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Abstract

Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of
resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell
membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to
protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The
combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of
microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate
the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further
explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
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Introduction

In the process of evolution, microorganisms have optimized
growth conditions for their cellular functions. Metabolic dis-
orders, and even cell death, can be caused by changes in the
external environment such as pH (Beales 2004). Most micro-
organisms are able to survive and adapt to minor changes in
environmental pH, while induced acid tolerance may occur as
the environmental pH declines gradually. The role of micro-
organisms in human life is two-sided. Some microorganisms
are pathogenic and undesirable because they develop toler-
ance to acid stresses by adopting preventive measures
(Mani-Lopez et al. 2012). In other microorganisms, such as
those used in probiotics, better acid tolerance mechanisms are
desired for better physiological functions (Ranadheera et al.
2014). As an environmentally friendly and renewable process,
microbial synthesis of many valuable products through
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fermentation has become an ideal substitution for traditional
synthetic methods such as chemical and enzymatic synthesis.
Higher acid tolerance adopted by microbial producers en-
hances their stability during the synthetic process in which
acids accumulate (Hasunuma et al. 2011; Lipscomb et al.
2012). In both cases, namely, undesired pathogenic organisms
and desired microbial producers, understanding of the under-
lying mechanisms of acid tolerance is vital for further appli-
cations of these microorganisms.

Organic acids are formed during most microbial fermenta-
tion processes as either products or by-products. The environ-
ment for microbial growth is acidified with the accumulation
of organic acids, usually negatively affecting the productivity
and titer of bioprocesses as the acids reach increasing concen-
trations (Ghaffar et al. 2014; Jiang et al. 2015; Wang and Yang
2013; Yafez et al. 2008). The protonated acids may enter the
cells and then dissociate into proton and corresponding ion,
which leads to the increase in intracellular acidity and accel-
erates the metabolic disorders of the cells (Trcek et al. 2015;
Geng et al. 2017). Great quantities of acetic acid may be re-
leased during biomass utilization in industrial production,
which also leads to the increase in acid stress. Therefore, high
acid tolerance capacity is indispensable for industrial strains,
especially organic acid producers, and has become one of the
most important standards for strain screening. Additionally,
long-term use of probiotics is widespread in consumers with
increasing awareness of nutritional requirements. During the
process of food intake, stresses due to the abundance of gastric
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acids in the gastrointestinal tract are major survival challenges
for probiotic microbes (Mills et al. 2011). In this context,
several defense systems have been developed by microorgan-
isms to survive the acid stress.

Sophisticated mechanisms at the physiological and molec-
ular levels have been developed by microorganisms to survive
and adapt to acid stress (Fernandez-Niflo et al. 2015; Hosseini
Nezhad etal. 2015; Juetal. 2016; Liu et al. 2015¢; Matsui and
Cvitkovitch 2010), and a variety of approaches has also been
deployed to unveil acid tolerance mechanisms in different
microbes at different levels (He et al. 2016; Hu et al. 2017,
Lee et al. 2015; Sandoval et al. 2011; Zhai et al. 2014). After
understanding the patterns and mechanisms of microbial re-
sponse to acid stress comprehensively, specific strategies may
be tailored for improvement of microbial producers and bio-
synthesis of valuable chemicals. Here, we systematically sum-
marize recent progress in the study of microbial response to
acidic stress and then discuss the industrial applications of the
acid tolerance mechanisms. The introduction of systems and
synthetic biology to identify acid resistance elements and en-
gineer microbial cells for further enhanced acid resistance is
outlined and prospected.

Resistance mechanisms
pH homeostasis

pH homeostasis is the regulation of the pH inside and outside
the cell and is an important indicator of the physiological state
of cells in an acidic environment (Baker-Austin and Dopson
2007). It is critical for cell growth and metabolism, influenc-
ing the absorption and utilization of nutrients, the degradation
of substrates, and the synthesis of proteins and nucleic acids
(Guan et al. 2013). As illustrated in Figs. 1 and 2, the mainte-
nance of pH homeostasis is a result of interactions among
multiple transport systems. Electrogenic proton pumps expel
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Fig. 1 Acid tolerance mechanisms associated with cell membranes and
ion transport systems. Microbial cells maintain pH homeostasis by
restricting the inward flow of protons through highly impermeable cell
membranes (I) and modulating the size of membrane channels (II),
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protons from cells, generating a membrane potential and a pH
gradient. The interconversion of these is regulated by cation
and proton transfer via secondary transporters (Calinescu et al.
2014).

