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+is study develops tomato disease detection methods based on deep convolutional neural networks and object detection models.
Two different models, Faster R-CNN and Mask R-CNN, are used in these methods, where Faster R-CNN is used to identify the
types of tomato diseases and Mask R-CNN is used to detect and segment the locations and shapes of the infected areas. To select
the model that best fits the tomato disease detection task, four different deep convolutional neural networks are combined with the
two object detection models. Data are collected from the Internet and the dataset is divided into a training set, a validation set, and
a test set used in the experiments. +e experimental results show that the proposed models can accurately and quickly identify the
eleven tomato disease types and segment the locations and shapes of the infected areas.

1. Introduction

Plant diseases have always been a thorny problem in agri-
cultural production and one of the main factors restricting
the sustainable development of agriculture. As a common
vegetable and important cash crop in China, tomato is
widely cultivated in various regions, covering an area of
nearly 700 million square meters nationwide. Affected by
various factors of the environment, tomato diseases occur
frequently. According to the current statistical data, there are
as many as 20 types of tomato diseases, which have seriously
affected the yield and quality of tomatoes and caused huge
economic losses. +erefore, the prevention and treatment of
tomato diseases play extremely important roles in tomato
production. In the past, disease diagnosis mainly uses ar-
tificial recognition methods, including

(1) Subjectively judge disease types based on years of
planting experience of farmers or consult books on
agricultural knowledge

(2) Obtain disease specimen pictures and search on the
Internet for judgment

(3) Consult experts to undertake an analysis of the
disease symptoms

+erefore, it is possible for a person with strong pro-
fessional knowledge to accurately diagnose plant diseases. In
general, farmers are not highly educated and do not have the
necessary professional knowledge. +ey usually have a high
misjudgment rate of plant diseases and, therefore, are dif-
ficult to meet the production requirements of the modern
agriculture.

In recent years, the development of computer vision has
provided a new way for the accurate diagnosis of tomato
diseases. Object detection is an important subject in the field
of computer vision. +e main task of object detection is to
precisely locate the region of interest in the image and
determine the specific category of each object. In this study,
object detection models and different deep convolutional
neural networks (DCNNs) [1] are combined, which can not
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only identify the types of tomato diseases, but also locate the
diseased spots so as to use the appropriate treatment.

Two object detection architectures, i.e., Faster R-CNN
[2] and Mask R-CNN [3], are combined with four different
deep convolutional neural networks. Deep convolutional
neural networks are used to automatically extract original
image features, and object detection architectures are used to
identify, classify, and locate diseased sites in feature maps.
+e two object detection architectures are used for different
purposes. +e purpose of Faster R-CNN is to identify and
locate diseased tomatoes, while that of Mask R-CNN is to
segment specific lesion areas on diseased tomatoes (see
Figure 1). Python scripts are used to mark the object and
visually show the different purposes of the two architectures.

2. Related Works

As early as the 1990s, some scholars applied information
technology to plant disease diagnosis and identification. In
1999, Sasakoi et al. [4] used genetic algorithms to establish
identification parameters based on spectral reflection
characteristics and shape characteristics so as to identify the
disease. However, due to insufficient utilization of color and
texture information of the diseases, the identification effect
was not as effective as expected. In 2002, Bodria et al. [5]
used 200W (radiation wavelength: 360 nm∼430 nm) hernia
light source to collect images in a single band and to conduct
multispectral identification for wheat infected by different
fungi in four bands (radiation wavelengths: 450 nm, 550 nm,
690 nm, and 740 nm).

In 2004, El-Helly et al. [6] used neural networks to
identify cucumber powdery mildew, downy mildew, and
leaves damaged by leaf miner, with significant effects. In
2005, Liu et al. [7] used back propagation neural networks to
predict the occurrences of diseases and insect pests of apple
trees using data of the previous 11 years. In 2007, Sammany
and Medhat [8] used genetic algorithms to optimize the
structure and parameters of neural networks and then used
support vector machines and neural networks to identify
plant diseases. In 2008, Tellaeche et al. [9] identified weeds
between rows of crops in the field by using Hough transform
and Gabor filtering based on the perspective of geometry
principle of the scene and solved the weed identification
problem under different perspectives and different spatial
frequencies.

