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Abstract

Understanding neurocognitive computations will require not just localizing cognitive information 

distributed throughout the brain but also determining how that information got there. We review 

recent advances in linking empirical and simulated brain network organization with cognitive 

information processing. Building on these advances, we offer a new framework for understanding 

the role of connectivity in cognition – network coding (encoding/decoding) models. These models 

utilize connectivity to specify the transfer of information via neural activity flow processes, 

successfully predicting the formation of cognitive representations in empirical neural data. The 

success of these models supports the possibility that localized neural functions mechanistically 

emerge (are computed) from distributed activity flow processes that are specified primarily by 

connectivity patterns.

Keywords

connectivity; machine learning; representations; neural encoding/decoding; connectome; neural 
networks; artificial intelligence

Placing Brain Network Organization Within A Computational Framework

A central goal of neuroscience is to understand how neural entities (such as brain regions) 

interact to compute cognitive functions. Historically, cognitive neuroscientists have tried to 

understand neural systems by mapping cognitive processes to neural entities. However, a 

comprehensive functional map of neural entities would still be insufficient to explain how 
cognition emerges through the collective interaction among these components. What could 

facilitate such mechanistic inferences? To answer this question, cognitive neuroscientists 

have begun to incorporate descriptions of brain network architecture (i.e. how neural entities 

are connected to each other) with these functional maps. Indeed, recent theoretical work 

suggests that mechanistic understanding of a brain system depends on characterizing the 

causal relationships between the system’s components [1–3]. This is analogous to how we 

understand other mechanical systems; for example, understanding how a car moves upon 
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pressing its accelerator requires knowledge of the causal relationships between the system’s 

components (e.g., the pedal, the transmission, the engine, and the wheels). Similarly, 

mapping brain network connectivity allows for a mechanistic understanding by revealing the 

causal relations among neural components.

Facilitating this effort, recent advances in network neuroscience (see Glossary) are 

providing ever more detailed descriptions of brain network architecture [4]. Yet these 

descriptions have so far provided only limited insights into the neural computations 

underlying cognitive functions. Simultaneously, connectionist artificial neural network 

research has revealed the theoretical importance of network connectivity in computing 

cognitive functions (Box 1). Yet it remains unclear whether these theoretical insights 

emerging primarily from simulations apply to empirical neural computations. Thus, 

connectionism has provided an abundance of theoretical insights with limited translation to 

empirical evidence, while empirical neuroscience now has an abundance of empirical 

observations with limited theoretical insights. We propose that combining connectionist 

theory with empirical brain connectivity data will advance understanding of the 

computational and cognitive relevance of brain network organization.

We begin by discussing efforts to model neural computations using empirical brain 

connectivity. We then draw on conceptual insights from the connectionist literature – 

including from recent research involving “deep” neural network architectures – to help 

identify the computational and cognitive relevance of the distributed neural processes 

reported in recent empirical studies. Here we focus on a subset of studies that have 

successfully linked distributed brain connectivity with neurocognitive computations. This 

research is framed in a new data analytic perspective – network coding models – that 

suggests a way toward unifying empirical brain network analysis with a rich theoretical 

connectionist foundation.

From Mapping Localized Functions to Building Network Coding Models

Network coding models facilitate understanding of the function of localized neural entities 

(such as brain regions) by clarifying how they send and receive information: connectivity. 

This also has the advantage of clarifying the role of each brain connection in computing 

cognitive functions. In contrast to network coding models, cognitive neuroscience has 

primarily mapped tasks and stimuli to activity in neurons and neural populations – function-
structure mappings (Figure 1A, Key Figure) [5]. Some examples of this general strategy 

include spike rate changes in single- or multi-unit recordings [6], general linear modeling 

with functional MRI (fMRI) [7], and event-related potentials with electroencephalography 

[8]. This strategy has been tremendously useful for characterizing the functions of spatially 

localized neural populations [9].

