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Summary:

This paper proposes a two-stage phase I-II clinical trial design to optimize dose–schedule regimes 

of an experimental agent within ordered disease subgroups in terms of toxicity–efficacy tradeoff. 

The design is motivated by settings where prior biological information indicates it is certain that 

efficacy will improve with ordinal subgroup level. We formulate a flexible Bayesian hierarchical 

model to account for associations among subgroups and regimes, and to characterize ordered 

subgroup effects. Sequentially adaptive decision making is complicated by the problem, arising 

from the motivating application, that efficacy is scored on day 90 and toxicity is evaluated within 

30 days from the start of therapy, while the patient accrual rate is fast relative to these outcome 

evaluation intervals. To deal with this in a practical way, we take a likelihood-based approach that 

treats unobserved toxicity and efficacy outcomes as missing values, and use elicited utilities that 

quantify the efficacy-toxicity trade-off as a decision criterion. Adaptive randomization is used to 

assign patients to regimes while accounting for subgroups, with randomization probabilities 

depending on the posterior predictive distributions of utilities. A simulation study is presented to 

evaluate the design’s performance under a variety of scenarios, and to assess its sensitivity to the 

amount of missing data, the prior, and model misspecification.
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1. Introduction

The primary objective of a phase I clinical trial is to estimate a maximum tolerable dose 

(MTD) based on a toxicity variable defined in terms of one or more adverse events. 

Numerous phase I designs have been proposed, such as the algorithm-based 3+3 design 

(Storer, 1989), many model-based methods including the continual reassessment method 

(CRM) (O’Quigley, et al., 1990), escalation with overdose control (EWOC) (Babb et al., 

1998), Bayesian model averaging CRM (Yin and Yuan, 2009), and model-assisted methods 
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(Liu and Yuan, 2015; Zhou et al., 2018). For a comprehensive review on existing phase I 

designs, see Zhou et al. (2018). Some Bayesian model-based methods have been extended to 

deal with late-onset toxicity (Cheung and Chappell, 2000; Yuan and Yin, 2011a).

For molecularly targeted agents and immunotherapies, a toxicity-based MTD is not 

necessarily the optimal dose. Many phase I-II trial designs have been proposed to use both 

efficacy and toxicity for decision making. Thall and Cook (2004) proposed a Bayesian phase 

I-II design based on toxicity-efficacy probability trade-offs. Bekele and Shen (2005) 

introduced a Bayesian approach to jointly modeling toxicity and biomarker expression. 

Zhang et al. (2006) utilized a continuation-ratio model to adaptively estimate a biologically 

optimal dose. Houede et al. (2010) optimized the dose pair of a two-agent combination using 

ordinal toxicity and efficacy, by maximizing posterior mean utility. This approach was 

extended by using adaptive randomization (AR) to reduce the chance of getting stuck at a 

suboptimal dose pair (Thall and Nguyen, 2012). Yuan and Yin (2011b) considered phase I-II 

drug-combination trials with late-onset efficacy. Guo and Yuan (2016) proposed a Bayesian 

phase I-II design for precision medicine that incorporates biomarker subgroups. Liu, et al. 

(2018) developed a Bayesian utility-based phase I-II design for immunotherapy trials. 

Reviews of phase I-II designs are given by Yuan, Nguyen and Thall (2016).

In many settings, multiple administration schedules are considered, along with different 

doses. This motivates more complex phase I or I-II designs to optimize dose-schedule 

treatment regimes (Braun et al., 2005, 2007; Zhang and Braun, 2013; Lee, et al., 2015; Guo 

et al., 2016). This paper is motivated by a planned phase I-II trial for optimizing dose–

schedule of PGF Melphalan as a single agent preparative regimen for autologous stem cell 

transplantation in patients with multiple myeloma (MM). This disease is heterogeneous, 

dichotomized in terms of pathogenesis pathways determined by genetic and cytogenetic 

abnormalities as hyperdiploid or not. Hyperdiploid patients are believed to have a better 

response rate than non-hyperdiploid (Chng et al., 2006). A review is given by Fonseca, et al. 

(2009). The trial considers three doses, 200, 225 and 250 mg/m2, and three infusion 

schedules, 30 minutes, 12 hours, and 24 hours, yielding nine treatment regimes. Toxicity is 

defined as the binary indicator of grade 3 mucositis lasting > 3 days or any grade 4 or 5 non-

hematologic or non-infectious toxicity within 30 days from start of infusion. Efficacy is 

defined as the binary indicator of complete remission evaluated at day 90. Thus, while 

toxicity is observed soon enough to apply a usual sequentially adaptive toxicity-based 

decision rule feasibly, the efficacy outcome is evaluated much later. This greatly complicates 

making outcome-adaptive decisions to optimize dose or dose–schedule based on both 

toxicity and efficacy.

Our proposed design optimizes the dose–schedule regime in terms of a toxicity–efficacy 

risk-benefit trade-off quantified by a utility function, allowing the possibility that the optimal 

regime may differ between disease subgroups. We formulate a Bayesian hierarchical model 

to characterize associations among dose, schedule, subgroup, and the bivariate toxicity–

efficacy outcome. The design includes a two-stage adaptive randomization (AR) scheme that 

randomizes each newly enrolled patient to a treatment regime using the posterior predictive 

probability of the regime being the best with respect to the utility.
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The rest of the paper is organized as follows. Section 2 presents the probability model, 

likelihood, and priors. Section 3 gives the trial design, including the utility function, prior 

elicitation, and rules for trial conduct. In Section 4, we apply the proposed design to the 

motivating example and conduct simulation studies to examine the design’s performance. 

We close with a brief discussion in Section 5.

2. Probability Model

2.1 Bayesian hierarchical model

We consider a phase I-II trial with C ordered subgroups and a total of DS treatment regimes 

obtained from D doses and S treatment schedules. Let n denote the number of patients 

accrued at an interim point in the trial, and ci ∈ {1, … , C} be the subgroup of the ith patient, 

i = 1, … , n. Denote the dose-schedule treatment regime assigned to patient i by ri = (di, si), 

for di ∈ {1, … , D}, si ∈ {1, … , S}, and the joint toxicity and efficacy outcome 

Yi = (Y i
T , Y i

E). Since Yi may depend on both ci and ri, the objective of the trial is to find 

optimal subgroup-specific dose–schedule regimes that can maximize a given utility function.

