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Abstract

Herein, we describe an alkyl thiolate-ligated iron complex that reacts with dioxygen to form an 

unprecedented example of an iron superoxo (O2
•−) intermediate, [FeIII(S2

Me2N3(Pr,Pr))(O2)] (4), 

which is capable of cleaving strong C–H bonds. A cysteinate-ligated iron superoxo intermediate is 

proposed to play a key role in the biosynthesis of β-lactam antibiotics by isopenicillin N-synthase 

(IPNS). Superoxo 4 converts to a metastable putative Fe(III)–OOH intermediate, at rates that are 

dependent on the C–H bond strength of the H atom donor, with a kinetic isotope effect (kH/kD = 

4.8) comparable to that of IPNS (kH/kD = 5.6). The bond dissociation energy of the C–H bonds 

cleaved by 4 (92 kcal/mol) is comparable to C–H bonds cleaved by IPNS (93 kcal/mol). Both the 

calculated and experimental electronic absorption spectra of 4 are comparable to those of the 

putative IPNS superoxo intermediate, and are shown to involve RS− → Fe–O2
•− and O2

•− → Fe 

charge transfer transitions. The π-back-donation by the electronrich alkyl thiolate presumably 

facilitates this reactivity by increasing the basicity of the distal oxygen. The frontier orbitals of 4 
are shown to consist of two strongly coupled unpaired electrons of opposite spin, one in a 

superoxo π*(O–O) orbital, and the other in an Fe(dxy) orbital.

Isopenicillin N synthase (IPNS)1–4 and cysteine dioxygenase (CDO)5–10 are nonheme Fe 

enzymes that catalyze the O2-promoted oxidation of cysteinates (RS−). Although O2 

oxidation reactions are thermodynamically favored, they are kinetically slow in the absence 

of a transition-metal catalyst, because they are spin-forbidden.11 The electron donor 

properties of cysteinate and high covalency of FeIII–SR bonds12,13 lower the activation 

barrier to O2 binding4 to iron, promote O–O bond cleavage,4,14 and increase the reactivity of 

high-valent Fe-oxo intermediates.15,16 This helps to facilitate the oxidative bicyclization 

reaction involved in the biosynthesis of β-lactam antibiotics (e.g., penicillin, cephalosporins) 
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by IPNS,1,3 as well as the CDO-catalyzed regulation of cysteine concentration, toxic levels 

of which can lead to neurological disorders,17 or the metastasis of cancerous tumors.18,19 

The proposed mechanism of both IPNS2,3 and CDO5,6 involves the initial formation of a cis 
thiolate-ligated iron superoxo intermediate (cis-RS-Fe-O2

•−). With the former, this 

intermediate abstracts a H atom from substrate, and with the latter it is proposed to attack the 

adjacent sulfur to form a transient peroxythiolate species. The putative IPNS Fe–O2
•− is 

spectroscopically detected in small amounts (14%) via transient absorption (λmax = 630 nm; 

t = 2–10 ms) and Mössbauer spectroscopies if the cysteinate β-hydrogens are deuterated.2 A 

CDO intermediate, proposed to be an Fe(III)-peroxythiolate, is also observed by transient 

absorption spectroscopy (λmax = 500 nm, 640 nm).5 Vibrational data is not available to 

support these assignments, however. Two strong C–H bonds are cleaved during the proposed 

IPNS mechanism (Figure S1): a β-hydrogen from cysteine (93 kcal/mol) and a β-hydrogen 

from valine (96 kcal/mol).20 The former is proposed to involve the putative Fe(III)-

superoxo, and the latter an Fe(IV)-oxo intermediate.2 There are few well-characterized 

examples of Fe(III)-superoxo compounds,21–24 however, and none of these cleave strong C–

H bonds. An aryl thiolate-ligated Fe–O2
•− was recently reported; however, the sulfur lone 

pair is tied up in π-bonding to the aryl carbon in one of its resonance forms making it less 

reactive.23 Although it has yet to be demonstrated with a superoxo, π-back-donation by an 

electron rich alkyl thiolate has been shown to facilitate the cleavage of strong C–H bonds by 

increasing the basicity of an iron oxo.25 Herein, we report the synthesis and structure of an 

alkyl thiolate-ligated iron complex that reacts with O2 to afford a spectroscopically 

observable reactive intermediate.