In 2011, Gulhane and Gurjar [10] extracted the color and
shape features of the disease spots and combined the original
feature map with a feedforward artificial neural network to
identify cotton leaf diseases. In 2013, Landge et al. [11]
realized automatic detection and recognition of plant dis-
eases based on color, texture, and shape using feature image
processing methods and neural networks. Sanyal and Patel
[12] used neural networks to identify rice blast, flax spot, and
normal leaves, with an identification rate of 89.26%. In 2014,
Revathi and Hemalatha [13] extracted edge, CYMK color
feature, GA feature, color, texture, and other features by the
oblique divergence method and used support vector ma-
chines and feedforward artificial neural networks for
classification.

In 2016, Mohanty et al. [14] tested 14 crops and 26
diseases in 38 categories in the PlantVillage dataset using the
AlexNet and GoogoLeNet networks, respectively, with a
maximum identification rate of 99.35%. In 2017, Ramcharan
et al. [15] used the Inception v3 network to identify 3
diseases and 2 insect pests of cassava. +e recognition rates
of brown leaf spot, red mite damage, green mite damage,
cassava brown streak disease, and cassava mosaic disease
were 98%, 96%, 95%, 98%, and 95%, respectively. In 2018,
Ma et al. [16] proposed a deep convolutional neural network
to conduct symptom-wise recognition of 4 cucumber dis-
eases with a recognition rate of up to 93.4%. In 2019,
Geetharamani and Arun Pandian [17] proposed a nine-layer
convolutional neural network to identify 39 kinds of leaves,
with an average recognition rate of 96.64%.

Previous works show that deep convolutional neural
networks perform well in plant disease recognition. How-
ever, if tomato images contain multiple diseases, deep
convolutional neural networks can only identify the types of
diseases, but cannot obtain the locations of diseased sites and
cannot correlate the diseased sites and the disease types. In
this study, two object detection architectures combined with
deep convolutional neural networks are used to address
these issues. +ese approaches can not only accurately de-
termine the species of tomato diseases, but also obtain the
locations of diseased tomatoes and the shapes of the infected
areas.

3. Methods

+is section describes the methods, including the structures
and the detection process, used in this study. +e Faster
R-CNN is used to identify species of tomato diseases and
locate the diseased tomatoes. +e Mask R-CNN is used to
accurately segment the shapes of the infected areas of the
diseased tomatoes.

3.1. Overall Steps. +e purpose of this work is to construct
two models using deep convolutional neural networks and
object detection architectures to identify diseased tomatoes
(see Figure 2). Figure 2 is a flowchart of the detection process
of tomato diseases. Each part in this figure will be discussed
in detail in the following sections.

3.2. Deep Convolutional Neural Networks. In order to obtain
high recognition rates of tomato diseases, feature extraction
neural networks must accurately extract characteristics of the
images containing the diseased tomatoes. In previous studies,
some typical artificial design features have achieved good
performances, such as SIFT (Scale-Invariant Feature Trans-
form) [18] and HOG (Histogram of Oriented Gradient) [19],
among others. However, these artificial design features do not
have good generalization abilities. As a deep learning model
[20], convolutional neural networks have the ability of hi-
erarchical learning [21]. Previous studies [22, 23] show that
features obtained through convolutional neural networks
have stronger discrimination and generalization abilities than
those obtained by artificial designs. In this study, four types of

2 Computational Intelligence and Neuroscience



deep convolutional neural networks, VGG-16 [24], ResNet-50
[25], ResNet-101 [25], andMobileNet [26], are used to extract
image features (see Table 1).