Similarly to Albert and Chib (1993) and Lee, et al. (2015), to facilitate posterior 

computation we assume a latent normal vector to characterize the joint distribution of the 

observed discrete outcome vector. Let ξi = (ξi
T , ξi

E) be real-valued bivariate normal latent 

variables with means that vary with ci and ri. We define Yi by assuming that Y i
j = I(ξi

j > 0), j 

= T, E, where I(·) is the indicator function, so the joint distribution of the latent vector [ξi|ci, 

ri] induces that of the observed vector [Yi|ci, ri]. Each Y i
j is assumed to be a binary outcome. 

Extension to ordinal outcomes is straightforward, but introduces additional complexity in the 

likelihood and utility. We assume the following Bayesian hierarchical model for [ξi | ri]:

(a) Level 1 prior on ξi. Using patient-specific random effects ϵi = (ϵiT , ϵiE), we assume the 

following conditional distribution for the latent variables:

ξi
j ∣ ci, ri, ϵi, ξ ci, ri

j , σξ
2 ∼ N(ξ ci, ri

j + ϵi
j, σξ

2), j = E, T , i = 1, … , n (2.1)

with the variance σξ
2 a hyperparameter and ξi = (ξ ci, ri

T , ξ ci, ri
E ) the mean effects of regime ri = 

(di, si) in subgroup ci. The following second-level priors on ϵi and ξci, ri induce association 

between ξi
T  and ξi

E, which in turn induces association between Y i
T  and Y i

E.

(b) Level 2 prior on ϵi. Assume

(ϵiT , ϵiE) ∼i . i . d BN(02, Σϵ), i = 1, … , n, (2.2)

where “i.i.d.” represents independent and identically distributed, BN denotes a bivariate 

normal distribution, 02 = (0, 0) and Σϵ is the 2 × 2 matrix with both diagonal elements ζ2 

and both off-diagonal elements ρζ2. The fixed hyperparameters ρ ∈ (−1, 1) and ζ2 quantify 

the association between Y i
T  and Y i

E via the latent variable model.
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(c) Level 2 prior on ξc, r. To facilitate information sharing across subgroups, for each regime 

r = (d, s) we assume that ξc, r = ξ‒r + ∑c′ = 2
C νc, rI(c′ = c), c = 1, … , C, where ξr = (ξ‒r

T , ξ‒r
E) can 

be treated as the baseline effects for regime r, and the baseline subgroup is c = 1 with ν1, r = 

02 for all r. The ordering constraint is imposed by choosing the support of νc, r = (νc, rT , νc, rE ) to 

satisfy the corresponding order constraint. For example, if prior information indicates that 

Pr(efficacy) in subgroup 1 is greater than Pr(efficacy) in subgroup 2, then we require 

ν1, r
E > ν2, r

E . Thus, this model ensures that the efficacy probabilities are heterogenous across 

subgroups. When νc,r → 02 for all (c, r), the model shrinks to the homogeneous case where 

regime effects in different subgroups are the same.

To define the priors of ξ‒r, for schedule s and outcome j = T, E, we denote by ξ‒−d, s
j  the 

subvector of ξ‒s
j = (ξ‒1, s

j , … , ξ‒D, s
j ) with ξ‒d, s

j  deleted, for d = 1, … , D. Our model includes the 

common assumption that the risk of toxicity increases monotonically with dose, which we 

formalize as

ξ‒d, s
T ∣ ξ‒−d, s

T ∼ N(ξ0
T , σ0

T , 2)I(ξ‒d − 1, s
T < ξ‒d, s

T < ξ‒d + 1, s
T ), (2.3)

where N(ξ0
T , σ0

T , 2) denotes the hyper-prior normal distribution with mean ξ0
T  and variance 

σ0
T , 2, with the truncated support of ξ‒d, s

T  given by the indicator function. That is, the 

conditional distribution of the mean ξ‒d, s
T  is restricted to the subset of the reals determined by 

the values of the other means, ξ‒−d, s
T , through the order constraint. These order constraints 

induce association among different dose levels, ensuring that the latent variable for toxicity 

increases stochastically in dose d for each schedule s, hence the probability of toxicity 

increases with d for each s. Such an order constraint can be achieved at each Markov chain 

Monte Carlo (MCMC) step by generating the proposals of (ξ‒1, s
T , ξ‒D, s

T ) from a multivariate 

normal distribution, subject to ξ‒1, s
T < ⋯ < ξ‒D, s

T . In contrast, we do not impose any 

monotonicity restriction on efficacy in d, and simply assume that

ξ‒d, s
E ∣ ξ‒−d, s

E ∼ N(ξ0
E, σ0

E, 2), (2.4)

where N(ξ0
E, σ0

E, 2) denotes the unconstrained hyper-prior normal distribution. Thus, for each 

s and c, the dose-efficacy probability relationship can take a wide variety of possible forms.

The priors on νc, r should be elicited while accounting for prior order. Based on the MM trial 

with C = 2 ordered subgroups, the toxicity distribution is homogeneous across subgroups, so 

we assume νc, rT = 0 for each (c, r) combination. Since efficacy in the second subgroup (c = 2) 

is greater than in the first group (c = 1), we estimate ν2, r
E  by borrowing information across 

dose levels, as follows: ν2, r
E = ν2, d, s

E ∼i . i . d N+(ν1, r
E , τ0

2), d = 1, … , D, s = 1, … , S, where 

N+(ν1, r
E , τ0

2) is a truncated normal distribution with support (ν1, r
E , ∞), and the variance τ0

2 is 

prespecified. This ensures that, given r, the efficacy probability in subgroup 2 is strictly 
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greater than that in subgroup 1. For more general trials, if there is an ordering relationship 

among subgroups in terms of toxicity, say, subgroup 2 has a higher toxicity probability than 

subgroup 1, the design may account for this by assuming the prior, 

ν2, r
T = ν2, d, s

T ∼i . i . d N+(ν1, r
T , τ0

2), d = 1, … , D, s = 1, … , S, with ν1, r
T = 0. However, since the 

MM trial considers a homogeneous toxicity distribution across subgroups, we simply take 

ν2, r
T = ν1, r

T = 0 in this paper.

