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Abstract

Objective—Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial 

effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a 

six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral 

blood mononuclear cells (PBMC).

Methods—Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 

g/day (n=16), EPA 1.8 g/day (n=16), or DHA 1.8 g/day (n=18). PBMC were subjected to gene 

expression analysis by microarray with key findings confirmed by quantitative real-time 

polymerase chain reaction (Q-PCR).

Results—Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% 

in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. 

Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene 

expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria 

and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-L-

methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element 

protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α 
subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis.
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Conclusions—Our data indicate that EPA supplementation was associated with significant 

effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 
and HIF1A, which may relate to its beneficial effect on CVD risk reduction.
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1. Introduction

Evidence supports the beneficial effects of n-3 polyunsaturated fatty acids (PUFA), 

especially eicosapentaenoic acids (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 

n-3), on inflammatory disorders and cardiovascular disease (CVD) (1, 2). Peripheral blood 

mononuclear cells (PBMC) play a central role in the development and progression of 

atherosclerotic lesions (3). EPA and DHA exert some of their anti-inflammatory effects by 

altering properties of immune cells (4). We have previously documented that very high dose 

n-3 PUFA supplementation in humans markedly reduces interleukin (IL)-1 and tumor 

necrosis factor (TNF) levels (5).

Studies using macrophages and T cells demonstrated that n-3 PUFA suppress inflammatory 

cytokines and proteins by regulating multiple transcription factors, including nuclear factor-

kappa B (NF-κB) (6) and peroxisome proliferator-activated receptors (PPARs) (7). Oh et al 

discovered that the G-protein coupled receptor 120 (GPR120) binds n-3 PUFA, resulting in 

anti-inflammatory signaling in macrophages (8). Recent studies have shown that 

incorporation of n-3 PUFA into membrane phospholipids results in changes in gene 

expression profiles (9). In addition, a whole-genome analysis demonstrated that 

supplementation with the combination of EPA and DHA regulates hundreds of inflammatory 

genes in human immune cells: Bouwens et al have shown changes in 1040 genes in PBMC 

from healthy elderly subjects supplemented with a combination of EPA and DHA (1.8 g/

day) for 26 weeks (10).

Both clinical and experimental studies have shown that EPA and DHA have different effects 

(11). Mori et al have shown that supplementation with DHA, but not EPA, significantly 

lowers blood pressure in overweight mild-hypercholesterolemic patients and the reduction is 

associated with improvements in endothelial and smooth muscle function (12). In contrast, 

Mesa et al have demonstrated that EPA supplementation significantly promotes the copper-

induced oxidation of the low-density lipoprotein (LDL) from healthy subject, whereas DHA 

does not (13). In addition, while a dose-dependent reduction in leukotriene production has 

been observed in neutrophils from healthy subjects during supplementation with DHA, but 

not EPA (14), a greater reduction in inflammatory cytokines and eicosanoids production has 

been observed with EPA, relative to DHA, in asthmatic patients' alveolar macrophage cells 

(15). Although these effects are mediated by changes in gene expression, there has been no 

systematic comparison between the individual effects of supplementation with EPA versus 

DHA on gene expression profiles in human immune cells.
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Our aim was to assess the individual effects of EPA and DHA on PBMC gene expression 

profiles as compared to olive oil in subjects with mild elevation in plasma lipoprotein-

associated phospholipase A2 (Lp-PLA2) levels prior to and following six weeks of 

supplementation with EPA and DHA. We recruited participants with mild elevation of 

plasma Lp-PLA2 levels, known as a vascular-specific inflammation marker (16), in this 

study to assess the effects of each supplementation in a clinically relevant population.

2. Methods

2.1. Study design

We conducted a randomized, double-blind, parallel intervention study in our clinic 

(registered at ClinicalTrials.gov as NCT01400490). At the enrollment visit all participants 

were randomly assigned into one of three intervention groups: olive oil 6.0 g/day (olive oil 

group), EPA 1.8 g plus olive oil 3.0 g/day (EPA group), and DHA 1.8 g/day (DHA group). 