Encoding and Decoding: Predictive Approaches for Mapping Localized Functions

More recent methods have used a predictive framework to allow for more complex function-

structure mappings. By predicting independent data, these approaches avoid overestimation 

of effects from increased model complexity (e.g., overfitting to noise), while providing more 

robust function-structure mappings [10,11]. It is commonly underappreciated how 
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problematic overfitting is in standard data analysis approaches (e.g., general linear models or 

event-related potentials) that do not test for generalization in independent data using cross-

validation [10,11]. Among these predictive approaches, an encoding model uses the task/

stimulus condition to predict neural activity [12–14]. In contrast, a decoding model supports 

the opposite inference, using activity in a neural population to predict the task/stimulus 

condition [12–14]. These predictive models facilitate interpretation of neural activity in 

terms of task-related information content, which is an important step towards understanding 

the brain as an information processing system [15,16]. Notably, we have conceptualized 

network coding models within the framework of encoding and decoding models, since they 

inherit many of the benefits of encoding and decoding models while incorporating 

connectivity as a mechanistic constraint (as illustrated in Figure 1).

The Role of Connectivity in Functional Localization

Despite the utility of these approaches, a comprehensive function-structure mapping would 

not provide insight into how local functionality is specified mechanistically. As an example 

of mechanistic understanding, consider work in visual neuroscience suggesting that 

receptive field properties in V1 can be explained by connectivity patterns with the lateral 

geniculate nucleus [17]. More recent work has extended this insight to suggest that localized 

functionality in visual cortex might result from intrinsic connectivity architecture [18,19], 

with one study indicating that face and word selectivity in visual areas emerge from 

connectivity and specific computational processes [20].

Thus, one possibility to gain mechanistic insight is to map relationships between neural 

entities – connectivity mapping – based on the well-supported hypothesis that cognitive/

behavioral functionality emerges due to neural interactions [21–24] (Figure 1B). 

Conceptually, this goal is similar to constructing a causal map among the functional 

components of a car (e.g., pedal -> engine -> transmission -> wheels). Various approaches to 

estimating connectivity could potentially be useful here, such as resting-state functional 

connectivity [25–27], task-state functional connectivity [28–34], or structural connectivity 

[35,36]. However, connectivity mapping can only facilitate mechanistic understanding to the 

extent that it can provide insight into the causal relations among neural entities [1,3]. 

Nonetheless, progress can likely be made even with limited causal inferences (e.g., 

structural/anatomical connectivity indicating possible rather than actual causal influence) by 

constraining the likelihood of possible causal models [1]. However, similar to the limitations 

of function-structure mappings, a complete connectivity map of neural populations (i.e., a 

connectome) would still not explain the emergence of any cognitive/behavioral functionality 

in a neural population [3,37]. Critically, unlike function-structure mappings, a connectivity 

mapping has no reference to cognitive/behavioral functionality. Without grounding in 

cognitive/behavioral functionality, a connectivity mapping merely describes potential routes 

of signaling among localized neural populations with no reference to the relevant cognitive/

behavioral information content.

Therefore, we propose the importance of combining function-structure mapping and 

connectivity mapping to understand how function emerges from network connectivity in the 

form of network coding models (Figure 1C). The use of network coding models will 
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facilitate a shift from purely functional models towards mechanistic models of brain function 

[15]. In the following section, we provide theoretical and empirical support for brain 

network organization as the basis for cognitive computations, highlighting converging ideas 

from network neuroscience and connectionist theory. We review instances of empirical 

studies that have bridged this gap, demonstrating how connectionist principles can be 

evaluated in models estimated from empirical neural data. We will conclude with a detailed 

description of network coding models (foreshadowed in Figure 1C) as a particularly useful 

approach to characterizing the role of brain connectivity patterns in cognitive computations. 

Ultimately, we expect these emerging areas of research to unify the major theoretical 

perspectives and methodological approaches in neuroscience: localized functions and 

information (reflected in task-evoked neural activity), and network neuroscience.

Brain Network Organization Shapes Cognitive Computations

Connectionist Architectures and Cognitive Computations

Decades of neuroscience have focused on function-structure mapping. Why might 

incorporating brain network connectivity (and, by extension, network coding models) 

address this strategy’s limitations? Evidence from multiple sources suggests connectivity 

can provide a mechanistic explanation of how function emerges in neural networks (Box 1). 

