 1.7 56.4 ± 1.9 58.0 ± 1.9

25 2433 74.7 ± 0.9 63.2 ± 1.0 65.6 ± 1.0

26 2199 52.7 ± 1.1 55.8 ± 1.1 55.4 ± 1.1

43 2454 89.9 ± 0.6 78.8 ± 0.8 88.3 ± 0.7

AVG 74.4 ± 0.8 72.0 ± 0.8 75.3 ± 0.8
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TABLE IV

Results showing the area underneath the ROC curve for the combination of the similarity-normalized shape 

(SPTS) and appearance (SAPP) and canonical appearance (CAPP) features using LLR fusion. Note the 

average is a weighted one, depending on the number of positive examples.

AU SPTS+SAPP SAPP+CAPP SPTS+CAPP ALL

4 50.7 ± 1.5 47.9 ± 1.5 48.5 ± 1.5 53.7 ± 1.5

6 85.5 ± 0.5 82.9 ± 0.5 85.9 ± 0.5 86.2 ± 0.5

7 67.8 ± 0.8 69.1 ± 0.8 68.5 ± 0.8 70.0 ± 0.8

9 80.0 ± 2.0 70.1 ± 2.2 71.3 ± 2.2 79.8 ± 2.0

10 63.3 ± 2.1 75.5 ± 1.9 78.1 ± 1.8 75.4 ± 1.9

12 83.6 ± 0.5 82.4 ± 0.5 83.8 ± 0.4 85.6 ± 0.4

20 54.6 ± 1.9 67.1 ± 1.8 67.8 ± 1.8 66.8 ± 1.8

25 56.0 ± 1.0 73.2 ± 0.9 64.0 ± 1.0 73.3 ± 0.9

26 53.5 ± 1.1 52.7 ± 1.1 52.2 ± 1.1 52.3 ± 1.1

43 85.5 ± 0.7 88.0 ± 0.7 91.9 ± 0.6 90.9 ± 0.6

AVG 74.3 ± 0.8 75.7 ± 0.8 76.2 ± 0.7 78.0 ± 0.7
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