3.3. Tomato Disease Recognition Models Based on Object
Detection Architectures. +e original R-CNN [27] model

uses selective search [28] to obtain candidate region pro-
posals.+e sizes of the region proposals are then normalized.
AlexNet [29] was used to obtain features in region proposals.
Finally, multiple SVMs [30] are used for classification and
linear regression for fine-tuning the coordinates of the
normalized region proposals. However, the R-CNN [27]
does feature extraction for each candidate region proposal
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Figure 2: Flowchart for the detection of tomato diseases.
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Figure 1: (a) Faster R-CNN, identifying tomato types (healthy vs diseased) and locating the tomatoes. (b) Mask R-CNN, identifying the
types of tomato diseases and accurately obtain the location and shape of the lesion.
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separately and repeats for the multiple region proposals,
resulting in a large number of repeated calculations. In ad-
dition, the normalization of candidate region proposals affects
the quality of the final results. To address these issues, the Fast
R-CNN [31] uses a RoI layer based on the pyramid principle
to unify feature vector sizes of different candidate region
proposals. +rough multitask learning, the training process is
transformed into a single stage so that a large number of
reading and writing operations are no longer required. By
using the mapping relation to obtain features of different
candidate region proposals, the Fast R-CNN only needs to
calculate on the whole original image once so as to avoid a
large number of repeated calculations. However, both the
R-CNN [27] and Fast R-CNN [31] use selective search [28] or
edge box detection algorithms [32] based on low-level features
to generate region proposals, which is time consuming and
produces low-quality candidate regions. Region Proposal
Networks (RPNs) [2] based on depth features in the Faster
R-CNN proposed in 2017 replaced selective search or edge
box detection algorithms. +e Mask R-CNN [3] added the
function of object segmentation on the basis of the Faster
R-CNN so that locations and shapes of object instance could
be obtained accurately.

+e Faster R-CNN (see Figure 3) and Mask R-CNN (see
Figure 4) are two newest approaches used to identify tomato
diseases.

In the Faster R-CNN, as shown in Figure 3, the DCNN is
used to extract feature maps of the input images, which are
used subsequently in the RPN layer and the fully connected
layer.

A RPN is mainly used to generate region proposals. In the
RPN, in order to generate region proposals, a small network
slides on the feature map, which is the output of the deep
convolutional neural network in the first step. +is small
network slides in the feature map and each sliding window is
mapped to a low-dimensional feature vector (e.g., VGG-16
has 512 dimensions, followed by a ReLU activation function
[33]). +is low-dimensional feature vector is the input to the
two-collateral fully connected layers, in which the box-re-
gression layer (reg) outputs locations of region proposals and
the box-classification layer (cls) judges whether there is a
target object in the box. +e box is the region proposals
mentioned above. On the other hand, the generation of region
proposals is realized through a n × n convolution filter (a n ×

n small window slides on the feature map, which is equivalent
to a n × n convolution filter checking the feature map).

+e following reg layer and cls layer are also realized
through a 1× 1 convolution filter. +e number of region
proposals is represented by k. +erefore, there are 4k output

values for the reg layer to encode the coordinates of the k

region proposals, and 2k scores for the cls layer to represent
the possibility for each region proposal to contain an object
or not. +e k proposals are parameterized relative to k

reference boxes called anchors. An anchor is centered at the
sliding window and is associated with a scale and aspect
ratio. By default 3 scales and 3 aspect ratios are used pro-
ducing k � 9 anchors at each sliding window.

+e above operations produce a large number of region
proposals. Because a sliding window corresponds to 9 an-
chors, the region proposals of the same object may overlap.
+e Nonmaximal Suppression (NMS) [34] algorithm is
adopted to address this issue. In a nutshell, the IoU (In-
tersection over Union) [35] between two boxes is computed
first, and the box with a low score is discarded if the IoU is
greater than a preset threshold. Finally, the retained frames
after NMS processing are sorted according to their scores
and the N boxes on the top are the final region proposals.
+e obtained region proposals are then mapped by the RPN
to the feature map.

+e next step is the Region of Interest (ROI) Pooling. In
this layer, according to the size and position of the box
generated in the RPN, the ROI is clipped from the feature
map and processed into the output of fixed size.

+e feature map with a fixed size is the input into the
fully connected layer for classification. Meanwhile, the
boundary box-regression operation is completed to obtain
the exact position of the boxes on the tomatoes.