Subjects were instructed to take two capsules three times daily for six weeks: subjects in the 

olive oil group took two capsules of olive oil (1.0 g/capsule) three times daily; subjects in 

the EPA group took one capsule containing 600 mg/capsule of EPA and one capsule of olive 

oil three times daily; subjects in the DHA group took two capsules of DHA (300 mg/

capsule) three times daily. Participants were not given any specific advice on lifestyle 

including food intake and physical exercise during this study. Throughout the study, each 

participant was expected to have consumed a total of 252 capsules. All participants were 

required to return their remaining capsules at their final visit. Compliance in all completers 

included in this analysis, calculated as the percentage of consumed capsules to expected 

capsule consumption, was over 85%. Supplementation phases lasted six weeks, and the 

participants visited our clinic before (at baseline) and at the end of supplementation (6 

weeks). Body weight, body mass index (BMI), waist circumference, systolic and diastolic 

blood pressure, and pulse rate were measured and blood collection was performed at 

baseline and 6 weeks.

2.2. Subjects

Men and women were recruited for this study using direct mailings and newspaper 

advertising and their suitability was assessed during telephone interviews. Eligible and 

consenting subjects were then invited to a screening examination after an overnight fast 

where blood was collected for a standard metabolic profile, complete blood count, and 

plasma Lp-PLA2 measurement. Inclusion criteria were: 1) age 21 to 70 years, 2) no 

significant chronic disease, 3) BMI of 20 to 35 kg/m2, 4) if women, post-menopausal (no 

menses for at least one year or surgical menopause), and 5) Lp-PLA2 concentrations > 150 

ng/mL. Exclusion criteria were: 1) being involved in competitive exercise or training, 2) 

being a current smoker, 3) using dietary supplements including fish-oil, EPA or DHA, flax 

seed oils, weight control products, or high doses of vitamin C (> 500 mg/day) or E (> 400 

units/day), 4) frequent fish consumption (> 3 meal/week of “oily fish” such as tuna or 

salmon), 5) > 2 alcohol drinks/day, 6) a history of significant cardiac, renal, hepatic, gastro-

intestinal, pulmonary, neoplastic, biliary or endocrine disorders including uncontrolled 

thyroid disease, or uncontrolled hypertension or diabetes, and 7) treatment with coumadin or 

aspirin > 325 mg/day. In addition, participants taking medications which could affect lipid 
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metabolism (statins, fibrates, niacin, resins, ezetimibe and hormonal replacement therapy) or 

body weight (medications blocking the absorption of ingested fats such as orlistat) obtained 

permission to stop their medications for a total of 12 weeks (six-week washout period and 

six-week supplementation period) by their primary care physicians. The protocol was 

approved by Schulman Associates Institutional Review Board, Cincinnati, OH. A total of 90 

men and women were enrolled in this study. All participants signed a written informed 

consent.

This randomized study conformed to all CONSORT (Consolidated Standards of Reporting 

Trials) recommendations.

2.3. Biochemical measurements

Fasting venous blood was collected at baseline and at 6 weeks. Plasma samples were 

obtained by centrifugation and immediately aliquoted and stored at −80°C until 

examination. Total cholesterol, triglyceride, LDL cholesterol and high-density lipoprotein 

(HDL) cholesterol levels were measured using automated enzymatic standardized assays as 

previously described (17). Plasma high-sensitivity C-reactive protein (hs-CRP) and insulin 

levels were measured by immunoassays as previously described (18). All of these assays 

were carried out using a high throughput Olympus AU400 automated analyzer. Plasma Lp-

PLA2 concentrations were measured using an enzyme linked immunosorbent assay obtained 

from diaDexus (South San Francisco, CA) as previously described (17). All assays had 

between and within run coefficients of variation of < 5%. Fatty acid (FA) distribution of 

plasma phospholipids was determined using capillary column gas liquid chromatography at 

Nutrasource Diagnostics (Guelph, ON, Canada) as previously described (19).