To specify the likelihood and posterior, we denote ξ = {ξc, r, c = 1 … , C, r = 1 … , DS}. 

Combining equations (2.1) and (2.2), the joint distribution of (ξi
T , ξi

E) can be derived by 

integrating out ϵi, yielding

(ξi
T , ξi

E) ∣ ci, ri, ξ ∼indep BN(μci, ri, Σξ), (2.5)

where the mean vector μci, ri depends on the ith patient’s subgroup ci and treatment regime ri 

= (di, si). More precisely, μci, ri = (ξ ci, ri
T , ξ ci, ri

E ), and Σξ is the covariance matrix with the 

diagonal elements being σξ
2 + ζ2 and the off-diagonal elements being ρζ2. As a result, the 

individual likelihood for the observations of a patient with outcome (yiT , yiE) (yiT , yiE = 0, 1) 

can be parameterized as

f(yiT , yiE ∣ ci, ri, ξ) = Pr(γyiT ⩽ ξiT < γyiT + 1, γyiE ⩽ ξiE < γyiE + 1 ∣ ci, ri, ξ)

= ∫γyiT
γyiT + 1∫γyiE

γyiE + 1
f(ξiT , ξiE ∣ ci, ri, ξ)dξiEdξiT ,

where f(ξT , ξE ∣ c, r, ξ) is given by (2.5), and the cutoff vector (γ0, γ1, γ2) = (−∞, 0, ∞).

2.2 Delayed outcomes

In the MM study, the toxicity outcome is evaluated within VT = 30 days, while efficacy is 

defined as complete remission based on disease evaluation on day VE = 90. Thus, toxicity 

can occur at any time during the 30 day assessment window, but efficacy is not known until 

a patient has reached day 90 of follow up. Consequently, when a regime must be assigned 

for a newly enrolled patient, the outcomes of some previously treated patients might not 

have been fully assessed. Formally, at the time of interim decision making, both YE and YT 

of previously treated patients are subject to missingness. In the MM study, the amount of 

missing YT data would be much less than the amount of missing YE data because the 30-day 

assessment window for YT is much shorter than the 90 days required to evaluate YE.

At an interim decision-making time, suppose that patient i has been followed for ti days. We 

introduce an indicator vector δi = (δi
T , δi

E) to denote the respective missingness of toxicity 

and efficacy for the ith patient, where δi
j = 1 if Y i

j has been evaluated and δi
j = 0 if not, for j = 

T, E. In the MM trial setting, YT can be defined as a time-to-event outcome. Suppose Xi 

denotes the ith patient’s time to toxicity, then Y i
T = 1 if Xi ⩽ VT and Y i

T = 0 if Xi > VT. We 
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have δi
T = I(ti ⩾ min(Xi, V T )) and δi

E = I(ti ⩾ V E). Because VT < VE, we have δi
T ⩾ δi

E, so 

(δi
T , δi

E) = (0, 1) is impossible.

When both Y i
T = yiT  and Y i

E = yiE are observed for patient i, i.e., ti > VE, the individual 

likelihood is f(yiT , yiE ∣ δi
T = 1, δi

E = 1, ci, ri, ξ) = f(yiT , yiE ∣ ci, ri, ξ). Under the mechanism of 

missing at random, the likelihood of a patient with observed Y i
T = yiT  and missing Y i

E, i.e., 

min(Xi, VT)) ⩽ ti < VE and (δi
T , δi

E) = (1, 0), is 

f(yiT ∣ δi
T = 1, δi

E = 0, ci, ri, ξ) = Pr(γyiT ⩽ ξi
T < γyiT + 1 ∣ ci, ri, ξ), where 

Pr(γyiT ⩽ ξi
T < γyiT + 1 ∣ ci, ri, ξ) is the marginal likelihood of Y i

T  evaluated at yiT . When both yiT

and yiE are missing, i.e., ti < min(Xi, VT) and (δi
T , δi

E) = (0, 0), it only is known that the ith 

patient’s time to toxicity is greater than ti. In this case, for 0 < ti < VT, the likelihood is given 

by

Pr(Xi > ti ∣ δi
T = 0, δi

E = 0, ci, ri, ξ)
= Pr(Y i

T = 0 ∣ ci, ri, ξ) Pr(Xi > ti ∣ Y i
T = 0, ci, ri, ξ)

+ Pr(Y i
T = 1 ∣ ci, ri, ξ) Pr(Xi > ti ∣ Y i

T = 1, ci, ri, ξ)
(2.6)

= 1 − wi Pr(Y i
T = 1 ∣ ci, ri, ξ) (2.7)

where we denote wi = Pr(Xi ⩽ ti ∣ Y i
T = 1, ci, ri, ξ). The first equality above is due to the fact 

that, given δi
T = 0 and δi

E = 0, all values of (Y i
T , Y i

E) are possible. Suppressing ci, ri, ξ for 

brevity, since 0 < ti < VT, 

Pr(Xi > ti ∣ Y i
T = 0) = Pr(V T ⩾ Xi > ti ∣ Y i

T = 0) + Pr(Xi > V T ∣ Y i
T = 0) = 0 + 1 = 1, hence the 

first summand (2.6) equals Pr(Y i
T = 0 ∣ ci, ri, ξ) = 1 − Pr(Y i

T = 1 ∣ ci, ri, ξ).

We assume that, conditional on Y i
T , the time-to-toxicity distribution is independent of (ci, ri, 

ξ), i.e. Xi does not depend on subgroup or treatment regime given the indicator of toxicity on 

[0, VT]. We thus need to estimate wi in order to obtain a working likelihood for 

Pr(Xi > ti ∣ δi
T = 0, δi

E = 0, ci, ri, ξ). Noting that the support of [Xi ∣ Y i
T = 1] is (0, VT), we 

(model the conditional samples of [Xi ∣ Y i
T = 1] based on a scaled Beta distribution, given by

Sampling model : Xi ∣ Y i
T = 1 ∼ V T × Beta(α, β),

Priors : α, β ∼ Gamma(λ0, η0), (2.8)

where λ0 and η0 are the hyperparameters for the Gamma prior distribution. As a result, wi 

can be obtained based on the posterior distribution of [Xi ∣ Y i
T = 1].