Different strategies to withstand acid stress by sustained pH
homeostasis have evolved in microbes (He et al. 2017; Jain
etal. 2013; Liu et al. 2016b; Lu et al. 2013; Miller and Maier
2014; Sohlenkamp 2017). Some yeast and bacteria maintain a
relatively stable and neutral intracellular pH (pH;) in the pres-
ence of constantly changing extracellular pH (pH,,) and gen-
erate unfixed proton gradients (Siegumfeldt et al. 2000).
However, a constant pH gradient is more favorable to most
acid-tolerant microbes. This is because a large amount of en-
ergy must be consumed to maintain neutral pH;, which severe-
ly restricts the growth and metabolism of microbes (Sun
2016). The pH; of these acid-tolerant microbes decreases with
acidification of the environment, but is maintained at a higher
level than pH,,. Once the acid reaches a certain concentration,
the pH; declines sharply, and the pH homeostasis is destroyed.
This results in protein and DNA damage, with the cells ulti-
mately withering (Wu et al. 2012a). Therefore, sustaining pH
homeostasis is essential for microbes to survive in acidic
environments.

Restriction of proton permeation

Proton motive force (PMF) is a measurement of the energy
state of the cell membrane generated by a charge separation
between the cytoplasm and external milieu created by mem-
brane potential and pH gradient across the membrane (Baker-
Austin and Dopson 2007). It is a common indicative reference
for controlling pH homeostasis, which is mainly served by pH
gradient in the study of acid resistance (Lee and Kang 2016).
It is sustained by the balance between the inflow and outflow
of protons.

Protons travel into the cytoplasm through the plasma mem-
brane and are restricted by the proton permeability and
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deflecting the influx of protons through generating chemiosmotic gradi-
ents via potassium ATPases (III), pumping excess protons out from the
cytoplasm through proton pump (IV), and maintaining the integrity and
fluidity of cell membranes by modulating fatty acid composition (V)
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Fig. 2 Enzyme-based acid
tolerance mechanisms
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channel size of the membrane (Sohlenkamp 2017). Acid-
tolerant microbes are generally equipped with less permeable
membranes to reduce the entry of protons into the cells
(Sohlenkamp 2017). It is suggested that several factors con-
tribute to this feature, including the tough structure of the
monolayer, the bulky isoprenoid core, and a unique lipid com-
position such as tetracther lipids (Macalady and Banfield
2003). Modulating the size of membrane channels is another
important strategy adopted by some acid-tolerant microbes to
maintain pH homeostasis. Expression of the outer membrane
porin of Acidithiobacillus ferrooxidans increased in response
to acid, attempting to control the size of the porin gateway by
forming a large L3 loop (Amaro et al. 1991). Consequently,
the influx of protons was limited to only the outer membrane
(Guiliani and Jerez 2000).

The influx of protons can also be reduced in acid-tolerant
microbes using a chemiosmotic gradient generated by a
Donnan potential, and the difference in electric potential
formed between two solutions separated by an ion-exchange
membrane without any current flow through the membrane
(Baker-Austin and Dopson 2007). Many cation transporters
were discovered in acidophiles, and they are presumed to be
involved in the generation of a Donnan potential (Fiitterer
etal. 2004). Potassium transporters are reported to be the most
efficient in generating chemiosmotic gradients, through which
a reverse membrane potential is generated, and the inward
flow of protons is restrained (Suzuki et al. 1999). It was also
observed that potassium ions participate in the respiration-
linked proton pump in Sulfolobus spp. (Schifer 1996). In ad-
dition, cation ATPases (such as K*-ATPase) are involved in
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the maintenance of pH homeostasis by exchanging H" and K*
(Macpherson et al. 2005).

An interesting acid resistance mechanism of some bacteria
is the formation of biofilms. It is a group behavior which
involves cell to cell communication (Li et al. 2001).
Biofilms protect microbial cells against acid shock through
wrapping the cells in the innermost part. Hence, cell density,
which is related to the formation of biofilms, is also a factor
affecting the acid resistance of microorganisms (Liu et al.
2015c¢).

Enhancement of proton pumps

The PMF-dependent proton pump is one of the most impor-
tant acid tolerance systems in bacteria in the maintenance of
pH homeostasis, through which excess protons are pumped
out from the cytoplasm (Jain et al. 2013). Several proton
pumps have been shown to promote proton efflux, such as
the H"-ATPase, symporter, antiporter, and secondary trans-
porter (Sun 2016). Protons are reported to be exported from
cells through H*-ATPase in bacteria, a process that consumes
ATP (Sun 2016). Consequently, higher H*-ATPase activity
and more energy accumulation enhance the ability of cells to
regulate pH; homeostasis.