2.4. Gene expression analysis

For the isolation of PBMC, fasting venous blood was collected in Vacutainer Cell 

Preparation Tubes (Becton, Dickinson and Company, Franklin Lakes, NJ) with sodium 

citrate both at baseline and 6 weeks. PBMC were obtained by centrifugation according to the 

manufacturer's instructions and cell pellets were stored at -80°C until RNA isolation. Total 

RNA was isolated using RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer's instructions. The quality and quantity of RNA samples were determined by 

using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 

Integrity of RNA samples was confirmed by agarose gel electrophoresis and Bioanalyzer.

Microarray analysis was performed at the Yale Center for Genome Analysis, New Haven, 

CT. RNA samples from three subjects in each group, at baseline and on supplementation, 

were processed using the Human HT-12 v4 Expression BeadChip expression array 

(Illumina, San Diego, CA) for a total of 18 analyses. Expression values were calculated by 

the Illumina BeadStudio suite of programs (Illumina, San Diego, CA). Changes in gene 

expression were calculated by comparing the expression values of each sample at 6 weeks 

with those at baseline. Differences in gene expression among the three groups were 

calculated by comparing the changes in each group using limma package in Bioconductor 

(20). Pathway analysis was performed by using Ingenuity Pathway Analysis (IPA®; Qiagen, 
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Redwood City, CA; http://www.qiagen.com/ingenuity) and pathways were defined as 

significantly changed when p < 0.05.

Selected genes were analyzed by Quantitative real-time polymerase chain reaction (Q-PCR) 

in 50 subjects. First-strand cDNA was synthesized from 0.5 μg of total RNA using 

SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA) in a GeneAmp PCR System 

9700 (Applied Biosystems, Foster City, CA) according to the manufacturer's instructions. Q-

PCR analysis was performed using gene-specific primers (Supplementary Table 1). Primers 

were designed using information on the public database at the National Center for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/RefSeq/). The reactions 

were run using Power SYBR Green Master Mix (Applied Biosystems, Foster City, CA) in 

an ABI PRISM 7300 Sequence Detection System (Applied Biosystems, Foster City, CA). 

For the quantification of specific RNA levels from each sample, absolute values were 

normalized to those of the housekeeping gene glyceraldehyde-3P-dehydrogenase (GAPDH). 

The expressions of this housekeeping gene was evaluated using a statistical algorithm 

(BestKeeper) (21).

2.5 Statistical analysis

Statistical analyses were performed with the SPSS software version 22 (IBM SPSS, IBM 

Corporation, Somers, NY). Normality of distribution was tested with the Shapiro-Wilk test. 

Variables with normal distribution were expressed as mean ± SD and those with non-normal 

distribution were expressed as median and 25th to 75th percentiles. Differences between the 

values at baseline and 6 weeks within each group were tested by paired t-test. Differences 

among the three groups were tested by using two-way ANOVA with a Tukey honestly 

significant difference post-hoc test to correct for multiple testing. Statistical significance was 

accepted at p < 0.05.

3. Results

3.1. Study population

Of the 90 subjects enrolled in the olive oil, EPA and DHA phases of the study, 82 completed 

the study (29 subjects in the olive oil, 27 in the EPA, and 26 in the DHA group). Eight 

subjects were excluded from analysis in the olive oil, eight in the EPA, and four in the DHA 

group due to inadequate PBMC isolations at either baseline or 6 weeks. In addition, five 

subjects in the olive oil, three in the EPA group, and four in the DHA group were excluded 

from the analysis due to a low quantity of PBMC RNA. Thus, Q-PCR analyses were 

conducted in 50 subjects (16 subjects in the olive oil, 16 in the EPA and 18 in the DHA 

group).