As shown in Figures 3 and 4, the steps of the Mask
R-CNN and Faster R-CNN are roughly the same. First,
features are extracted through the DCNN, and then region
proposals are generated through the RPN layer. Finally,
feature maps with fixed sizes are generated for classification
and positioning. +e improvement made by the Mask
R-CNN is that the ROI Pooling layer is optimized into the
ROI Align layer and a Mask branch is added while the final
classification and positioning are carried out so that shapes
of lesion spots can be accurately segmented on the tomato.

+e Faster R-CNN has two main outputs for each ROI.
One output is the classification result, i.e., the labels of the
boxes, and the other output is the regression result providing
the coordinates of the region proposals. +e Mask R-CNN
adds a third output through the Mask branch, i.e., the Mask
R-CNN produces an output for each ROI, which is realized
through the FCN (e.g., the two convolution layers in Figure 5).

In the Faster R-CNN, the final inputs of the fully con-
nected layers are required to have a uniform size, but the
sizes of ROIs generated by the RPN are not the same.
+erefore, an ROI Pooling layer is used to convert ROIs of

Table 1: Details of the four deep convolutional neural networks.

DCNN Parameters (M) Number of layers Top-1 error (%)1 Top-5 error (%)2

VGG-16 138 16 28.07 9.33
ResNet-50 25 50 22.85 6.71
ResNet-101 42.6 101 21.75 6.05
MobileNet 3.3 28 — —
1+e Top-1 error rate on ImageNet Validation; 2the Top-5 error rate on ImageNet Validation; the symbol “-” indicates that no corresponding data are given in
the original paper.
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different sizes to those of the uniform size. +e ROIs of the
uniform size are the input of the fully connected layers.
However, ROI Pooling cannot be applied in the division
branch because the corresponding input and output cannot
be guaranteed to be the same ROI pixel points. Hence, a
new ROI Align layer is proposed to replace the original ROI
Pooling layer in the Faster R-CNN. ROI Pooling performs
two round quantization operations on ROI coordinates

when processing the feature maps and these operations
may cause errors. In contrast, ROI Align does not perform
quantization while ROI coordinates are always kept as
floating points and thus greatly reduces quantization
errors.

With these two improvements, theMask R-CNN can not
only determine the types and locations of the lesion spots,
but also accurately segment the shapes of the lesion spots.
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4. Experiments

+is section discusses the details of the experiments, in-
cluding data collection, parameter fitting, and the experi-
mental results. +e performance of each model is shown
through data and images.

4.1. Dataset

4.1.1. Data Collection and Preprocessing. Pictures from the
Internet are taken and screened carefully to ensure correct
correspondences between images and disease types. After
careful examination, images of ten tomato diseases are
sorted out, including tomato malformed fruit, tomato
blotchy ripening, tomato puffy fruit, tomato dehiscent fruit,
tomato blossom-end rot, tomato sunscald, tomato virus
disease, tomato gray mold, tomato ulcer disease, and tomato
anthracnose (see Figure 6). Including images of healthy
tomatoes, a dataset of eleven types of, with a total of 286,
tomato images is used in the experiments. +e dataset is
divided into a training set, a validation set, and a test set in a
ratio of 6 : 2 : 2.

In order to expand the dataset, four methods, i.e., digital
fill light, digital subtraction light, automatic white balancing,
and high ISO noise reduction, are used for image processing
(see Figure 7). Listed from the top to the bottom in Figure 7
are images of healthy tomatoes, tomato malformed fruit,
tomato dehiscent fruit, and tomato blossom-end rot.
Arranged from left to right, also labeled from a to e, are the
original, digital fill light, digital subtraction light, automatic
white balancing, and high ISO noise reduction processed
images. +e processed dataset contains 1,430 images (see
Table 2).

4.1.2. Data Annotation. +e two different object detection
architectures require the images in the training set to be
annotated in two different ways (see Figure 8). +e Faster
R-CNN is mainly used to identify the types and locations of
tomato diseases in the images. LabelImg was used to an-
notate the images used by the Faster R-CNN. +e specific
operation was to mark the location of a tomato disease spot
with a rectangular frame and then annotate it. +e Mask
R-CNN requires the images to be segmented to obtain more
accurate tomato infected areas and spot shapes. Labelme was
used to label the images used by the Mask R-CNN. +e
method was to mark the area and shape of the disease spot
with irregular polygons and then label the type of disease
spot. Figure 8 gives examples of the two image annotation
methods used by the two different object detection
architectures.