Normally, ATP is generated via F,F;ATPase when extra-
cellular protons cross the cell membrane into the cytoplasm
through a pH gradient (Sun 2016). However, the accumulation
of H* leads to a sharp decrease in pH; under low pH,,, and
proton pumps begin ATP consumption (Fig. 1). Consequently,
the energy available for cells is depleted, and the survival of
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the strain is inhibited (Zheng et al. 2011). Therefore, elevating
the energy levels is an effective strategy to enhance proton
pumps. Substrate-level and oxidative phosphorylation are
the two ways in which microorganisms produce ATP; the
latter can be enhanced by adding auxiliary energy substrates
(Zhou et al. 2009). It is reported that citrate is of significance
in some prokaryotic microorganisms as an auxiliary energy
cosubstrate, promoting ATP regeneration (Drici et al. 2010;
Kang et al. 2013). Zhou et al. were able to increase ATP
supply to Candida glabrata by adding citrate to the medium
and increasing pH gradient of the system, thus improving its
acid tolerance during pyruvic acid production (Zhou et al.
2011). In short, balancing proton transport and ATP metabo-
lism forms the core of the proton pump mechanism. Besides
for bacteria and yeast, Rhizopus oryzae has also been reported
to resist acid stress through F,F;ATPase (Liu et al. 2015b).

Consumption of protons

In addition to controlling the transmembrane proton transport,
some microorganisms have developed several acid tolerance
mechanisms based on the consumption of excessive cytoplas-
mic protons to sustain pH homeostasis in acidic environments.
The enzyme systems of cells that generate alkaline products
play key roles in these mechanisms, as illustrated in Fig. 2.

The urease system is known to neutralize H* by producing
ammonia, which helps resist low pH during the culture of
bacteria such as Helicobacter pylori (Mols and Abee 2011;
Zanotti and Cendron 2010). Three models of urease have been
proposed to regulate pH homeostasis. Originally, it was be-
lieved that urea is catalyzed by cell-associated extracellular
urease and yields ammonia, which neutralizes protons around
the cells (Hazell 1991). However, urease was later found to be
a cytoplasmic enzyme that is released via cell lysis (Scott et al.
1998). According to the second model, ammonia produced
from urease combines with H* in the periplasm and the intra-
cellular microenvironment is maintained by increasing pH of
the same. The current generally accepted mechanism is that
urease transforms urea into ammonia and CO,, directly neu-
tralizing protons and regulating pH; in the cytoplasm (Miller
and Maier 2014). Vollan et al. found the role of H. pylori outer
membrane phospholipase A in acid tolerance based on urea
influx and ammonia efflux. This was later found to be in-
volved in the transporting of NH,* into periplasm (Vollan
etal. 2017).

Amino acids render several microorganisms acid-tolerant
by raising the pH; during metabolism (Senouci-Rezkallah
et al. 2011). Such systems have been termed amino acid-
dependent acid tolerance systems. The arginine deaminase
(ADI) system has been identified as an important defense
mechanism in several bacteria against damage by acid (Liu
et al. 2015c; Shabayek and Spellerberg 2017). Three steps are
involved in this system (Fig. 2). First, arginine transported into
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cells by ArcD is converted to citrulline and ammonia by ADI.
Next, ornithine carbamoyltransferase (OTC) catalyzes the
phosphorolysis of citrulline to ornithine and carbamoyl phos-
phate. The former is subsequently transported out of the cell,
while the latter is finally converted to carbon dioxide and
ammonia by carbamate kinase (CK), during which ATP is
generated from ADP. Consequently, protons are neutralized
by ammonia and carbon dioxide formed by the system, and
the ATP produced is available to extrude protons through H-
ATPase (Guan et al. 2013). Meanwhile, an arginine-agmatine
antiporter AdiC and arginine decarboxylase AdiA comprise
the other branch of the arginine-dependent acid tolerance sys-
tem (Kanjee and Houry 2013). Arginine passes into the cell
through AdiC and is converted to agmatine and carbon diox-
ide through catalysis by AdiA, consuming intracellular pro-
tons in the process.

The glutamate-dependent acid tolerance system is also rec-
ognized as critical for bacteria to survive in acidic environ-
ments. The function of the glutamate decarboxylase (GAD)
system in acid resistance is similar to that of arginine decar-
boxylase (Fig. 2). Glutamate decarboxylase catalyzes the de-
carboxylation of glutamate, yielding y-aminobutyric acid
(GABA) and carbon dioxide, accompanied by proton con-
sumption (Reeve and Reid 2016). The specific amino acid
antiporter GadC, which is also known to transport glutamine,
transports extracellular glutamate and intracellular GABA
(Laroute et al. 2016; Ma et al. 2012). Another system, com-
prising GadC and the glutaminase YbaS, is found in
Escherichia coli (Lu et al. 2013). After being transported into
the cytoplasm, glutamine is converted to glutamate and am-
monia by acid-activated YbaS, following which the GAD
system is initiated. Formation of alkaline products (ammonia
and GABA) and the reduction of intracellular protons are the
net consequences of this glutamate-related metabolism.
Besides arginine and glutamate, the lysine-dependent system
also plays a role in acid tolerance of cells via the decarboxyl-
ation of lysine (He et al. 2017) (Fig. 2). In addition, some other
amino acids such as aspartate and citrulline are involved in the
maintenance of pH; homeostasis by releasing ammonia during
metabolism (Cusumano and Caparon 2015; Hu et al. 2010).