First, decades of “connectionist” work with artificial neural network models have 

demonstrated the plausibility of distributed connectivity-based processes driving various 

complex cognitive functions [38–41]. Second, the standard model of neuroscience, as 

proposed by Ramón y Cajal [42] and solidified by Hodgkin and Huxley [43] and others [17], 

provides a prominent role for connectivity among discrete neural units in determining 

localized functionality. Third, there is increasing empirical evidence that the fundamental 

unit of functionality in the brain is not single neurons but rather populations of neurons [44–

46].

In particular, neural network models have primarily utilized inter-unit connectivity to define 

the architecture for cognitive computations [47–49] (Figure 2A). This includes recently 

developed deep neural networks that improve model performance by including additional 

neural units with structured connectivity as “hidden” layers between input and output 

[47,49,50]. Thus, decades of modeling work demonstrates that connectivity architectures can 

support dozens (or hundreds) of complex cognitive processes, with more recent deep 

learning work indicating that additional performance gains are possible through refinement 

of connectivity architecture.

These considerations support the conclusion that the brain’s network organization is a major 

contributor to the computational architecture underlying its functionality, leading to a more 

focused question: how much function (in terms of both neural activity variance and 

cognitive/behavioral variance) can connectivity patterns explain? This is an important 

question since there are various alternatives to distributed connectivity in determining the 

functionality of single neurons and neural populations. For instance, relevant local neural 

population properties include population firing thresholds [43,55], neuron types [56,57], 

excitatory-inhibitory balance [58,59], local glial cell properties [60], and local recurrent 

connectivity [61,62]. Also highly relevant are neurotransmitter types (including large-scale 
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neuromodulatory effects) [63,64] as well as systemic delivery of neuromodulators (e.g., 

hormones) [65].

Testing Connectionist Principles in Empirical Data

One way to evaluate the relative contribution of local versus distributed factors in 

determining the functionality of neural populations is to test the plausibility of each in 

computational models. We recently built on the fundamental algorithm underlying most 

computational simulations of large-scale neural processing – activity flow (Figure 2A) – to 

develop a procedure for testing local vs. distributed contributions to functionality [53,54,66] 

(Figure 2B). Activity flow is the movement of neural activity (e.g., spike rates or fMRI 

signal amplitudes in biological contexts) between neural entities. Quantitatively, the activity 

flow approach involves simulating a single neural network computation (e.g., a forward 

iteration in a feedforward neural network): ah = f(ΣiϵIaiwhi), where a unit ah’s activity is a 

linear combination of all other units activity (ΣiϵIai) weighted by their connectivity (whi) to 

ah before passing through a transfer function f, such as a sigmoid. Within the connectionism 

framework, this formalization is a combination of the propagation and activation rules [51]. 

Other names given to more specific instantiations of this algorithm (e.g., with a particular 

form of nonlinearity) include the McCulloch-Pitts neuron [55], the perceptron [67], the 

divisive normalization model of neural activity [68], adaptive linear element [69], and 

spreading activation [70]. Critically, this algorithm was adapted for use with empirical data 

(e.g., fMRI activity and functional connectivity estimates) to parameterize empirically-

derived models that make quantitative predictions of the spread of estimated activity over 

brain network connections (Figure 2B).

In neural network simulations we found that activity flow mapping was only effective in 

network architectures with relatively large effects of distributed (relative to recurrent/local) 

connectivity (Figure 2C). This is consistent with previous findings, where large effects of 

inter-regional synaptic coupling (relative to local coupling) were important for predicting 

functional from structural connectivity [71]. Thus, when we applied this approach 

successfully in empirical fMRI data across a variety of diverse tasks (see Figure 2D for an 

example) we were able to conclude that distributed connectivity plays a substantial role in 

determining localized functionality [76]. This is highly compatible with the notion that each 

localized population has a “connectivity fingerprint” that largely determines its functionality 

[72,73]. These results are also in line with the observation that large-scale propagation of 

neural activity in animal models tends to conform to large-scale anatomical connectivity 

patterns [74].