Let Dn = {(ci, ri, yiT , yiE, xi, ti, δi
T , δi

E)}i = 1
n

 be the observed data at the arrival time of the (n + 

1)th patient. The joint likelihood for the first n patients can be written as
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L(Dn ∣ ξ, α, β)

= ∏
i = 1

n
g(xi ∣ α, β)yiT ×

f(yiT , yiE ∣ δiT = 1, δiE = 1, ci, ri, ξ)δiTδiE × f(yiT ∣ δiT = 1, δiE = 0, ci, ri, ξ)δiT (1 − δiE)

× Pr(Xi ⩾ ti ∣ δiT = 0, δiE = 0, ci, ri, ξ)(1 − δiT )(1 − δiE)

where g(· | α, β) is the density function of the scaled Beta distribution.

Denote the vector of all hyperparameters by θ0 = (ρ, ζ2, σξ
2, λ0, η0, ξ0

T , ξ0
E, σ0

T , 2, σ0
E, 2, τ0

2), and let 

π(ξ , α, β ∣ θ0) be the joint prior distribution of (ξ, α, β) induced by the hierarchical model 

(2.1)–(2.4) and the model (2.8) for time to toxicity. The joint posterior distribution of (ξ, α, 

β) is then given by π(ξ, α, β ∣ θ0, Dn) ∝ π(ξ, α, β ∣ θ0)L(Dn ∣ ξ, α, β), where the posterior 

samples of [ξ, α, β ∣ θ0, Dn], can be obtained via standard Markov chain Monte Carlo 

sampling methods. The sampling procedure is carried out in two steps. Since the posterior 

sampling of model (2.8) only depends on the time to toxicity data {(Xi, δi
T ), i = 1, … , n}, in 

the first step we simulate the posterior samples of (α, β), as well as those of wi, because wi 

depends solely on the model assumption (2.8). In the second step, we plug the posterior 

samples of wi values into equation (2.7) to obtain samples of the remaining parameters. R 

code for implementing the proposed design is available in Supporting Information.

3. Trial design

We define admissibility criteria to screen out any regimes with excessively high toxicity or 

unacceptably low efficacy adaptively based on the interim data. Let 

πc, rj (ξ) = Pr(Y j = 1 ∣ c, r, ξ) be the marginal probability of outcome j = T, E. Recall that θ0 

denotes the vector of all fixed hyperparameters. Given a fixed upper limit πT  on πc, rT (ξ), a 

fixed lower limit πE on πc, rE (ξ), and fixed cutoff probabilities ηT and ηE, for each subgroup 

c, we define the set Ac of admissible regimes to be all r = (d, s) satisfying the two criteria

Pr{πc, rT (ξ) > πT ∣ θ0, Dn} < ηT and Pr{πc, rE (ξ) < πE ∣ θ0, Dn} < ηE, (3.1)

similarly to Thall and Cook (2004).

To choose regimes from Ac for each subgroup c, we utilize a utility-based criterion to 

quantify efficacy-toxicity risk-benefit trade-offs. To do this, a numerical utility U(yT, yE) is 

elicited for each of the four elementary outcome pairs (yT, yE) = (0, 0), (1, 0), (0,1), and 

(1,1). For illustrations of the choice of U in a variety of settings, see Houede et al. (2010), 

Thall and Nguyen (2012), Yuan, Nguyen and Thall (2016), or Liu, et al. (2018). Since (YT, 

YE) are random variables that depend on the patient’s regime r and subgroup c, U(YT, YE) 

also is a random variable. Denote yu = {(yT, yE) : U(yT, yE) = u}. The posterior predictive 

distribution (PPD) of U(YT, YE) for future values (YT, YE) is derived as follows.
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Pr{U(Y T , Y E) = u ∣ c, r, θ0, Dn} = ∑
yu

Pr{(Y T , Y E) = yu ∣ c, r, θ0, Dn}

= ∑
yu

∫ξ Pr{(Y T , Y E) = yu ∣ c, r, ξ}π(ξ ∣ θ0, Dn)dξ,

where π(ξ ∣ θ0, Dn) is the marginal posterior of ξ obtained by integrating π(ξ, α, β ∣ θ0, Dn)
over (α, β) under the gamma hyperprior. We denote the random variable 

[ U(Y T , Y E) ∣ c, r, θ0, Dn] by Uc,r, = Uc,d,s. Let ucmax = maxr{uc, r} be the maximum utility 

among all considered treatment regimes for subgroup c = 1, … , C, where uc,r denotes the 

true mean utility for combination (c, r). The optimal treatment regime for each subgroup c = 

1, … , C, is defined as the regime with uc, r > ucmax − u, where u is an indifference margin. In 

the MM study, we consider u = 5.

The AR procedure of the proposed trial design, which will be given in detail below, depends 

on the PPD of Uc,r. We define AR with probability of assignment to regime (d, s) within 

each subgroup c proportional to

ωc(d, s) = Pr Uc, d, s = max
d′ ∈ {1, …, D}

Uc, d′, s I{(d, s) ∈ Ac} . (3.2)

In equation (3.2), since Uc,d,s is a random variable, the quantity max
d′ ∈ {1, …, D}

 Uc,d′,s is the 

maximum among D random variables, and may not equal the maximum utility U(0,1). This 

equation implies that the AR probability is proportional to the posterior predictive 

probability of attaining the maximum predicted utility among all admissible dose levels 

within treatment schedule s, for a future patient. Thus, ωc(d, s) accounts for both the mean 

and variation of the utilities from different regimes within the schedule. This PPD-based 

approach is fundamentally different from the procedures used by Thall and Nguyen (2012), 

Lee, et al. (2015), and others, where AR probabilities are defined in terms of posterior mean 

utilities. In the present context, these would be

uc(d, s, θ0, Dn) = E[E{U(Y T , Y E) ∣ c, d, s, ξ} ∣ θ0, Dn]

= ∑
(yT , yE)

U(yT , yE)∫ξ f(Y T = yT , Y E = yE ∣ c, d, s, ξ)π(ξ ∣ θ0, Dn)dξ .