Alteration of cell membranes

The primary target of environmental stress is cell membranes,
which assist in sustaining cellular activities under acidic con-
ditions in several ways. In addition to restricting proton per-
meation by adjusting channel size, membrane bioenergetics
and lipid physiology are also closely related to the stress re-
sponse in microorganisms (Yang et al. 2014). As mentioned
above, the membrane-bound H*-ATPase regulates pH; of cells
by pumping protons out of the cytoplasm. Therefore, higher
levels of H*-ATPase and its activity result in higher acid tol-
erance capacity (Zhang and Yang 2009). Modulation of the
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integrity, fluidity, and lipid composition of cell membranes are
also important mechanisms that protect bacteria against the
deleterious effects of acids (Yan et al. 2016).

Cell membranes provide a constant intracellular environ-
ment for cell growth and metabolism (Sohlenkamp 2017).
Maintenance of proper membrane structure and function is a
prerequisite for all cellular metabolic activities. Low pH usu-
ally leads to morphological changes in cells, which is a con-
sequence of the damaged lipoidal cell membrane and de-
creased fluidity (Streit et al. 2008). The viability of cells under
stress conditions is regulated by membrane status; cell mem-
branes confer acid tolerance to cells through maintenance of
their integrity and fluidity because of acid adaptation
(Sohlenkamp 2017). Membrane fluidity is an integrated re-
flection of chain conformation, lateral and rotational diffusion,
and resistance to sheer forces, and these characteristics are
determined by the fatty acyl chain and head-group composi-
tion (Denich et al. 2003).

Some microbes regulate membrane fluidity by modulating
fatty acid composition, since the bilayer structure can be mod-
ified by changing the distribution of fatty acids (Lindberg et al.
2013; Yang et al. 2014). The ratios of unsaturated to saturated,
cis to trans unsaturated, and branched to unbranched fatty
acids are all related to the acyl chain structure of
glycerophospholipids. Altering the unsaturation ratio is a
common mechanism employed by bacteria to control mem-
brane fluidity. This depends on fatty acid synthesis by fatty
acid synthases of the anaerobic pathways and desaturase en-
zymes of the aerobic pathways (Denich et al. 2003). It has
been reported that higher unsaturation ratios of membrane
fatty acids contribute to cell survival at low pH (Wu et al.
2012b). Isomerization of unsaturated fatty acids from cis to
trans conformation also affects fluidity of the bacterial mem-
brane (Tan et al. 2016). It is an energy-efficient post-synthesis
lipid modification process, which occurs only in inactive cells
(Diefenbach et al. 1992). Additionally, altering either the pro-
portion or type of branching is another way in which cells
modulate membrane fluidity (Kaiser et al. 2016; Sen et al.
2015). Specifically, membrane cyclopropane acyl chains were
shown to be critical factors in acid tolerance in bacteria
(Chang and Cronan 1999; Yang et al. 2015), where strains
lacking such fatty acids were more sensitive to low pH (Kim
et al. 2005). In addition, fatty acid chain length also plays a
vital role in the response to acid stress. Strains reduce acid-
mediated damage to their cell membranes by lengthening their
fatty acid chains (Wu et al. 2012b).

Metabolic regulations

Microorganisms have developed complex metabolic regulato-
ry mechanisms to improve their acid tolerance during adapta-
tion to acid environments. They upgrade their precursors, co-
factors, and redox factors for survival, growth, and

metabolism under acidic conditions by strengthening the gly-
colytic pathway (Guan et al. 2014). In a previous study, the
glycolytic rate increased by 70% from pH 6.6 to 4.7 (Even
et al. 2003), through changing enzyme concentrations and
metabolic regulation of enzyme activities. The increase in en-
zyme activity compensates for the inhibition imposed by di-
minished pH, and rescues normal metabolism.
Simultaneously, the transcription of central metabolic path-
way genes is regulated and transcript stability increases. The
increase in the enzyme pool and decrease in mRNA concen-
trations indicate that translational regulation plays a major role
in enhancing enzyme concentrations by controlling ribosome
activity (Even et al. 2003).

Glycolytic rates increased by 70%, and biomass synthesis
was 80% less efficient at low pH, suggesting that the energy
required in maintaining the metabolism of strains increased
(Even et al. 2003). A portion of the energy that is consumed
assists proton pumps in the maintenance of pH; by extruding
protons out of the cells. However, the available metabolic
energy is limited since the rate of energy synthesis decreases
upon cytoplasmic acidification. Thus, endogenous RNAs are
catabolized to provide bases and ribose for the synthesis of
carbon chains and energy (Siegumfeldt et al. 2000).
Furthermore, amino acid catabolism is enhanced by fivefold
when pH decreases from 6.6 to 4.7. The generation of NH3
and the consumption of intracellular H" via deamination and
decarboxylation, respectively, are considered key mechanisms
in bacterial resistance to acidification (Lu et al. 2013; Xiong
et al. 2014). Similarly, the metabolism and accumulation of
cellular polyamines are also enhanced to promote cell survival
in acidic pH (Fujihara and Yoneyama 1993).