3.2. Laboratory analysis

Baseline characteristics were similar among the three groups (Table 1). Plasma lipid 

concentrations and FA distributions at baseline and 6 weeks are shown in Table 2. Baseline 

values were similar among the three groups with the exception of plasma Lp-PLA2 

concentration which was significantly higher in the DHA group than in the other two 

groups.
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No significant change in plasma lipid concentrations and FA distributions was observed after 

six-week supplementation with the olive oil. In the EPA group, no change in plasma lipids 

was observed. In this group, a significant decrease in the percent mole distribution (%mol) 

of oleic acid (OA) (p=0.001) and significant increases in %mol of EPA and 

docosapentaenoic acid (DPA) (both p=0.001) were observed. In the DHA group, there was a 

significant increase in plasma total cholesterol concentration (p=0.02), associated with a 

trend toward an increase in both LDL and HDL cholesterol (p=0.082 and p=0.15, 

respectively), and a significant decrease in plasma Lp-PLA2 concentration (p=0.007). Also, 

significant increases in the %mol distribution of EPA (p=0.011), DPA (p=0.004) and DHA 

(p=0.007) were observed in this group (Table 2).

3.3. Microarray analysis

To assess differences in gene expression profiles among the three groups, a total of nine 

subjects (two men and one woman from each group) were selected taking into consideration 

quantity and quality of yielded total RNA for the requirements of microarray analysis, and 

compliance with supplementation as estimated by the change in plasma phospholipid FA 

distributions. Characteristics and, plasma metabolic profiles and FA distributions at baseline 

and 6 weeks of these selected subjects are shown in Supplementary Table 2.

The genes with > 1.25 fold-change were defined as differentially regulated during the six-

week supplementation phases. The total number of differentially regulated genes between 

baseline and 6 weeks was 25 in the olive oil, 136 in the EPA, and 14 in the DHA group. To 

identify the biological pathways and networks of differentially regulated genes, pathway 

analyses were performed. In the EPA group seven pathways were significantly affected, 

while for the DHA group 12 pathways were significantly affected (Table 3 and 4). 

Surprisingly, for the olive oil group 22 pathways were significantly affected (Supplementary 

Table 3).

Significant pathways related to the genes regulated in the EPA group were classified into the 

following: 1) cellular immune response (interferon signaling, p < 0.001, and role of pattern 

recognition receptors in recognition of bacteria and viruses, p=0.004), 2) intracellular and 

second messenger signaling (Gαs signaling, p=0.013, and cyclic-AMP-mediated signaling, 

p=0.032), and 3) metabolic pathways (Glycolysis I, p=0.017, S-adenosyl-L-methionine 

biosynthesis, p=0.019, and Rapoport-Luebering glycolytic shunt, p=0.029) (Table 3).

Significant pathways related to genes regulated in the DHA group included one pathway 

affecting immune response (IL-15 production, p=0.020), five pathways affecting metabolism 

(guanosine nucelotide degradation III, p=0.011, urate biosynthesis/inosine 5′-phosphate 

degradation, p=0.011, adenosine nucleotides degradation II, p=0.013, NAD salvage pathway 

III, p=0.016, and purine nucleotide degradation II, aerobic, p=0.016), and two pathways 

affecting nervous system signaling (semaphorin signaling in neurons, p=0.037, and ephrin A 

signaling, p=0.038) (Table 4).

There were 22 significant pathways related to genes regulated in the olive oil group. 

Interestingly the gene expression of the FBJ murine osteosarcoma viral oncogene homolog 

(FOS) was significantly up-regulated more than 2 fold in the olive oil group, and this gene 
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affected 15 of these 22 pathways. Moreover the FYN proto-oncogene, Src family tyrosine 

kinase (FYN) was up-regulated about 1.5 fold in the olive oil group, and this gene affected 

13 pathways. A third gene, the Wiskott-Aldrich syndrome (WAS) was down-regulated about 

25%, and this gene affected seven pathways (Supplementary Table 3).

3.4. Q-PCR analysis

Based on the microarray analyses, the following six genes were selected for further analysis 

by Q-PCR analysis in all subjects: 1) chemokine (C-C motif) receptor 6 (CCR6), 2) cyclic-

AMP responsive element binding protein 1 (CREB1), hypoxia inducible factor 1, α subunit 

(HIF1A), 4) high-mobility group box 1 (HMGB1), 5) interleukin 2 receptor, β (IL2RB), and 

6) interferon regulatory factor 7 (IRF7) because they affected core molecules in associated 

networks. Moreover, two additional genes were selected because of their important roles in 

the cellular inflammation response: 1) interleukin 1 receptor antagonist (IL1RN) and 2) 

signal transducer activator of transcription 3 (STAT3).