AR probabilities ωc′(d, s) among (d, s) pairs for subgroup c then are defined to be 

proportional to uc(d, s, θ0, Dn)I{(d, s) ∈ Ac}.

Compared to the approach of defining AR probabilities ωc′(d, s) based on posterior mean 

utilities (Thall and Nguyen, 2012; Lee, et al., 2015), the proposed approach of using the 

PPD of Uc,r to define the AR probabilities ωc(d, s) leads to a more extensive exploration of 

the regime space, and thus it addresses the “exploitation versus exploration” problem, which 

is well known in phase I-II trials (Yuan, Nguyen and Thall (2016), Chapter 2.6) and more 
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generally in sequential analysis (Sutton and Bartow (1998)). This is because the PPD of Uc,r 

accounts for distributions of future observations. The AR procedure based on the PPD of 

Uc,r thus tends to have a smaller chance of getting stuck at suboptimal regimes. Since AR 

treats patients with suboptimal regimes, care must be taken to ensure that its use does not 

expose patients to unacceptably high risks of high toxicity or low efficacy.

To estimate the optimal subgroup-specific treatment regime that maximizes U(yT, yE) across 

different combinations of (c, r), we divide the trial into two stages. In stage 1, for each 

subgroup c = 1, … , C, N1c patients are randomized fairly among the schedules. This is 

different from standard phase I methods, such as the CRM or EWOC, which use 

deterministic allocation to treat patients. In the motivating MM study, the toxicity 

assessment window is 30 days, while efficacy is evaluated much later, at day 90. Thus, 

toxicity outcomes are observed much sooner than efficacy outcomes, and in stage 1 the data 

available for making the adaptive decisions are largely toxicity data, with efficacy data 

collected to facilitate decision making in stage 2. At the end of stage 1, since some 

previously missing YE outcomes may be observed for patients followed to VE, preliminary 

estimates of the subgroup-specific optimal regimes can be obtained. For each subgroup c, 

stage 2 enrolls the remaining N2c patients with the goal to estimate the globally optimal 

regime. To achieve this, we propose a procedure that does optimization within schedule, 

combined with AR across schedules. An optimal dose first is selected within each treatment 

schedule, and then patients are adaptively randomized among the optimal dose set across 

schedules. This hybrid approach, of selecting optimal doses and randomizing, balances 

exploitation versus exploration by allowing sufficient dose exploration (through AR) to 

reduce the risk of being stuck at suboptimal doses, but also avoids allocating too many 

patients to suboptimal doses.

Let Nmax be the maximum total sample size, and pc the prevalence of subgroup c = 1, … , C, 

so ∑c = 1
C pc = 1. We bound the maximum sample size Nc

max for subgroup c by pcNmax. 

Assume patients are recruited sequentially to each schedule within each subgroup. Let κ be 

the proportion of patients assigned to each schedule in stage 1, that is, we randomize κNc
max

patients to each schedule in stage 1 for each subgroup. Thus, N1c = κSNc
max = κSpcNmax

and N2c = Nc
max − N1c. The two-stage trial proceeds as follows.

Stage 1. If the next patient enrolled is in subgroup c,

1.1 Randomly choose a schedule, s, with probability 1/S each.

1.2 If s has never been tested before, then start the subtrial in this schedule at the lowest 

dose. Otherwise, based on (3.1), determine the admissible set Ac in subgroup c based on the 

most recent data Dn. Subject to the constraint that no untried dose may be skipped when 

escalating, randomly choose an acceptable dose for the next patient with AR probability 

proportional to ωc(d, s), d = 1, … , D. Thus, the AR probability in subgroup c is proportional 

to the probability that regime (d, s) induces the maximum utility within schedule s, with all 

(d, s) that are unacceptable in subgroup c given AR probability 0.
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1.3 The subtrial for subgroup c is either stopped when the maximum sample size κNc
max is 

reached, or terminated early if no dose within this schedule is admissible for subgroup c.

Stage 2. For each newly enrolled patient in subgroup c, first determine the optimal dose 

dc
∗(s) that has largest probability of having the maximum utility within each s, i.e., 

dc
∗(s) = arg max

d ∈ {1, …, D}
{ωc(d, s)}, s = 1, … , S, where ωc(d, s) is given by equation (3.2). Then 

choose the schedule s across schedules with the AR probability proportional to

ωc(dc∗(s), s) = Pr Uc, dc∗(s), s = max
s′ ∈ {1, …, S}

Uc, dc∗(s′), s′ I{(dc∗(s), s) ∈ Ac}, s = 1, … , S,

and assign the new patient dose dc
∗(s). In other words, in Stage 2, dose first is optimized 

within each schedule without use of AR, and then AR is applied to randomize patients 

among doses across all schedules. Repeat this until N2c patients have been treated in the 

second stage, and then stop the trial for subgroup c. If no regime is admissible for subgroup 

c as given by (3.1), then stop the trial in that subgroup.

At the end of the study, based on the complete data DNmax, for each subgroup c = 1, … , C, 

the optimal treatment regime is defined as that with largest probability of having the 

maximum utility among all regimes, formally 

rc∗ = (dc
∗, sc∗) = arg max

(d, s) ∈ Ac
Pr Uc, d, s = max

(d′, s′)
Uc, d′, s′ .

To implement the design in practice, one must prespecify values of the hyperparameters θ0, 

the utility function U(yT, yE), and the design parameters (Nmax, κ, πT , πE, ηT, ηE). A 

detailed description of the calibration procedure for the proposed design is provided in 

Supporting Information.

4. Simulation Study

In this section, we summarize results of a simulation study to investigate the proposed 

design’s OCs, using the PGF Melphalan trial as a basis for the simulation study design. We 

consider C = 2 subgroups with equal prevalences p1 = p2 = 1/2, assume the toxicity 

probabilities πc, rT  are homogeneous across subgroups, but that the efficacy probabilities 

satisfy π2, r
E > π1, r

E  for all r = (d, s). We will evaluate sensitivity of the design’s performance 

to different prevalences. We study D = 3 doses (200, 225, 250 mg/m2) combined with S = 3 

infusion schedules, for a total of nine treatment regimes, and 18 different subgroup-specific 

dose-schedule regime combinations. We assume Nmax = 120 patients are accrued, so on 

average 6.6 patients are allocated to each subgroup-specific dose–schedule regime. This 

sample size is reasonable, since the maximum sample size using a 3 + 3 design to find an 

MTD for each of six (c, s) pairs would be similar. Based on preliminary simulations, we take 

κ = 0.2, leading to N11 + N12 = 72 patients treated in stage 1. When p1 = p2 = 1/2, the stage 

1 sample size per subgroup is N11 = N12 = 36. Toxicity is monitored during the first VT = 30 
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days, and efficacy is evaluated on day VE = 90. We assume patents are accrued at a rate of 6 

per month, arriving according to a Poisson process, so the average inter-arrival time is 5 

days. Thus, the expected time to accrue 120 patients is 20 months.