Other studies have further demonstrated the role of brain connectivity in mediating 

distributed neural activity. One study found that decodable cognitive information transfer 

between pairs of brain regions can be mediated via activity flow processes [54]. This 

illustrated that information in a source brain region can be sent (encoded) through network 

connectivity to be received (decoded) by a target brain region (Figure 2E). In another study, 

we found that the task activations of healthy older adults can be transformed into 

dysfunctional task activations of unhealthy older adults via the latter’s connectivity patterns 

[66]. This was accomplished by estimating activity flow through disrupted intrinsic 
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functional networks of subjects at increased risk for developing Alzheimer’s disease. This 

suggests that changes in brain network organization underlie “unhealthy” cognitive 

computations [66].

Using Connectionist Models to Understand Empirical Data

A general principle of connectionist theory is that the ability of a neural network model to 

perform an experimental task is dependent upon its connectivity patterns [46]. This suggests 

an alternative approach to study the importance of connectivity in producing cognitive 

computations: training an artificial neural network model to perform an experimental 

cognitive task. Despite the connectivity patterns of these models being specified more by 

task training than biological constraints, many of these models are able to accurately predict 

empirical neural responses [40,41,46,75]. Moreover, both biological and artificial systems 

can be characterized by the same computational mechanism: activity flow processes (Figure 

2A) [52]. This again supports the conclusion that connectivity patterns – even those derived 

primarily from task training constraints – are central to neural computations underlying 

cognitive processing.

Despite these promising results, much work remains to determine the role of the brain’s 

network architecture in influencing cognitive functionality. For instance, the particular 

cognitive tasks used are only a small sample of the wide array of tasks humans are capable 

of [76,77]. Thus, much work remains to verify the role of connectivity patterns in 

determining the computations across diverse tasks and stimuli. Notably, understanding how 

many different tasks can be encoded through distributed network processes will likely 

facilitate the design of generalized models of cognition that can adaptively perform novel 

tasks [13,76,77]. Additionally, it will be important to assess how activity flow computations 

are altered across different levels of functional organization, from finer-grained activity and 

connectivity patterns to large-scale functional brain regions and networks. Finally, it will be 

important to determine the role of features other than connectivity – such as local activation 

functions (incorporating nonlinearities, such as compressive summation in visual cortex) 

[78,79] and operating timescales/dynamics [71,80] – in specifying the neural computations 

that facilitate cognitive processes.

Additional Approaches for Mapping Cognitive Function with Connectivity

Given the strong evidence that connectivity is central to neural computation, any methods 

that link cognitive function with connectivity are likely to provide useful theoretical insight. 

In this section we focus on efforts that characterize information in distributed networks, as 

well as efforts that quantify how cognitive information representations quantitatively change 

between brain areas. In the subsequent section we will focus on network coding models, 

which provide a mechanistic characterization of information processing, due to the 

incorporation of connectivity estimates as constraints. For instance, there have been 

significant advances in characterizing how the synchronization of neural time series during 

tasks – task-state functional connectivity – relates to ongoing cognitive processes. While 

links between resting-state functional connectivity and cognitive ability (estimated via 

individual difference correlations) have been widely reported [21,22,81–83], changes to the 
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underlying functional network organization from resting state to task state can shed light on 

how those network changes contribute to task-related cognitive processes [30,34].

Recent work has shown that the functional network organization during resting and task 

states are highly similar [29,31], with the functional network organization at rest accounting 

for up to 80% of the variance in whole-brain network organization during tasks. However, 

studies have reported systematic task-related changes in functional network organization that 

reflect ongoing cognitive processes [28,33,84]. Moreover, transient changes in task-state 

functional connectivity have been shown to predict task performance [84]. Thus, measures 

of task-state functional connectivity can provide insight into which brain region interactions 

are involved in a cognitive process.

Despite the insights offered by standard task-state functional connectivity analyses, 

correlation-based measures of the BOLD signal between pairs of regions limit the 

identification of what kind of information is transmitted between brain regions and how this 

information might be transmitted. Several recent approaches have gone beyond standard 

functional connectivity measures, providing multivariate measures of temporal and spatial 

dependence between brain areas [85]. For example, one study measured the time-varying 

information content (i.e., decodability) during task states, and correlated the informational 

time series with other brain regions [86]. This technique goes beyond asking whether two 

brain regions are synchronized and addresses whether pairs of regions contain task-related 

information at the same time.