Except for the protective mechanisms against protons,
acid-resistant mechanisms based on anions from the dissocia-
tion of organic acids have also been developed. The consump-
tion of acetate has been found to enhance acetic acid tolerance
of S. cerevisiae (Geng et al. 2017). Through expression of
genes in acetate degradation pathway, resistance of
S. cerevisiae to acetic acid was improved during fermentation
(Ding et al. 2015b). That is, anions may improve acid toler-
ance by involving in certain metabolic pathways and influenc-
ing the metabolism of acids.

Protection and repair of macromolecules

An acid response mechanism that depends on protein synthe-
sis has been widely observed in microorganisms (Liu et al.
2015¢). Specific proteins are usually induced by acid stress to
protect or repair macromolecules such as DNA and proteins.
Several chaperones have been recognized as important acid
tolerance factors, which are important during the synthesis,
transport, folding, and degradation of proteins (Nicolaou
et al. 2010).
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In the periplasm of Gram-negative bacteria, the enzymes,
transporters, and transmembrane antiporters encounter more
severe acid stress because they lack the protection of the inner
membrane. This leads to their denaturation and aggregation
(Hong et al. 2012). HdeA and HdeB are two periplasmic
chaperones that have been identified to protect enteric bacteria
from damage by gastric acid, while HdeA also protects bacte-
ria against acid stress due to accumulated organic acids (Mates
et al. 2007). HdeA prevents the acid-induced aggregation of
proteins by binding to them at an acidic pH, which is the
condition in which the chaperone is activated (Tapley et al.
2009). HdeA is also involved in protein resolubilization and
renaturation (Malki et al. 2008; Tapley et al. 2010). These
proteins include transport proteins, metabolic enzymes, chap-
erones, lipoproteins, and proteases. Chaperones such as DegP
and SurA can assist HdeA to protect proteins at low pH (Hong
et al. 2012). They assist the recovery of protein activity by
facilitating refolding during renaturation. HdeB is also an acid
stress chaperone with the same functions as HdeA, although
the optimum pH is different (Kern et al. 2007). HdeA and
HdeB were recognized as the molecular chaperones that func-
tion specifically in acid tolerance (Hong et al. 2012).

Lol8 is a small membrane-associated heat shock protein
that was characterized in Oenococcus oeni (Delmas et al.
2001). It improves the acid tolerance of bacteria through ef-
fectively suppressing protein aggregation, and it functions as a
molecular chaperone to stabilize membrane and envelope pro-
teins under acidic conditions (Weidmann et al. 2017). Fthis a
54 kDa homolog of the signal recognition particle (SRP) com-
plex, which is an essential component of the protein translo-
cation pathway involved in membrane and extracellular pro-
tein transport (Gutierrez et al. 1999). It is part of the acid
tolerance response system, and its transcription is regulated
by pH. The lack of Fth in Streptococcus mutans was found
to lead to reduced H™-ATPase activity against a pH 5.0 shock
(Kremer et al. 2001). In addition, several other chaperones
such as DnaK, Dnal, GrpE and HrcA, GroEL and GroES,
Clp proteases, and EF-Tu have been shown to facilitate the
repair of proteins as molecular chaperones during acid stress
(Shabayek and Spellerberg 2017).

Depurination and depyrimidination of DNA can occur be-
cause of intracellular acidification, since protonation of a base
can lead to cleavage of the glycosyl bond (Calhoun and Kwon
2011). DNA repair systems have been identified in microbial
cells to survive DNA damage against low pH. recA encodes a
multifunctional enzyme involved in synapsis, during which
the paired DNA exchange strands (Adikesavan et al. 2011).
The enzyme participates in DNA recombinational repair in
E. coli, Bacillus subtilis, and H. pylori, along with RecN and
AddAB (exonuclease V) (Ansari and Yamaoka 2017;
Cardenas et al. 2014). The nucleotide excision repair system
functions on damaged DNA produced from base modifica-
tion, single-strand break, and abasic sites, and are considered
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the most important DNA repair system (Kisker et al. 2013).
UvrABCD, DNA polymerase, and DNA ligase support the
repair of acid-induced DNA damage, performing damage rec-
ognition, base excision, and gap filling (Das et al. 2015).
UvrA overexpression enhanced the acetic acid tolerance and
fermentation of Acetobacter pasteurianus, which is a widely
used vinegar-brewing acetic acid bacteria (Zheng et al. 2018).
In conclusion, the repair of damaged proteins and DNA is
widely used by microbes to resist acid stress.