4.2. Experiment Setup. +e training set is used to train the
model. +e validation set is used to give feedbacks about the
progress of the training and determine if the training is
complete. Finally, the trained model is applied to the test set
to evaluate its performance.

+e experiments were conducted on a desktop com-
puter with an Intel Core i7 3.70 GHz Processor and an

NVidia GeForce GTX 1080 Ti GPU. With the small dataset
used in the experiments, the number of iterations of the
Faster R-CNN was set to 70,000, and the training results
were saved every 5,000 iterations. For the Mask R-CNN,
500 iterations of training are sufficient. In the RPN, boxes
with IoU scores larger than a threshold of 0.8 are kept. +e
remaining parameters are set to the values used in the
original works of the Faster/Mask R-CNN reported in the
literature [2, 3].

Figure 9 shows the training loss curves of the Faster
R-CNN with 70,000 iterations. +e four different models are
labeled and coded with different colors in the figure. Except
for the loss curve of MobileNet which exhibits a severe
shock, the loss curves of the others, including VGG-16,
ResNet-50, and ResNet-101, start to stabilize at about 20,000
iterations. In theory, the Faster R-CNN with ResNet-101 has
the best performance since it obtains the lowest loss value
eventually. Figure 10 illustrates the loss curves of the Mask
R-CNN with 500 iterations. Loss values of both networks
started to level off at about 350 iterations. As can be seen,
ResNet-101 gets a lower loss value, so that the Mask R-CNN
with ResNet-101 performs better than the Mask R-CNN
with ResNet-50 in theory.

4.3. Quantitative Analysis. Mean Average Precision (mAP),
training time, and image detection time were used to
measure the performance of each model used in this study.

For a single class in a single image, precision is defined as

Precision �
TP

TP + FP
, (1)

where TP(True Positives) represents the number of positive
samples correctly classified as positive, i.e., the actual pos-
itive samples also correctly classified as positive samples by
the classifier, and FP(False Positives) represents the number
of negative samples incorrectly classified as positive, i.e., the
actual negative samples wrongly classified as positive sam-
ples by the classifier.

For multiple images in a single class, Average Precision is
defined as

Average Precision �
 Precision

N
, (2)

where Precision represents the sum of the precisions for
all images and, obviously, N is the number of images.

If the dataset includes different classes (like the dataset in
this study), a single number is needed to evaluate the per-
formance of the model.+e average of Average Precision s of
all classes, called the mAP, is used for this purpose. For
multiple images in multiple classes, the mAP is defined as

mAP �
Average Precision

N′
, (3)

where Average Precision represents the sum of the
Average Precision values for all images. Obviously, N′ is the
number of all classes.+e Average Precision andmAP values
of tomato images obtained by different diseases detection
architectures are shown in Table 3.
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6: Sample tomato images. (a–c) Healthy tomato. (d and e) Tomato malformed fruit. (f ) Tomato blotchy ripening. (g and h) Tomato
puffy fruit. (i) Tomato dehiscent fruit. (j) Tomato blossom-end rot. (k) Toamto sunscald. (l) Tomato virus disease. (m) Tomato graymold. (n)
Tomato ulcer disease. (o) Tomato anthracnose.

(a) (b) (c) (d) (e)

Figure 7: Randomly selected processed images. (a) Original. (b) Digital fill light. (c) Digital subtraction light. (d) Automatic white balance.
(e) High ISO noise reduction.
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Table 2: +e specific information of the dataset.

Diseases Original1 Expanded2 Training3 Validation4 Test5

Healthy tomato 64 320 150 105 65
Tomato malformed fruit 38 190 90 60 40
Tomato blotchy ripening 16 80 35 25 20
Tomato puffy fruit 22 110 50 35 25
Tomato dehiscent fruit 35 175 80 60 35
Tomato blossom-end rot 18 90 40 30 20
Tomato sunscald 14 70 30 25 15
Tomato virus disease 34 170 80 55 35
Tomato gray mold 28 140 65 45 30
Tomato ulcer disease 9 45 20 15 10
Tomato anthracnose 8 40 15 15 10
Total 286 1430 655 470 305
1Number of original images; 2number of processed images; 3number of images in the training set; 4number of images in the validation set; 5number of images
in the test set.

