Skip to main content
. 2019 Dec 16;2019:9142753. doi: 10.1155/2019/9142753

Table 3.

The Average Precision and the mAP values of the tomato images obtained by different detection architectures.

Faster R-CNN (%) Mask R-CNN (%)
Diseases VGG-16 ResNet-50 ResNet-101 MobileNet ResNet-50 ResNet-101
Healthy tomato 90.62 90.66 90.54 90.39 100.00 100.00
Tomato malformed fruit 94.20 99.82 100.00 100.00 100.00 100.00
Tomato blotchy ripening 100.00 100.00 100.00 100.00 100.00 100.00
Tomato puffy fruit 70.59 71.30 73.77 71.70 100.00 100.00
Tomato dehiscent fruit 100.00 100.00 100.00 100.00 98.88 100.00
Tomato blossom-end rot 70.00 97.80 98.20 97.50 100.00 100.00
Tomato sunscald 94.18 89.05 98.33 100.00 100.00 100.00
Tomato virus disease 77.96 75.89 73.45 77.44 99.52 100.00
Tomato gray mold 90.43 100.00 100.00 100.00 93.33 100.00
Tomato ulcer disease 79.80 67.17 83.47 67.00 100.00 100.00
Tomato anthracnose 79.24 80.86 53.10 68.26 92.00 96.00
mAP 86.09 88.41 88.53 88.39 98.52 99.64

Bold faces are the detection results of the architecture with the best performance.