The expressions of the selected genes at baseline were similar among the three groups. 

Significant reductions in the expression of CREB1 (p=0.033) and HIF1A (p=0.009), relative 

to baseline, were observed in the EPA group, in agreement with the results of microarray 

analysis. The reduction in HIF1A expression in the EPA group was significantly greater than 

that in the other two groups. In addition, reductions in the expression of IL2RB (p=0.039) 

and STAT3 (p=0.012) were also observed in the EPA group. However, significant reductions 

in the expression of IL2RB (p=0.005) and STAT3 (p=0.002) were observed in the olive oil 

group as well. The expression of the HMGB1was significantly reduced only in the DHA 

group (p=0.015). No significant changes in the expression of CCR6, IRF7 and IL1RN were 

observed between baseline and 6 weeks in the three groups.

4. Discussion

In this study we report changes in PBMC gene expression profiles after six weeks of 

supplementation with EPA 1.8 g/day, DHA 1.8 g/day, and olive oil 6.0 g/day in subjects with 

mild Lp-PLA2 elevation. To our knowledge, this is the first study directly comparing the 

individual effects of EPA and DHA on PBMC gene expression profiles.

A number of clinical studies have shown the association between n-3 PUFA intake and 

inflammation disorders and CVD. Although observational studies support the beneficial 

effects of n-3 PUFA, (22, 23)intervention trials have yielded equivocal results especially in 

healthy subjects (24-26). Differences in study design might explain the inconsistent 

outcomes. The dose and the ratio of supplementation with EPA and DHA may be critical 

factors. For example, most intervention trials investigating the effect of n-3 PUFA on CVD 

outcomes, including the ongoing trial The Vitamin D and Omega-3 Trial, have been 

conducted with 1.0 g/day or less of combined EPA and DHA (27). An exception is the 

positive Japan EPA Lipid Intervention Trial which showed significant cardiovascular risk 

reduction using 1.8 g/day of EPA on top of statin therapy versus statin alone (28). To 

demonstrate the individual effects of EPA and DHA, sufficient amount needs to be provided 

in clinical studies (29). Rees et al have shown that the immunomodulation effect of EPA and 

DHA may be dose-dependent (30). Additionally, at least 1.35 g/day of EPA needs to be 
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provided in order to observe effects on the reduction of prostaglandin E2 production by 

PBMC in healthy subjects (30). Therefore, 1.8 g/day of both EPA and DHA supplementation 

was provided in this study.

It is thought that the favorable effects of EPA and DHA on inflammation including 

atherosclerosis are mediated, at least in part, by regulating signaling pathways and gene 

expressions in immune cells (9). Bouwens et al studied the effects of supplementation with a 

combination of high-dose (1.8 g/day) or low-dose (0.4 g/day) EPA plus DHA for 26 weeks 

on the PBMC gene expression profiles in healthy subjects (10). High-dose supplementation 

resulted in decreased expression of genes related to inflammatory and atherogenic pathways, 

such as NF-κB signaling, eicosanoid synthesis, scavenger receptor activity, adipogenesis, 

and hypoxia signaling (10). Similar to our findings, they noted a significant reduction in 

HIF1A expression both by microarray and by Q-PCR analysis especially at the high-dose 

supplementation. Our data would indicate that this latter effect is primarily due to EPA. 

Rudkowska et al showed that supplementation with a combination of EPA 1.9 g/day plus 

DHA 1.1 g/day for six weeks in 30 healthy subjects resulted in a change in the PBMC gene 

expression related to the several pathways including gene regulation by peroxisome 

proliferators via PPARα, hypoxia-inducible factor signaling and oxidative stress (31).