Other approaches estimate the neural transformation of cognitive representations between 

brain regions, clarifying the mathematical relationship between distinct units. One approach 

maps spatial activation patterns between brain areas using a nonlinear transformation, 

capturing the optimal or “normative” computational transformation required to project one 

brain region’s information into another brain region’s geometry [87]. Another similar 

approach estimated the optimal linear transformation required to project activation patterns 

in early visual cortex to regions further along the ventral visual stream, such as the fusiform 

face complex [88]. By identifying a simple linear transformation, the authors were able to 

investigate the computational properties of the linear transformation matrix, such as whether 

the mapping projected to a lower dimensional space (e.g., information compression) as the 

information was mapped from early visual areas to the fusiform face complex. Thus, by 

characterizing the representational mappings between brain regions during cognitive tasks, 

these studies go beyond what standard task-state functional connectivity approaches offer to 

characterize inter-unit computational relationships. However, such models fail to constrain 

their predictions with separate estimates of brain connectivity; a key aspect of network 

coding models.

Network Coding Models: Computing Cognitive Information in Neural 

Networks

We and others have made the case that a particularly powerful framework for characterizing 

the functionality of brain regions is to use encoding and decoding models [12–14]. However, 

most uses of encoding and decoding models are designed to characterize information of 
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interest to the experimenter, and are inconsistent with how neural entities likely encode and 

decode task information biophysically [89,90]. An example of this are function-structure 

mappings that map high-level, human annotated information (such as semantic information) 

onto brain activity [91]. Though these data-driven functional models can be useful, neural 

entities likely encode and decode complex task features through network connectivity, rather 

than the direct task stimulus-to-neural response associations composing traditional encoding 

and decoding models (Figure 3A). The absence of mechanistic constraints (such as network 

connectivity) in these models limit the causal relevance of experimenter-extracted neural 

representations [89,90].

A potential solution to this problem is to incorporate network connectivity estimates in 

conjunction with traditional encoding and decoding models – a network coding model 

(Figures 1C, 3B, and 3C). Figure 3 formalizes the distinction between standard encoding/

decoding models and network coding models. The latter approach would add mechanistic 

constraints – brain network connectivity – to encoding and decoding models. Constraining 

models via connectivity, as performed in activity flow mapping (Figure 2), enables a 

stronger mechanistic interpretation of how neural entities receive (encode) and send 

(decode) information within the brain. Additionally, this approach explicitly implements 

activity flow processes in empirical data (Figure 2A). This increases the biological relevance 

of these models by simulating the physical process by which neural signals are relayed 

through network connectivity [53,54,66]. Ultimately, this framework strengthens causal 

inferences made about the transmission of task information within the brain, beyond 

traditional descriptive statistics [3,54].

Network coding models provide a biologically plausible link between encoding/decoding 

models and connectionist theory when studying the propagation of activity during cognitive 

tasks. Several recent methods have applied this general framework. The first is to 

incorporate estimates of functional connectivity directly with traditional, experimenter-
based encoding and decoding models (Figure 3B) [54]. This approach tests whether 

decodable information in one brain area can be re-encoded through connectivity patterns and 

decoded in a downstream target brain area, providing a biophysically plausible model of 

information transfer. We recently demonstrated that task information in a set of brain regions 

could be used to predict the same task features in downstream regions through activity flow 

processes using functional connectivity estimated using resting-state fMRI (Figure 2E) [54]. 

These findings illustrate that task information in a brain area not only can be encoded/

decoded by the experimenter, but is also used by other brain areas through distributed 

network connectivity.

The second approach uses structured connectionist models (neural network models with 

architectural constraints) to study the emergence of localized functionality from connectivity 

(Figure 3C). Recent technological advances in the training of structured connectionist 

models, such as biologically-inspired deep neural networks and recurrent neural networks, 
have enabled the study of the encoding and decoding of cognitive information via activity 

flow through optimized connectivity architectures. For example, a recent study showed that 

a recurrent neural network was able to represent an array of different inputs, such as 

different task states and stimuli (encoding), and map those inputs to different motor outputs 
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(decoding) for accurate task performance [41]. Importantly, the task features/stimuli that this 

neural network encoded (its inputs) were qualitatively different from the features that it 

decoded (motor outputs), offering insight into how information might be transformed across 

neural entities via network connectivity [49]. Thus, while traditional experimenter-based 

encoding and decoding models typically address what a neural entity might be encoding and 

decoding, network coding models can also address how that information might be computed 

and/or subsequently processed.