These mechanisms are mostly shared by various types of
microorganisms. Additionally, the difference in cellular struc-
ture between prokaryotic and eukaryotic cells introduces di-
versity in acid-tolerant mechanisms. As eukaryote-specific or-
ganelles, mitochondria, vacuole and nucleus all play roles in
acid tolerance of S. cerevisiae (Peng et al. 2017). Acid-tolerant
mechanisms utilized by different microorganisms were sum-
marized in Fig. 3 and listed in Table 1, respectively.

Industrial applications of acid tolerance
in microorganisms

Enhanced survival of probiotics in the gastrointestinal
tract

With improvement in quality of life, consumers are paying
increased attention to their health. They now demand nutrition
rather than just being adequately fed. Functional foods with
potential health benefits are attracting increasing interest,
wherein food-preserving microorganisms, especially
probiotics, play significant roles. They do not only provide
high levels of nutraceuticals to the food, but also participate
in health regulation of humans by generation of functional
molecules in situ in the gastrointestinal tract (Liu et al. 2017).

Several lactic acid bacteria and dairy propionibacteria have
been generally regarded as safe, and fermented foods and oral
agents containing lactic acid bacteria are developing rapidly as
probiotics. They produce a number of valuable compounds
including bacteriocins, exopolysaccharides, vitamins, and
conjugated linoleic acids (Li and Cao 2010) and have poten-
tial health benefits including the regulation of intestinal mo-
tility and absorption, balance of intestinal microecology, re-
duction of inflammation, and the modulation of the immune
system (Cousin et al. 2011).

The multiple health benefits of probiotics require that their
metabolic activities and physiological functions are main-
tained in humans. The stress caused by gastric acid is one of
the key challenges to their survival (Ranadheera et al. 2014).
Extensive studies have revealed the acid tolerance mecha-
nisms in these bacteria (Bustos et al. 2015; Guan et al. 2013;
Shobharani and Halami 2014; Wu et al. 2012a). Through
comparing acid tolerance characteristics such as H*-ATPase
activity and cellular fatty acid profile, the acid tolerance of
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Fig. 3 Acid stress responses in microbial cells

Bacillus sp. was assessed, which provided choices and a ref-
erence for industries and consumers as possible probiotics
(Shobharani and Halami 2014). Chocolate processing has
been used as an effective method to improve the acid tolerance
of probiotics (Labre) and make them deliverable to the intes-
tine (Yonejima et al. 2015). Milk was employed as a suspen-
sion medium to protect probiotics such as Butyricicoccus
pullicaecorum from low pH during the initial phase of intake
(Geirnaert et al. 2014). Based on the understanding of their
response to acids, strategies can be developed to protect the
probiotics against acid damage, and thus enhance their surviv-
al and physiological function in humans.

Enhancement of organic acid production
by acid-tolerant strains

Organic acids are important building block chemicals with
increasing market demand. A variety of industrial applications
has been developed for organic acids. Propionic acid (PA) is
widely used in the organic synthesis of cellulose fiber, per-
fume, paint, herbicides, and pharmaceuticals (Liu et al. 2012).
Propionibacteria are most commonly used for the biosynthesis
of PA because of their vitality, high yields, capability to use a

wide variety of substrates, and antimicrobial properties (Guan
et al. 2015b). Various strategies have been developed to im-
prove PA yield and productivity in propionibacteria, including
the optimization of carbon sources and fermentation modes,
controlling culture conditions such as pH, oxidoreduction po-
tential, the reduction of byproduct accumulation, and the en-
gineering of metabolic pathways (Feng et al. 2010; Liu et al.
2015a, 2016a; Wang et al. 2015; Zhuge et al. 2013, 2014,
2015). However, it cannot meet the industry requirements. It
has been reported that the accumulation of PA strongly in-
hibits cell growth and metabolic activity during its fermenta-
tion by propionibacteria (Guan et al. 2016). Extractive fer-
mentation and cell immobilization have been used to enhance
PA production significantly (Zhu et al. 2012). However, high
osmotic pressure and potential toxicity may be induced upon
extractant addition, where the low productivity and high cost
of cell-immobilized fermentation is also undesirable (Liu et al.
2012). Therefore, enhancing the acid tolerance of
propionibacteria is considered an effective strategy for en-
hanced PA production.