Reduced [FeII(S2
Me2N3(Pr,Pr))] (1) was synthesized and structurally characterized 

according to the method outlined in the Supporting Information, and was shown to contain 

Fe2+ in a distorted trigonal bipyramidal coordination environment (τ = 0.78; Figure 1, Tables 

S2–S6). In solution, 1 has a magnetic moment of μ = 2.63 μB at 298 K in MeCN consistent 

with an S = 1 spin-state, and has a characteristic electronic absorption band at λmax = 420 

(εM 1600) nm (Figure S2). Previously, we showed that, like IPNS and CDO,3,10,26 the 

oxidized derivative of 1, [FeIII(S2
Me2N3(Pr,Pr))]+ (2), binds small molecules (azide and NO),

27–29 cis with respect to one of the thiolate sulfurs. The latter are frequently used to probe 

enzymatic O2 binding sites.
10,14

The addition of dry O2 to 1 in THF at 25 °C causes an immediate color change from pale 

yellow to watermelon pink, with an associated shift in λmax to 510(1500) nm (Figure S3), 

and the growth of a signal (g = 2.17, 2.11, 1.98) in the electron paramagnetic resonance 

(EPR) spectrum (Figure S4) consistent with the formation (in 93% yield) of low-spin (S = 

½) [FeIII(η2-SMe2O)(SMe2N3(Pr,Pr))]+ (3).30 Electrospray mass spectroscopy (ESI-MS) of 

isotopically labeled samples shows that the oxo of 3 is derived from 18O2 (Figure S5). Azide 

inhibits this reaction (Figures S6) indicating that O2 must bind to the metal ion in order for 

oxo atom transfer to occur. At low temperatures (−73 °C), a new metastable cranberry red 

O2-derived intermediate, 4 (Figure 2), is observed en route to singly oxygenated 3,30 the low 

energy band (~700 nm) of which is characteristic of six-coordinate, bis-thiolate-ligated 

Fe(III).12,31 When this reaction is monitored by 1H NMR, the paramagnetic signals of 1 
collapse to diamagnetic (S = 0) signals upon the addition of O2 (Figure S7). The ESI-MS of 
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4 contains an M + 32 peak at m/z = 417.3 (Figure S8), consistent with the addition of two 

oxygen atoms to the parent ion, 1 (m/z = 385.4). An identical intermediate can be generated 

via the low temperature (−73 °C) addition of excess (50 equiv) potassium superoxide (KO2) 

to oxidized [FeIII(S2
Me2N3(Pr,Pr))]+ (2) (Figure S9). The resonance Raman (rR) spectrum of 

4 reproducibly shows isotopically sensitive features (a Fermi doublet) at 1093 and 1122 cm
−1 (Figure 3) that shift to 1022 cm−1 when generated from 18O2 (Figure S10), and disappear 

after 30 min, demonstrating its transient nature. All of this data would be consistent with the 

formation of a metastable ferric superoxo species. The calibrated (vide infra) density 

functional theory (DFT) calculated structure of [FeIII(S2
Me2N3(Pr,Pr))(O2)] (4) contains an 

O2 moiety cis to one of the thiolate sulfurs (Figure S11), with bond lengths (O–O = 1.289 Å, 

Table S1), and a calculated νO–O stretch (Figure S12, 1154 cm−1), consistent with a ferric 

superoxo (FeIII-O2
•−), analogous to the prop osed IPNS and CDO intermediates. The 

frontier orbitals of 4 (Figure 4) contain two unpaired electrons of opposite spin, one in a 

superoxo π*(O–O) orbital, and the other in a Fe(dxy) orbital. The calculated overlap 

parameter of T=0.17, and coupling constant Jcalc = − 450 cm−1 indicate that the two 

unpaired spins are strongly coupled antiferromagnetically, consistent with the absence of 

paramagnetically shifted peaks in the 1H NMR and EPR silence of 4. The time-dependent 