Although unconstrained/unstructured neural network models are universal function 

approximators [92], employing biological priors in neural network models can aid in 

producing mechanistic models of neural computations (Figure 3C) [93]. Such constraints 

(model assumptions) are essential to discovering the model features that are involved in the 

neural computations underlying cognitive functions. For instance, connectivity architecture 

and task performance constraints were implemented to demonstrate how images can be 

encoded and decoded to identify objects in neural network models in both human [50] 

(Figure 4) and non-human primates [47,48]. These types of models map visual images onto 

specific object codes via a nonlinear computation mediated by connectivity (Figure 4A). 

While any neural network model can be theoretically trained to accurately perform this 

computation, Wen and colleagues demonstrated that when adding biological constraints into 

this neural network (e.g., number of layers and number of units per layer to match those of 

the ventral visual stream) the network exhibited similar neuronal responses to empirical 

fMRI data obtained in humans (Figure 4B) [50]. Moreover, they identified a face-selective 

unit in their model and showed that its activity was highly correlated with the fusiform face 

area in empirical fMRI data when dynamic naturalistic stimuli was shown to both human 

and model (Figure 4C). This suggests that like the brain, localized functionality can emerge 

in neural network models even when primarily optimized for task performance. Critically, 

incorporating realistic biological constraints can improve the fidelity with which artificial 

neural networks mimic the brain in representing cognitive information.

Network coding models can therefore provide directly testable hypotheses in empirical data. 

For example, if a neural network model contains enough biological constraints, a mapping 

between the network model and empirical neural data can be made (Figure 3C). In a recent 

study, a biologically-constrained artificial neural network of the ventral visual stream 

provided insight into how to control and activate targeted neural populations in area V4 [75]. 

By dissecting the receptive fields of specific units in their biologically-constrained artificial 

neural network model, the authors generated novel visual stimuli that could theoretically 

target a subset of biological units in the primate V4. Indeed, the authors showed that these 

stimuli could activate and control corresponding neural populations empirically in the 

primate brain, uncovering the receptive fields (and localized function) of those biological 

units through model analysis. This approach provides a powerful framework to test how 

localized functionality emerges from network organization in both artificial and biophysical 

neural networks. We suggest that including additional biological constraints, such as 

empirically-derived connectivity estimates, would likely lend additional mechanistic insight 

into how neural information processing is carried out in the brain [15].
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Concluding Remarks

The recent proliferation of large neural data sets with rich task features has created a wealth 

of opportunities in functional brain mapping. However, data-driven approaches to mapping 

task features to neural responses largely disregard the biological mechanisms of neural 

information processing: distributed cognitive processing through brain network connectivity. 

Since the early days of connectionism, the functionality of neural entities has long been 

hypothesized to be embedded in its patterns of network connectivity [51,72,73]. Here we 

propose the incorporation of brain network connectivity as a biological constraint underlying 

the emergence of localized functionality and distributed cognitive processing.

Though mounting evidence suggests that connectivity undoubtedly plays a role in cognition, 

the precise contribution of distributed versus local processing remains an open question (see 

Outstanding Questions). Several advances are needed to answer this question. First, it will 

be important to advance current connectivity estimates, given that current methods may only 

indicate associational (and not causal) relations [3,94]. Second, it will be important to 

integrate additional biological properties that shape local processing properties (such as 

nonlinear transfer functions) and incorporate them into network coding models [20]. Lastly, 

it will be important to evaluate how these principles might generalize across levels of 

organization and spatial scales using the wide variety of data types available to 

neuroscientists. Such insight can provide more mechanistic insight into how local 

functionality emerges from the interplay between distributed (e.g., connectivity) and local 

(e.g., nonlinear) processes. Taken together, we can begin to reconstruct how the collective 

interaction of functionally-specific localized processes work together to compute diverse 

cognitive functions.
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Glossary