Currently, evolutionary engineering approaches have been
applied to improve the acid tolerance and PA production of
propionibacteria through random mutation. Adaptive
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Table 1 Acid-tolerant mechanisms utilized by various microorganisms

Mechanisms

Bacteria

Yeasts

FoF;-ATPase proton pumps

Decarboxylation and deamination

Cell membrane modification

Metabolic regulation

Macromolecule protection and repair

E. coli (Foster 2004; Sun et al. 2012b)

Lactococcus (O’Sullivan and Condon 1999)

Lactobacillus (Koponen et al. 2012)

Streptococcus (Martin-Galiano et al. 2005;
Kuhnert and Quivey 2003)

Corynebacterium glutamicum (Jakob et al. 2007)

P, acidipropionici (Zhang and Yang 2009;
Guan et al. 2013)

Bacillus (Shobharani and Halami 2014)

E. coli (Iyer et al. 2003; Sun et al. 2012a;
Lu et al. 2013)

Lactococcus (Budin-Verneuil et al. 2006)

Lactobacillus (Su et al. 2011)

P, acidipropionici (Guan et al. 2013)

E. coli (Chang and Cronan 1999)

Lactococcus (Wu et al. 2012b)

Lactobacillus (Broadbent et al. 2010)

P. acidipropionici (Guan et al. 2014)

E. coli (Hong 2012; Mujacic and Baneyx 2007)
Lactococcus (Weidmann et al. 2017)
Lactobacillus (Koponen et al. 2012)
Streptococcus (Shabayek and Spellerberg 2017)

S. cerevisiae (Casal et al. 2016)

C. glabrata (Zhou et al. 2011)

Zygosaccharomyces bailii
(Palma et al. 2015)

S. cerevisiae (Ding et al. 2009;
Zhao and Bai 2009)
Z. bailii (Palma et al. 2015)

S. cerevisiae (Wu et al. 2016)
Z. bailii (Palma et al. 2015)

S. cerevisiae (Ding et al. 2009)
Z. bailii (Palma et al. 2015)

C. glutamicum (Jakob et al. 2007)
A. pasteurianus (Zheng et al. 2018)

Protection from organelle

S. cerevisiae (Ding et al. 2015a;
Kumar et al. 2015; Cheng et al. 2016)

evolution is a powerful tool for strain improvement, during
which the tolerant strains are repeatedly transferred into fresh
broth and the pH is lowered gradually. The evolved strains
showed higher yields and productivity of PA (Suwannakham
and Yang 2005; Zhu et al. 2010). Another efficient technology
of evolutionary engineering for rapid phenotype improvement
is genome shuffling. Multiple superiority genes obtained from
classical mutagenesis were recombined through recursive pro-
toplast fusion. A mutant library of P. acidipropionici was con-
structed using ultraviolet irradiation and diethyl sulfate muta-
genesis, followed by recursive protoplast fusion to allow re-
combination of genomes (Guan et al. 2012). After multiple
rounds of protoplast fusion, an acid-tolerant strain was obtain-
ed, and the PA titer and productivity were enhanced by 33.3%
and 65%, respectively. When compared to adaptive evolution
and other classical strain improvement strategies, phenotypic
improvement is faster and more efficient (Guan et al. 2012).
In the absence of known specific molecular mechanisms,
the improvement of acid tolerance through evolutionary engi-
neering is limited. With the development of genetic manipu-
lation tools, reverse engineering of tolerant phenotypes pro-
vides opportunities for further improvement of acid tolerance.
First, the key factors responsible for acid tolerance must be
identified. In recent years, the acid tolerance mechanisms of
propionibacteria have been investigated at different levels
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using omics techniques. It was revealed at the microenviron-
ment level that P. acidipropionici maintains pH homeostasis
under acid stress by enhancing H*-ATPase activity and intra-
cellular energy status (Zhang and Yang 2009). The ADI and
GAD systems were also found to aid the consumption of
protons (Guan et al. 2013). The key proteins and metabolites
involved in acid tolerance have been identified through com-
parative proteomic and metabolomic analyses of the wild type
P acidipropionici and its acid-tolerant mutants (Guan et al.
2014, 2015a). In addition, genomics and transcriptomics can
unveil acid tolerance-related genes and transcriptional regula-
tors. On these bases, metabolic engineering has been per-
formed on P, jensenii to improve acid resistance and PA pro-
duction through overexpressing the acid-resistant elements
detected by system biology (Guan et al. 2016). In conclusion,
the acid-tolerant mechanisms of propionibacteria have yet to
be fully elucidated systematically. Improvements in acid tol-
erance can yet be made to enhance PA production through
rational synthetic biology approaches, and engineering micro-
bial cells at the genetic level.