DFT (TD-DFT) calculated electronic absorption spectrum of 4 (Figures S13 and S14) 

reproduces the experimental spectrum (Figure 2), and shows that superoxo π*(O–O) → 
dxy(Fe) charge transfer transitions are responsible for the higher energy bands, and a RS− → 
Fe–O2

•− charge transfer transition for the lower energy band. Both the calculated and 

experimental spectrum of 4 are similar to that of the putative IPNS superoxo intermediate,2 

supporting its assignment as a superoxo species. The reported CDO intermediate spectrum5 

is also similar to that of 4, suggesting that it too is a ferric superoxo.

Ferric superoxo (FeIII−O2
•−) 4 converts to a second metastable intermediate, 5 (λmax = 696 

nm), at −73 °C in THF (Figure S15), en route to 3 (Figure S16), at a rate that is dependent 

on the C–H bond strength of the solvent or H atom donor. Reaction rates decrease in 

deuterated THF (Figure 5), and increase upon the addition of a sacrificial H atom donor (100 

equiv of 1,4-cyclohexadiene (CHD), BDE = 76 kcal/mol). The observed deuterium isotope 

effect, kH/kD = 4.8, is comparable to that of IPNS (kH/kD = 5.6),32 and indicates that 

superoxo 4 is capable of abstracting hydrogen atoms from strong C–H bonds (BDE(THF) = 

92 kcal/mol).33 A likely product of this reaction would be a ferric hydroperoxo, [FeIII(S2 
Me2N3(Pr,Pr))(OOH)] (5). Consistent with this, a new rhombic signal grows in when the 

reaction between 1 and O2 is monitored by EPR (Figure 6). Spin-quantitation using double 

integration (Figure S18) indicates that the EPR signal of 5 represents 87% of the sample 

(Figures S4 and S17). The remaining 13% can be attributed to 1 and/or 4, both of which are 

EPR-silent in ⊥-mode. Together, these results show that in contrast to the few reported 

Fe(III)-superoxo complexes,21–24 alkylthiolate-ligated 4 is capable of abstracting H atoms 

from strong C–H bonds, on par with that of the β C–H bonds of cysteine (93 kcal/mol).33 It 

is plausible that π-back-donation by the electron-rich alkyl thiolate facilitates this reactivity 

by increasing the basicity of the distal oxygen. Spectroscopic characterization of 4, along 

with calibrated DFT calculations, provides additional evidence to support the assignment of 

the IPNS and CDO intermediates detected via transient absorption spectroscopy,2,5 as cis 
RS-FeIII-O2

•− species.
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Figure 1. 
ORTEP of 1 with thermal ellipsoids at the 50% probability level. With the exception of the 

secondary amine proton, hydrogens have been removed for clarity.
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Figure 2. 
Monitoring the low temperature (−73 °C) reaction between 1 (0.48 mM) and excess O2 in 

THF by electronic absorption spectroscopy.
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Figure 3. 
Monitoring the reaction between 1 (5 mM) and O2 in THF at −73 °C by resonance Raman 

spectroscopy. Samples were frozen in liquid N2 (77 K) at the time-intervals indicated. 

Excitation wavelength λex = 527 nm; 4.0 mW power; * = solvent peak.
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Figure 4. 
Singly occupied molecular orbitals (SOMO) of 4 contain strongly coupled electrons of 

opposite spin, one on the superoxo (O2
•−) and the other on the metal ion.
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Figure 5. 
Pseudo-first-order kinetic plots associated with the reaction between 4 (0.48 mM) and THF 

(12 M), or CHD (48 mM) in THF at −73 °C.
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Figure 6. 
X-band EPR spectrum (⊥-mode) of putative hydroperoxo FeIII–OOH (5), formed from 

superoxo FeIII–O2
•− (4) via H atom abstraction.
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