Activity flow
A fundamental computation (see Figure 2A) describing the movement of activity between 

neural units as a function of their connectivity (e.g., propagating spikes over axons in the 

brain). This is equivalent to the activation and propagation rules used in connectionist 

research

Connectionist/Connectionism
A subfield within cognitive science that focuses on implementing cognitive and mental 

phenomena computationally through artificial neural networks

Connectivity mapping
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The quantification of the relationship between two or more neural entities (e.g., brain 

regions) using either statistical dependencies of the neural time series (functional 

connectivity) or estimates of structural/anatomical pathways (structural connectivity)

Connectome
A complete connectivity map of all units in a neural system

Constraint
A limitation placed on a model in an optimization context. We focus primarily on empirical 

constraints, especially biological constraints such as brain network organization. We also 

focus on task performance constraints, which are typically emphasized in connectionist 

modeling

Decoding model
A statistical model that predicts a task stimulus or condition as a function of a set of neural 

responses

Deep neural network models
Neural network models with more than one hidden layer, which have been shown to boost 

task performance in many cases relative to traditional neural network models

Encoding model
A statistical model that predicts a neural response as a function of a task stimulus or 

condition

Experimenter-based encoding/decoding models
In contrast to network coding models, encoding/decoding models that focus on how the 

experimenter encodes/decodes information from a neural entity, rather than how other neural 

entities in the brain encode/decode that information

Function-structure mapping
The association between a particular neural entity and its functionality, such as what task 

stimuli a neural entity activates or responds to

Network coding models
Models of brain function that simulate encoding and decoding processes through network 

connectivity (typically via the activity flow algorithm) to predict empirical brain activity

Network neuroscience
A subfield of neuroscience concerned with understanding the network principles of neural 

phenomena by exploiting tools from network science

Neural network models
Computational models consisting of a network of interconnected units that are optimized to 

match biological features (biological constraints) and task performance (normative task 

performance constraints) to varying extents

Recurrent neural network model
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Neural network models that feedforward through time, rather than through different spatial 

layers. Recurrent connections indicate directed connections to other units within the network 

that propagate activity through time

Structured connectionist models
Neural network models with built-in architectures (i.e., innate structure), such as many deep 

neural networks with a fixed number of layers
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Box 1.

The evolution of connectionism in relation to neuroscience

Despite the biological and neural origins of connectionism [38,55,67,69], there are stark 

differences in current connectionist (deep learning) and neuroscientific research. One of 

the most influential advances in connectionism was the discovery of backpropagation, an 

algorithm that enabled the training of multilayer artificial neural networks. Pioneered by 

Paul Werbos in 1974 and popularized by other connectionist researchers [51,69,95], 

backpropagation provided researchers with the tools to train networks to perform 

increasingly complex tasks. This discovery strongly influenced the direction of 

connectionist research away from its neurobiological roots and towards the development 

of learning algorithms. Until recently, the development of these learning algorithms has 

been the primary focus of many connectionist and deep learning researchers.

Despite this focus on learning algorithms, learning in artificial systems is in many ways 

incomparable to learning in biological systems. One reason for this is the biological 

implausibility of the backpropagation learning algorithm, though biologically-plausible 

equivalents exist [96]. A more fundamental reason is that biological systems are born 

with inductive biases (i.e., innate structure) that shape how they interact with their 

environments early in life [93,97]. A recent opinion paper argued that the inductive biases 

afforded to a biological system are the result of learning during evolution (rather than 

within a single lifespan), and is likely embedded in an organism’s DNA [97]. Thus, 

learning in artificial systems is more appropriately compared to learning on evolutionary 

timescales (which often takes place outside the context of neuroscience research), since 

artificial neural networks are typically “born” with a blank slate.