We evaluated the proposed design’s OCs under eight different scenarios, characterized in 

terms of fixed marginal probabilities of toxicity and efficacy (πc, rT ,πc, rE ) given in Table 1. The 

trial data were simulated using (2.1)–(2.2), where we set σξ
2, true = 0.52, ρtrue = −0.2, ζ2,true = 

0.32. The true values of ξc, r
true were determined by matching 

πc, rj = 1 − Φ(0 ∣ ξc, r
j, true, σξ

2, true + ζ2, true), j = T , E. In scenarios 1–6, a regime with an efficacy 

probability < π‒E = .20 is considered clinically unimportant, and a toxicity probability > πT 

= .15 is considered unsafe. To assess applicability of the design to more general scenarios, 

regimes with toxicity rate above 30% and an efficacy rate below 30% are considered 

inadmissible in scenarios 7–8, which are different from the MM trial. The utility function is 

U(0,1) = 100, U(0, 0) = 60, U(1,1) = 40, U(1, 0) = 0, reflecting the belief that avoiding 

toxicity is more important than achieving efficacy. The expected utility of each regime under 

the eight scenarios is displayed in Table 1, and the true optimal treatment regimes are 

underlined.

We denote the proposed two-stage design by TD. The design configuration of TD is given in 

Supporting Information. To show the advantage of borrowing information between 

subgroups, we compare the TD with a design that conducts a separate trial independently for 

each subgroup in parallel, with the sample size for subgroup c bounded by pcNmax, c = 1, 

… , C. We denote this design by ITD. As a benchmark for comparison, we also implement 

the complete-data version of the proposed two-stage design, denoted by TDC, which waits 

until all toxicity and efficacy outcomes of previously treated patients are completely 

observed before choosing a regime for the next patient. The TDC design thus requires 

repeatedly suspending accrual of new patients prior to each new regime assignment. 

Therefore, TDC has a very lengthy trial duration, which is not feasible in practice with late-

onset outcomes. To examine the benefit of using the proposed AR probabilities ωc(d, s), we 

also include the design using AR probabilities ωc′(d, s) that depends on posterior mean 

utilities. We denote this design by TDU. Each design was simulated 1000 times under each 

scenario.

Table 2 shows the percentages of selecting optimal treatment regimes (OTRs) and the 

average trial durations of the four designs. In general, the average OTR selection percentages 

of TD are 71.8 and 74.9 for subgroups 1 and 2, respectively. Since scenarios 7–8 have 

different definitions of admissible regimes than scenarios 1–6, the desirable performance of 

TD in scenarios 7–8 also indicates that the proposed TD design is flexible and can be 

applied to different trial settings. The selection percentage of each regime using TD are 

given in Table 3. We find that TD is efficient in identifying inadmissible regimes. For 

example, TD has very small probabilities of selecting the toxic treatment regimes with 

schedule s = 2 in scenario 2. Similarly, in scenario 8, where the efficacy probabilities of 

treatment regimes r = (d, 2), d = 1, 2, 3, all are below the lower limit πE = 0.30, TD is 

unlikely to select these inefficacious regimes as the OTRs.
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Table 2 shows that the OTR selection percentages of TD are very close to those of TDC, 

indicating that TD recovers from efficiency loss due to missing efficacy data early in the 

trial. Once the missing outcomes are observed, TD efficiently incorporates the new data for 

subsequent decision making. Since TDC repeatedly suspends accrual of new patients to wait 

for full assessments of previously treated patients, on average it would require 360 months to 

complete a trial with 120 patients. In contrast, TD facilitates real-time decision making with 

no suspension of accrual, requiring approximately 23 months for the trial, with a negligible 

drop in OTR selection percentage. Comparing the OTR selection percentages of TD and 

TDU in Table 2 shows that, on average, TD performs better than TDu. When there is only 

one OTR, as in scenarios 4 and 8 for subgroup 1, TD yields approximately 10% higher OTR 

selection percentages than TDU, indicating that the use of AR probabilities by TD leads to a 

more thorough exploration of the treatment regime space. We summarize the total number of 

patients treated with a toxic regime having true πc, rT > π‒T  in Figure 1, and the total number 

of patients treated with an inefficacious regime having πc, rE > π‒E in Figure 2. The results 

show that, compared to TDU, TD only exposes 2-3 more patients to overly toxic treatment 

regimes. For maximum sample size 120 patients, such a risk is generally acceptable. 

However, because it explores more doses and schedules, TD tends to treat fewer patients at 

inefficacious regimes than TDU (See Figure 2).

Table 2 shows the advantage of borrowing information across subgroups, in terms of within-

subgroup OTR selection percentage. For nearly all scenarios and subgroups, TD has a larger 

OTR selection percentage than ITD, with the relative performance between TD and ITD 

depending on the degree of homogeneity of treatment effects across subgroups. In scenarios 

1 and 2, where the locations of the OTRs are the same for the two subgroups, TD greatly 

outperforms ITD in terms of selection percentages of OTRs, with at least a 10% advantage 

over ITD for all scenario-subgroup combinations. This is because TD borrows information 

between subgroups. When the subgroups are relatively homogeneous in terms of treatment 

effects, TD may be expected to perform better than ITD. In scenarios 3–5, subgroup 2 has 

one more OTR than subgroup 1, with the remaining OTRs of subgroup 2 the same as those 

of subgroup 1. In these scenarios, TD again has substantially larger OTR selection 

percentages than ITD. However, in extremely heterogenous cases, borrowing information 

may harm TD’s performance. This is shown by scenario 6, where the OTRs are very 

different for the two subgroups, and the OTR selection percentage in subgroup 2 for TD is 

less than that of ITD. An advantage of information sharing by the TD method is that, since 

the toxicity outcomes are assumed to be homogenous, borrowing toxicity information across 

subgroups helps screen out overly toxic regimes. Since ITD does not borrow information 

between subgroups, it is more likely to treat patients with overly toxic regimes, illustrated by 

Figure 1, which gives the total numbers of patients overdosed. Thus, in terms of OTR 

selection, trial duration, and safety, TD is superior to ITD.