On the other hand, several studies have demonstrated the differential effects of EPA and 

DHA on gene expression in immune cells. For example, whereas EPA was a stronger 

activator of PPAR delta than DHA (32), DHA, but not EPA, controlled the abundance of 

sterol-regulatory element binding protein (SREBP)-1 through a 26S proteasome-dependent 

mechanism in rat hepatocytes (33). These different effects of EPA and DHA on transcription 

factors may result in different changes in gene expression in experimental models. However, 

it remains unclear whether these differences are also observed in humans.

In our study, microarray analysis indicated that there was not a single gene commonly 

regulated in both EPA and DHA groups. In addition, although several significant pathways 

regulated in each groups were classified into the same larger classification (metabolic 

pathways), all the pathways were completely different between the two groups. Whereas in 

the EPA group two of the seven pathways were classified as part of cellular immune 

response, in the DHA group two of the 11 pathways were related to both nervous cell 

signaling and interactions among immune cells. Specifically, both semaphorin and ephrin A 

signaling have been shown to promote neuronal axon development and mediate immune cell 

interactions (28) (29). These results suggest that the effects of individual supplementation 

are mediated by different pathways in PBMC. Although n-3 PUFA can control lipid 

synthesis by regulating transcription factor activation including SREBP-1 and PPARs in 

humans (34), the expression of genes targeted by these transcription factors was not changed 

in our study. It is possible that the regulation of these genes is mainly effected in 

hepatocytes. Several metabolic pathways were regulated by EPA supplementation in our 

study. One of these, s-adenosyl-L-methionine biosynthesis, can affect DNA methylation 

profiles, resulting in diverse phenotypes with the potential for prevention or progression of 

diseases (35). Q-PCR analysis revealed that several inflammatory and immunomodulatory 

genes were down-regulated in both the EPA and DHA groups. In agreement with the results 

of the microarray analysis, Q-PCR results indicated that EPA supplementation reduced the 
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expression of the CREB1 and HIF1A. CREB regulates immune responses but also promotes 

activation and proliferation of T and B cells and differentially regulates Th1, Th2, and Th17 

cell responses (36). Because chronic activation of CREB is associated with metabolic and 

inflammatory disorders, reduced activation of CREB can prevent the development and 

progression of these disorders in humans (37). In addition, HIF1A is known as a central 

regulator of the cellular hypoxia caused by infection and inflammation diseases and is up-

regulated through NF-κB pathway (38). Down-regulation of HIF1A with n-3 PUFA 

supplementation was reported in PBMC in healthy subjects by Bouwens (10) and also 

reported in subcutaneous adipose tissue in severely obese patients by Itariu (39). Reduced 

HIF1A expression is considered valuable in the treatment of chronic inflammatory disorders, 

such as rheumatoid arthritis (40). Reduced STAT3 expression was observed in the three 

groups. Suppression of STAT3 pathways can inhibit IL-6-mediated inflammation and tumor 

development (41). Thus, the effects of EPA on inflammation are mediated by the 

suppression of several inflammatory transcription factors and hypoxia induced factors and 

there is a tendency toward greater anti-inflammatory effects of EPA relative to DHA in 

human immune cells. The reductions of inflammatory genes expression by supplementation 

with EPA may result in CVD risk reduction. On the other hand, DHA supplementation for 6 

weeks significantly reduced HMGB1 expression. HMGB1 nuclear protein released by 

monocytes, macrophages and necrotic cells behaves as a trigger of inflammation and attracts 

inflammatory cells (42). Wei et al reported that the protective effects of n-3 PUFA on the 

chronic rejection is mediated by the suppression of the HMGB1 pathway in rat allograft 

vessels (43). It should be noted that both EPA and DHA have also been shown to reduce cell 

inflammation by causing the direct increased production of resolvins (44). However, in our 

study we did not measure resolvins or their precursors.

Our study recruited subjects with increased plasma Lp-PLA2 levels and thus our results may 

not apply to other individuals (45). Another potential limitation of our study is that the EPA 

supplementation also contained 3.0 g of olive oil for capsule number adjustment. Therefore 

some of the results observed in this group may have been due to the combination of EPA and 

olive oil, rather than EPA alone. However, there were significant differences in gene 

expression between the EPA group and the olive oil group. In addition, there may have been 

sample selection bias in the microarray analysis, since these subjects were selected from 

each group based on plasma changes in EPA and DHA. Furthermore, while the FA 

composition of plasma phospholipids reflects compliance to treatment, it may not represent 

the FA profile of PBMC. Another limitation of our study is that changes in gene expression 

do not always translate in similar changes in protein abundance, however gene expression is 

a significant contributor to protein expression (46).