(a) (b)

Figure 8: Examples of two data annotation methods. (a) Faster R-CNN data annotation. (b) Mask R-CNN data annotation.
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In the Faster R-CNN, the mAP value of ResNet-101 is the
highest, reaching 88.53%. In addition, ResNet-101 performed
best in the detection of single tomato disease types. VGG-16
performed well in three types of tomato diseases, ResNet-50
and MobileNet performed well in five types of tomato dis-
eases, while ResNet-101 performed well in seven types of
tomato diseases. In the Mask R-CNNmodel, ResNet-101 also
performed well, achieving high detection rates on all types of
tomato diseases, with an mAP value as high as 99.64%.

As can be seen from the table, the performance of the
Faster R-CNN in tomato ulcer disease and tomato an-
thracnose is relatively poor, possibly because the training
samples of these two diseases are relatively small, resulting
from insufficient data acquired from the Internet. In the
Mask R-CNN, because the ROI Align layer corrects the
learning errors, the detection result is better than that of the
Faster R-CNN.

In addition to detection rates, the efficiency of the
models is also a crucial criterion (see Tables 4 and 5). Table 4
presents the training times in hours and Table 5 presents the
detection times in seconds, respectively, taken by the six
architectures on all the tomato images.

In the Faster R-CNN, with the deepening of convolu-
tional neural networks, the training time is getting longer
and longer. +e time of ResNet-101 is the longest, reaching
23.25 hours. MobileNet, a lightweight network that can be
ported to mobile devices, offers a much shorter training time
of just 12.52 hours.

Because the Mask R-CNN has a more complex structure
and a larger amount of computation, the training time of the
Mask R-CNN is longer than that of the Faster R-CNN for the
same deep convolutional neural networks.

As can be seen from the table above, the deeper the
convolutional neural network is, the more complex the
model structure is, and the longer the detection time is.

4.4. Qualitative Analysis

4.4.1. Samples of Faster R-CNN Detection Results.
Figure 11 intuitively shows the detection results of the Faster
R-CNN with different DCNNs for three tomato diseases.

+e original image, the image with annotated boxes, and the
detection results are presented for each disease for com-
parison purpose. As shown in the figure, the model used in
this study can effectively detect the types and locations of the
tomato diseases.

4.4.2. Samples of Mask R-CNN Detection Results.
Figure 12 shows the detection results of the Mask R-CNN
with different DCNNs for four tomato diseases. +e original
image, the image with annotated boxes, and the images of
the detection results are presented for each disease for
comparison purposes. As shown in the figure, the model
used in this study can effectively detect the tomato disease
types and accurately segment the shapes of the infected
areas.

4.4.3. Imperfect Disease Detection. Although the tomato
disease detection architectures in this study show superior
performance, they also show deficiencies in some aspects.
Examples of insufficient detection by the Faster R-CNN are
shown in Figure 13 and some others by theMask R-CNN are
shown in Figure 14. As shown in Figures 13 and 14, due to
insufficient training images or low image resolutions, the
proposed tomato disease detection architectures failed to
detect some tomato disease types or infected areas.

5. Discussion

In this study, tomato disease detection architectures based
on deep convolutional neural networks and object detection

Table 3: +e Average Precision and the mAP values of the tomato images obtained by different detection architectures.

Faster R-CNN (%) Mask R-CNN (%)
Diseases VGG-16 ResNet-50 ResNet-101 MobileNet ResNet-50 ResNet-101
Healthy tomato 90.62 90.66 90.54 90.39 100.00 100.00
Tomato malformed fruit 94.20 99.82 100.00 100.00 100.00 100.00
Tomato blotchy ripening 100.00 100.00 100.00 100.00 100.00 100.00
Tomato puffy fruit 70.59 71.30 73.77 71.70 100.00 100.00
Tomato dehiscent fruit 100.00 100.00 100.00 100.00 98.88 100.00
Tomato blossom-end rot 70.00 97.80 98.20 97.50 100.00 100.00
Tomato sunscald 94.18 89.05 98.33 100.00 100.00 100.00
Tomato virus disease 77.96 75.89 73.45 77.44 99.52 100.00
Tomato gray mold 90.43 100.00 100.00 100.00 93.33 100.00
Tomato ulcer disease 79.80 67.17 83.47 67.00 100.00 100.00
Tomato anthracnose 79.24 80.86 53.10 68.26 92.00 96.00
mAP 86.09 88.41 88.53 88.39 98.52 99.64
Bold faces are the detection results of the architecture with the best performance.