The Supporting Information report extensive sensitivity analyses to examine the OCs of the 

proposed TD for different maximum sample sizes, Nmax. These show that the probability 

that TD correctly identifies the OTR increases substantially with Nmax. For Nmax = 300, the 

average selection percentage of OTR across the eight considered scenarios is as high as 

90%. This indicates that the proposed design can recover from situations where it may get 
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stuck early on at suboptimal regimes. We also show that TD is very robust to various 

subgroup prevalence ratios, patient accrual rates, true underlying models (data generating 

processes), and prior distributions (with reasonably noninformative priors).

5. Concluding remarks

We have proposed a two-stage phase I-II clinical trial design that does subgroup-specific 

dose–schedule finding based on a Bayesian hierarchical model, with specific attention to 

settings where the efficacy outcome is evaluated long after the start of treatment. To 

accommodate subgroups, the model exploits prior ordering information that the drug should 

be more effective in one subgroup than the other. The posterior predictive distribution of the 

utility of each dose-schedule regime is used as a basis for regime selection and adaptive 

randomization, which is employed to improve reliability. Within-subgroup regime 

acceptability rules are included for both toxicity and efficacy.

Late-onset outcomes complicate outcome-adaptive trial conduct. We have addressed this 

problem by using a hybrid two-stage design with adaptive randomization. In stage 1, little 

efficacy data are available, and mainly toxicity data are utilized for early decision making, 

primarily to screen out unsafe treatment regimes. When efficacy outcomes of more patients 

have been assessed in stage 2, efficacy plays a more prominent role in choosing regimes for 

the remaining patients, and for making final within-subgroup optimal regime selections. 

Simulations show that the operating characteristics of the proposed design are very similar 

to those of the benchmark complete-data design, which would require an unrealistically long 

time to complete the trial. Thus, the proposed design has a minimal loss in efficiency due to 

accommodating late-onset toxicity/efficacy, while providing a realistic trial duration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average total number of patients overdosed, i.e. treated with a regime having true 

πc, rT > πT = .15 in scenarios 1–6 and πc, rT > πT = .30 in scenarios 7–8, for the TD (circle o), 

ITD (triangle Δ), TDC (plus +), and TDU (cross ×) under the simulation scenarios in Table 1. 

“TD” is the proposed two-stage trial design; “TDC” denotes the two-stage trial design based 

on complete (YT, YE) data; “TDU” denotes the two-stage trial design based on AR 

probabilities ωc′(d, s); “ITD” denotes the independent two-stage design that conducts a 

separate regime-finding trial for each subgroup.
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Figure 2. 
Average total number of patients treated with an inefficacious regime having true 

πc, rE < πE = .20 in scenarios 1–6 and πc, rE > πE = .30 in scenarios 7–8, for the TD (circle ∘), 

ITD (triangle Δ), TDC (plus +), and TDU (cross ×) under the simulation scenarios in Table 1. 

“TD” is the proposed two-stage trial design; “TDC” denotes the two-stage trial design based 

on complete (YT, YE) data; “TDU” denotes the two-stage trial design based on AR 

probabilities ωc′(d, s); “ITD” denotes the independent two-stage design that conducts a 

separate regime-finding trial for each subgroup.
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Table 1

True toxicity and efficacy probabilities and utilities (πc, rT , πc, rE , uc,r) under eight simulation scenarios, for each 

dose, schedule, and subgroup. These values for optimal treatment regimes with uc, r > ucmax − 5 are underlined, 

where ucmax = maxr{uc, r} is the maximum utility for subgroup c, c = 1, 2. The regimes with a toxicity rate 

above 15% and, an efficacy rate below 20% are considered inadmissible in scenarios 1–6; The regimes with a 
toxicity rate above 30% and an efficacy rate below 30% are considered inadmissible in scenarios 7–8.

Scenario
Subgroup 1 Subgroup 2

s d=1 d=2 d=3 d=1 d=2 d=3

1 1 (.03,.10,62.2) (.05,.20,65.0) (.15,.60,75.0) (.03,.13,63.4) (.05,.23,66.2) (.15,.63,76.2)

2 (.05,.50,77.0) (.15,.40,67.0) (.30,.40,58.0) (.05,.56,79.4) (.15,.46,69.4) (.30,.46,60.4)

3 (.13,.35,66.2) (.45,.40,49.0) (.60,.45,42.0) (.13,.47,71.0) (.45,.52,53.8) (.60,.57,46.8)

2 1 (.10,.30,66.0) (.27,.40,59.8) (.55,.50,47.0) (.10,.40,70.0) (.27,.50,63.8) (.55,.60,51.0)

2 (.25,.25,55.0) (.30,.30,54.0) (.40,.40,52.0) (.25,.35,59.0) (.30,.40,58.0) (.40,.50,56.0)

3 (.08,.15,61.2) (.12,.35,66.8) (.25,.35,59.0) (.08,.25,65.2) (.12,.45,70.8) (.25,.45,63.0)

3 1 (.05,.10,61.0) (.15,.40,67.0) (.40,.10,40.0) (.05,.30,69.0) (.15,.45,69.0) (.40,.30,48.0)

2 (.05,.40,73.0) (.18,.20,57.2) (.40,.10,40.0) (.05,.45,75.0) (.18,.30,61.2) (.40,.20,44.0)

3 (.03,.15,64.2) (.08,.23,64.4) (.15,.45,69.0) (.03,.30,70.2) (.08,.30,67.2) (.15,.50,71.0)

4 1 (.03,.10,62.2) (.05,.30,69.0) (.10,.60,78.0) (.03,.20,66.2) (.05,.35,71.0) (.10,.63,79.2)