Similar to PA synthesis by propionibacteria, production of
other organic acids can also be enhanced by improving the
acid tolerance of strains. It has been demonstrated that acid-
tolerant strains are more effective in lactic acid production
(Patel et al. 2006). Adaptive evolution and genome shuffling
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Table 2  Genes engineered by different microorganisms for improving acid tolerance
Mechanisms Genes Microorganisms Acid stress References
FoF-ATPase proton pumps AtMATP6 S. cerevisiae Pyruvic acid (Zhang et al. 2008)
atpA P, acidipropionici Propionic acid (Guan et al. 2014)
CgAMDI C. glabrata Hydrochloric acid  (Wu et al. 2018)
Decarboxylation and deamination cad E. coli Acetic acid (Noh et al. 2018)
ybasS, gadC E. coli Hydrochloric acid  (Lu et al. 2013)
hdcAPB L. lactis Hydrochloric acid  (Trip et al. 2012)
arcA, arcC, gdh, gadB, ybaS P. acidipropionici Propionic acid (Guan et al. 2016)
Cell membrane modification cfa E. coli Hydrochloric acid  (Chang and Cronan 1999)
murG L. lactis Lactic acid (Zhang et al. 2016)
FPS] S. cerevisiae Acetic acid (Zhang et al. 2011)
Yro2, Mrhl S. cerevisiae Acetic acid (Takabatake et al. 2015)
Metabolic regulation gshA, gshB L. lactis Lactic acid (Zhang et al. 2007)
trePP, pgmB, otsB L. lactis Lactic acid (Carvalho et al. 2011)
BetL Bifidobacterium breve  Gastric acid (Sheehan et al. 2007)
ACS2 S. cerevisiae Acetic acid (Ding et al. 2015b).
Macromolecule protection and repair  dnak L. lactis Lactic acid (Abdullah-Al-Mahin et al. 2010)
shsp L. lactis Lactic acid (Tian et al. 2012)
RecO L. lactis Lactic acid (Wu et al. 2013)
UvrA A. pasteurianus Acetic acid (Zheng et al. 2018)
Protection from organelle COX20 S. cerevisiae Acetic acid (Kumar et al. 2015)
PEP3 S. cerevisiae Acetic acid (Ding et al. 2015a)
RTTI09 S. cerevisiae Acetic acid (Cheng et al. 2016)

were also used to improve the acid tolerance of Lactobacillus
(Patnaik et al. 2002; Zhang et al. 2012), whereby the produc-
tion of lactic acid increased significantly. RNA-Seq
transcriptomic analysis was performed to investigate the
acid-resistant mechanisms of Acetobacter pasteurianus, pro-
viding more basics and opportunities for higher acid tolerance
and acetic acid production (Yang et al. 2019). Similarly, omics
were also introduced to analyze acetic acid tolerance in
Saccharomyces cerevisiae (Geng etal. 2017). Improved acetic
acid tolerance was obtained by modifying key genes identi-
fied, which is of great potential in industrial processes.

Acid stress is unavoidable for microorganisms during fer-
mentation in the synthesis of the other products. Screening
lactic acid bacteria with high GABA production has been
performed. It is shown that low pH favors the activity of
glutamate decarboxylase, which is important for GABA bio-
synthesis in lactic acid bacteria (Komatsuzaki et al. 2008).
Thus, the acid-tolerant strains are most likely to produce high
levels of GABA. Many studies based on the engineering of
acid stress resistance in lactic acid bacteria have been per-
formed to enhance the acid tolerance as well as lactic acid
production. The glutathione synthetase genes from E. coli
and the trehalose biosynthetic pathway from

P, freudenreichii were expressed in Lactococcus lactis respec-
tively to increase survival under acid stress (Carvalho et al.
2011; Zhang et al. 2007). The histidine decarboxylation path-
way, which enables cells to survive at low pH, was also
expressed in L. lactis (Trip et al. 2012). The betaine uptake
system from Listeria monocytogenes was introduced into
Bifidobacterium breve to increase resistance to gastric acid
(Sheehan et al. 2007). The acid tolerance of L. lactis was
enhanced by overexpressing molecular chaperone proteins
DnaK (Tian et al. 2012) as well as the DNA repair protein
RecO (Wu et al. 2013). Table 2 lists the genes involving in
acid tolerance of microbes which have been verified through
genetic manipulation.

Conclusions and prospects

Microbial cells suffer acid stress when ingested as probiotics
or in the production of organic acids. Physiological and genet-
ic resistance mechanisms have evolved in microorganisms to
survive in acidic environments, including pH homeostasis,
alteration of cell membranes, regulation of metabolism, and
repair of macromolecules (Fig. 3). Although they share similar
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resistance mechanisms, different species utilize a variety of
specific elements as a response to acid stress. Therefore, cus-
tomized strategies must be proposed for different strains.
Currently, the acid tolerance mechanisms of microbial cells
have been used in industry for improved probiotic intake
and organic acid production. To further enhance the perfor-
mance of industrial microorganisms, the development of ef-
fective tools to improve tolerance mechanisms is critical. The
combination of systems and synthetic biology provides sig-
nificant opportunities to further enhance the acid tolerance of
probiotics, and construct microbial cell factories for valuable
chemicals (Fig. 4). A more comprehensive understanding of
microbial acid tolerance mechanisms can be obtained using
systems biology technologies, and thus specific acid-tolerant
elements would be uncovered. These elements can then be
targeted by synthetic biology tools for improved acid toler-
ance and mass chemical production.
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