Table 4: Training time.

Object detection architecture DCNN Training time (h)

Faster R-CNN

VGG-16 20.38
ResNet-50 21.60
ResNet-101 23.25
MobileNet 12.52

Mask R-CNN ResNet-50 22.40
ResNet-101 23.82

Bold faces indicate the minimum training time of the model.
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Table 5: Detection time.

Detection time1 (s)
Faster R-CNN Mask R-CNN

Diseases VGG-16 ResNet-50 ResNet-101 MobileNet ResNet-50 ResNet-101
Healthy tomato 0.158 0.160 0.174 0.088 0.166 0.186
Tomato malformed fruit 0.164 0.177 0.192 0.103 0.189 0.200
Tomato blotchy ripening 0.234 0.242 0.268 0.143 0.261 0.279
Tomato puffy fruit 0.209 0.226 0.243 0.164 0.236 0.253
Tomato dehiscent fruit 0.165 0.173 0.193 0.109 0.184 0.204
Tomato blossom-end rot 0.238 0.240 0.264 0.143 0.250 0.275
Tomato sunscald 0.233 0.262 0.291 0.161 0.282 0.311
Tomato virus disease 0.205 0.213 0.222 0.114 0.222 0.232
Tomato gray mold 0.218 0.227 0.231 0.123 0.238 0.242
Tomato ulcer disease 0.318 0.326 0.365 0.220 0.345 0.377
Tomato anthracnose 0.411 0.490 0.547 0.212 0.585 0.667
Mean time 0.202 0.209 0.226 0.123 0.227 0.246
1+e detection time of the model on each tomato disease types; bold face indicates the minimum detection time of the model.
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Figure 11: Continued.

10 Computational Intelligence and Neuroscience



A B C

D E F

(b)

A B C

D E F

(c)

Figure 11: Detection results of the Faster R-CNN in three tomato diseases (a–c) (A) Original; (B) annotated; (C) Faster R-CNN with VGG-
16; (D) Faster R-CNN with ResNet-50; (E) Faster R-CNN with ResNet-101; (F) Faster R-CNN with MobileNet.
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Figure 12: Detection results of the Mask R-CNN. (a) Original; (b) annotated; (c) Mask R-CNN with ResNet-50; (d) Mask R-CNN with
ResNet-101.
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Figure 13: Continued.
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Figure 13: Examples of failed cases of the Faster R-CNN in three tomato diseases (a–c). (A) Original; (B) annotated; (C) Faster R-CNNwith
VGG-16; (D) Faster R-CNN with ResNet-50; (E) Faster R-CNN with ResNet-101; (F) Faster R-CNN with MobileNet.

A B C

(a)

Figure 14: Continued.

Computational Intelligence and Neuroscience 13



models are proposed. Four different neural networks were
selected and combined with two object detection models.
Experiments with data collected from the Internet show that
the proposed methods are very accurate and efficient in
detecting tomato disease types and in segmenting shapes of
infected areas. Experiment results indicate that ResNet-101
has the highest detection rate, but takes the longest time for
training and detection. MobileNet has the shortest detection
time, but is less accurate than ResNet-101. In general, dif-
ferent models can be chosen according to the actual needs.
Dataset in this study also includes a variety of complex
backgrounds, allowing the architectures to improve their
abilities to recognize complex images.

+ere are several future research directions. One di-
rection is to expand the dataset so as to obtain more accurate
results. Another direction is to find a way to solve the
problem of detection failures caused by low image resolu-
tions. One more direction is to extend this method from
tomatoes to other crops.
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