In conclusion, in this study we investigated the differences in gene expression and affected 

pathways in subjects with low-grade inflammation receiving EPA or DHA. Our results 

indicate that EPA and DHA differently regulate some inflammatory pathways and genes, 

and can prevent the development and progression of chronic inflammatory disorders 

including CVD by directly or indirectly affecting different gene expression profiles in 

human immune cells. Future experimental studies are needed to demonstrate their individual 

biological pathways. In addition, further intervention trials are also needed to elucidate their 

individual effects on chronic inflammatory disorders. These results will contribute to our 
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understanding of the synergistic, additive and/or antagonistic effects of n-3 PUFA on 

inflammation and hopefully will help to elucidate how n-3 PUFA affect CVD risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The effects of EPA and DHA were mediated by different pathways in human 

PBMC.

• EPA affected cellular immune responses including the interferon signaling 

pathway.

• HIF1A and CREB1 gene expression were significantly reduced by EPA, but 

not DHA.
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Figure 1. 
Mean (± SEM) relative changes in the expression of specific genes determined by 

quantitative real-time polymerase chain reaction (Q-PCR) in the three groups. Differences 

within each group were determined by paired t test (**p <0.01, *p <0.05). Brackets indicate 

differences between two groups as determined with a 2-factor ANOVA with Tukey honestly 

significant difference correction. CCR6, chemokine (C-C motif) receptor 6; CREB1, cAMP 

responsive element binding protein 1; HIF1A, hypoxia-inducible factor 1-alpha; HMGB1, 

high mobility group box 1; IL1RN, interleukin 1 receptor antagonist; IL2RB, interleukin 2 

receptor, beta; IRF7, interferon regulatory factor 7; STAT3, signal transducer and activator of 

transcription.
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Table 1

Baseline characteristics of subjects in the three groups whose peripheral blood mononuclear cells (PBMC) 

underwent quantitative real-time polymerase chain reaction (Q-PCR).

Olive Oil EPA DHA

Subject, n 16 16 18

Race (White / Black / Hispanic), n 9 (56%) / 7 (43%) / 0 (0%) 9 (56%) / 6 (38%) / 1 (6%) 11 (61%) / 7 (39%) / 0 (0%)

Female, n 5 (31%) 2 (13%) 5 (28%)

Age, years 49.7 ± 11.0 53.6 ± 8.6 51.6 ± 9.7

Weight, kg 84.0 ± 14.6 86.1 ± 13.2 86.0 ± 18.7

Body mass index (BMI), kg/m2 28.1 ± 4.1 27.5 ± 3.7 27.8 ± 4.4

Waist, cm 94.6 ± 15.2 95.1 ± 12.2 95.4 ± 11.0

Systolic blood pressure, mmHg 126.1 ± 9.6 130.1 ± 14.9 126.1 ± 16.7

Diastolic blood pressure, mmHg 81.5 ± 8.0 82.9 ± 11.7 80.8 ± 11.7

Pulse rate, /min 74.9 ± 10.1 70.3 ± 9.7 80.7 ± 13.8

Data shown as mean ± standard deviation. EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid. None of the baseline characteristics differed 
significantly among the three groups (by Pearson chi-squared test or ANOVA).
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Table 3

Significant regulated pathways and genes in the EPA group whose peripheral blood mononuclear cells 

(PBMC) underwent microarray analysis at both time points by the pathway analysis software program, 

Ingenuity Pathway Analysis.
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Table 4

Significant regulated pathways and genes in the DHA group whose peripheral blood mononuclear cells 

(PBMC) underwent microarray analysis at both time points by the pathway analysis software program, 

Ingenuity Pathway Analysis.
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