2 (.07,.30,67.8) (.15,.40,67.0) (.30,.50,62.0) (.07,.33,69.0) (.15,.60,75.0) (.30,.65,68.0)

3 (.05,.25,67.0) (.10,.34,67.6) (.15,.25,61.0) (.05,.28,68.2) (.10,.38,69.2) (.15,.29,62.6)

5 1 (.05,.10,61.0) (.12,.25,62.8) (.20,.33,61.2) (.05,.15,63.0) (.12,.30,64.8) (.20,.38,63.2)

2 (.07,.05,57.8) (.13,.45,70.2) (.25,.30,57.0) (.07,.20,63.8) (.13,.50,72.2) (.25,.40,61.0)

3 (.02,.23,68.0) (.05,.15,63.0) (.08,.10,59.2) (.02,.28,70.0) (.05,.45,75.0) (.08,.28,66.4)

6 1 (.05,.05,59.0) (.07,.07,58.6) (.09,.09,58.2) (.05,.15,63.0) (.07,.47,74.6) (.09,.49,74.2)

2 (.08,.10,59.0) (.13,.35,66.2) (.30,.40,58.0) (.08,.15,61.2) (.13,.40,68.2) (.30,.45,60.0)

3 (.11,.30,65.4) (.13,.20,60.2) (.20,.10,52.0) (.11,.33,66.6) (.13,.23,61.4) (.20,.13,53.2)

7 1 (.05,.10,61.0) (.15,.45,69.0) (.30,.45,60.0) (.05,.13,62.2) (.15,.48,70.2) (.30,.48,61.2)

2 (.12,.20,60.8) (.23,.55,68.2) (.55,.60,51.0) (.12,.50,72.8) (.23,.58,69.4) (.55,.63,52.2)

3 (.45,.30,45.0) (.50,.35,44.0) (.60,.30,36.0) (.45,.33,46.2) (.50,.38,45.2) (.60,.31,36.4)

8 1 (.05,.10,61.0) (.10,.20,62.0) (.15,.50,71.0) (.05,.15,63.0) (.10,.25,64.0) (.15,.53,72.2)

2 (.10,.15,60.0) (.25,.15,51.0) (.40,.15,42.0) (.10,.20,62.0) (.25,.20,53.0) (.40,.20,44.0)

3 (.07,.25,65.8) (.08,.25,65.2) (.18,.25,59.2) (.07,.25,65.8) (.08,.30,67.2) (.18,.60,73.2)
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Table 2

Selection percentage for the optimal treatment regime (OTR) within each subgroup, and mean trial durations, 

for the four designs under the eight scenarios in Table 1. The accrual rate is 6 patients per month.

Selection percentage of OTR
Trial duration (in months)

Subgroup 1 Subgroup 2

Scenario TD ITD TDC TDU TD ITD TDC TDU TD ITD TDC TDU

1 88.1 75.4 89.4 88.6 85.0 69.4 89.5 88.8 23.0 26.0 360.0 23.0

2 69.2 58.7 72.4 72.1 67.1 56.2 69.0 70.9 23.1 26.0 360.0 23.0

3 73.7 64.0 74.1 74.7 73.5 62.2 72.6 75.9 23.0 25.9 360.0 23.0

4 60.9 46.1 63.4 47.9 78.4 66.0 79.7 78.0 23.1 26.0 360.0 23.0

5 72.9 70.0 78.9 75.8 85.9 79.0 87.5 86.9 23.0 26.0 360.0 23.0

6 79.8 74.4 78.0 72.9 48.0 59.8 50.8 45.0 23.0 26.0 360.0 23.0

7 82.5 80.9 83.9 72.4 95.6 93.1 96.7 95.3 23.0 26.0 360.0 23.0

8 47.2 35.2 50.9 38.1 65.6 58.6 68.0 54.0 23.0 26.0 360.0 23.0

Average 71.8 63.1 73.9 67.8 74.9 68.0 75.6 74.4 23.0 26.0 360.0 23.0

“TD” is the proposed two-stage trial design; “TDC” denotes the two-stage trial design based on complete (YT, YE) data; “TDU” denotes the two-

stage trial design based on AR probabilities ωc′(d, s); “ITD” denotes the independent two-stage design that conducts a separate regime-finding trial 

for each subgroup.
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Table 3

Regime selection percentage based on the proposed two-stage design under the eight scenarios in Table 1. The 

accrual rate is 6 patients per month. These values for optimal treatment regimes with uc, r > ucmax − 5 are 

underlined, where ucmax = maxr{uc, r} is the maximum utility for subgroup c, c = 1, 2.

Scenario Schedule/dose
Subgroup 1 Subgroup 2

1 2 3 1 2 3

1 1 0.0 0.3 38.7 0.1 0.7 33.6

2 49.4 6.7 0.8 51.4 6.1 0.9

3 4.0 0.1 0.0 7.1 0.1 0.0

2 1 31.7 11.8 0.3 30.0 13.1 0.2

2 3.8 0.8 0.6 4.8 1.4 0.2

3 9.1 37.5 4.4 8.3 37.1 4.9

3 1 1.0 17.3 0.0 3.5 16.6 0.0

2 56.3 0.7 0.0 49.4 1.4 0.0

3 3.1 4.2 17.4 5.2 5.0 18.9

4 1 0.1 6.3 60.9 0.9 5.8 56.7

2 5.8 13.1 3.2 3.9 21.7 3.9

3 2.7 7.4 0.5 1.8 5.1 0.2

5 1 1.1 8.7 3.1 1.2 5.4 3.2

2 0.6 57.9 1.6 1.1 50.3 1.8

3 15.0 11.1 0.9 11.0 24.6 1.4

6 1 0.9 5.2 3.2 0.8 30.6 17.4

2 2.4 37.1 3.5 1.1 22.6 2.7

3 42.7 5.0 0.0 22.7 2.1 0.0

7 1 1.1 45.4 4.2 1.0 35.4 2.7

2 11.2 37.1 0.6 28.9 31.3 0.3

3 0.4 0.0 0.0 0.4 0.0 0.0

8 1 2.4 7.2 47.2 1.9 5.3 42.3

2 2.7 0.2 0.0 2.6 0.3 0.0

3 21.5 11.7 7.1 13.9 10.4 23.3
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