Skip to main content
. 2020 Jan 18;13(1):149–162. doi: 10.18240/ijo.2020.01.22

Table 2. A summary of studies depicting automated diagnosis of glaucoma using OCT.

Paper Classifier Number Training and testing Results OCT Glaucoma diagnosis Database
Burgansky-Eliash et al 2005[54] Multiple-take SVM 89, 47 G, 42 N Six fold validation, leave one out AUROC 0.981, no CI Stratus OCT Anderson Patella Criteria Recruitment of Subjects, Pennsylvania
Bowd et al 2008[55] RVM 225, 156 G, 69 N Tenfold cross validation AUROC 0.809, no CI Stratus OCT Anderson Patella Criteria Observational Cross Sectional Study, California
Bizios et al 2010[62] SVM 152, 62 G, 90 N Tenfold cross validation AUROC 0.977, CI 0.959-0.999 Stratus OCT Anderson Patella Criteria Observational Cross Sectional Study, Citizens of Malmo Sweden
Barella et al 2013[60] RAN 103, 57 G, 46 N Tenfold cross validation resampling AUROC 0.877, CI 0.810-0.944 Cirrus SD OCT Anderson Patella Criteria Glaucoma Service UNICAMP, Brazil, prospective, observational cross sectional
Silva et al 2013[61] RAN 110, 62 G, 48 N Tenfold cross validation AUROC 0.807, CI 0.721-0.876 Cirrus HD OCT Anderson Patella Criteria Glaucoma Service UNICAMP, Brazil, observational cross sectional
Xu et al 2013[56] Boosted logistic regression 192, 148 G, 44N Normative database, Tenfold cross validation AUROC 0.903, no CI Cirrus HD OCT Anderson Patella Criteria PITT trial, Pennsylvania
Muhammad et al 2017[57] CNN 102, 57 G, 45 N Pretrained, leave one out cross validation AUROC 0.945, CI 0.955-0.947 Topcon OCT Anderson Patella Criteria From previous study for OCT and early glaucoma diagnosis, New York
Asaoka et al 2019[59] SVM 178, 94 G, 84 N Pre training, glaucoma OCT database AUROC 0.937, CI 0.906-0.968 RS 3000 Anderson Patella Criteria Japanese Archives of Multicentral Images of Glaucomatous OCT database, Japan
Christopher et al 2018[58] PCA 235, 179 G, 56 N Leave one out approach AUROC 0.95, CI 0.92-0.98 Spectralis OCT Ill defined DIGS dataset, California
An et al 2019[50] CNN 357, 208 G, 149 N Tenfold cross validation AUROC 0.963, Mean±SD 0.029 Topcon OCT Anderson Patella Criteria Observational Cross Sectional Study, Japan

G: Glaucoma; N: Normal; AUROC: Area under the receiver operating characteristics curve; CI: Confidence interval; CNN: Convolutional neural networks; ANN: Artificial neural network; SVM: Support vector machine; LS-SVM: Least squares support vectors machine; ADAGES: African descent and glaucoma evaluation study; DIGS: Diagnostic innovations in glaucoma study; PCA: Principal component analysis; RVM: Relevance vector machine.