The network coding model approach advocated here is consistent with recent work 

focused on integrating inductive biases into neural network models to understand 

neurocomputational principles. Such biologically-based inductive biases, such as the 

incorporation of highly structured network architectures, have been especially useful in 

understanding core object recognition in the ventral visual stream [47,48,50,75,98]. Other 

inductive biases, such as the incorporation of cortical heterogeneity and local biophysical 

properties, have been especially useful in characterizing simulated large-scale network 

dynamics [62,99–101]. Here we focus primarily on the incorporation of empirical brain 

network architecture to provide principled inductive biases to predictive (encoding/

decoding) brain models. We expect insights from these network coding models to 

positively impact both neuroscience and connectionist research.
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Highlights

• Recent results suggest that localized functions in brain areas are specified 

primarily by their distributed global connectivity patterns

• Recent approaches go beyond stimulus/task brain mapping (and encoding/

decoding) to characterize the role of brain connectivity in neural information 

processing

• We introduce network coding models as a framework encompassing neural 

network models optimized for task performance and those optimized for 

biological realism

• Biological and task performance constraints are complementary for aiding the 

search for accurate models of empirical brain function

• The activity flow algorithm is a core computational mechanism underlying 

network coding models, linking brain activity and connectivity in a 

biologically-plausible mechanistic framework
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Outstanding questions

How do other local properties, such as the intrinsic timescale and local transfer function 

contribute to the localized functions of neural entities? What are the relative contributions 

of each neural entity’s global connectivity pattern vs. its local properties?

What are the best functional connectivity methods that incorporate the nonlinear 

relationships between neural entities that are thought to be critical for neural 

computation?

Do activity flow mapping procedures generalize to other data types (outside of just 

fMRI), such as whole-brain electrophysiology data (electroencephalography/

magnetoencephalography), multi-unit spiking data (obtained from distributed brain 

areas), or wide-field calcium imaging data?

How might network coding models be integrated across different sensory, motor, and 

association systems to achieve an integrative model of cognition and behavior?
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Figure 1. What would it take to understand a neural population’s function?
A) The standard approach in neuroscience, identifying associations between cognitive 

variables and brain responses. This has led to sophisticated encoding (predicting neural 

activity from cognitive variables) and decoding (predicting cognitive variables from neural 

activity) models. Arrow darkness indicates strength of association between each cognitive 

variable and neural activity in Region X. Even with accurate associations it remains unclear 

how such selectivity arises in Region X. B) Knowing the set of connections to and from 

Region X provides additional mechanistic knowledge, yet it remains unclear what Region X 

represents or does in terms of information processing. Arrows indicate direction of causal 

inference (effective connectivity), but less detailed connectivity information (e.g., structural 

or functional connectivity) can also be useful. Arrow darkness indicates strength of 

connectivity between regions. C) We suggest that combining cognitive variables with 

connectivity in a single “network coding” model can allow for a more complete mechanistic 

understanding of a region’s function. Connectivity can act as an encoding model for Region 

X, predicting its activity based on activity elsewhere in the brain. It can also act as a 

decoding model for Region X, predicting how Region X’s activity influences other regions 

and ultimately behavior.
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Figure 2. Activity flow as a linking principle between connectivity and activity.
A) Most neural network simulations use an algorithm to compute activity at each node at 

each time point. Briefly, each network node’s activity (a) at the next time point is computed 

as the connectivity-weighted sum across the activity levels of all other nodes (the 

propagation rule), which is then passed through a function (f) (the activation rule) [51]. 

Figure adapted from [52]. B) Inspired by connectionist principles, the activity flow mapping 

algorithm implements basic neural network computations using empirical data, and 

accommodates limitations in empirical neural measures (such as limited fMRI spatio-
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temporal resolution). C) Simulations of fMRI data demonstrated that accurate activity flow 

mapping predictions depend on strong inter-unit connectivity (global coupling) relative to 

recurrent local connectivity. D) Activity flow-based predictions of task-evoked activity 

levels for a reasoning task (and many other tasks) were highly accurate, suggesting that 

empirical fMRI-based functional connectivity estimates are likely informative regarding the 

specification of localized functionality throughout the brain. Panels B-D adapted with 

permission from [53]. E) A modification of activity flow mapping to estimate information 

transfers, assessing whether decodable information in a source brain region can be preserved 

in a downstream target brain region. Panel E adapted with permission from [54].
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Figure 3. From experimenter-based encoding/decoding models to network coding models.
A) Traditional encoding models impose experimenter-based stimulus constraints to measure 

neural responses. These measures represent the degree to which a neural entity responds to 

different task features. Despite the simplicity of these models, the neural responses predicted 

by these encoding models may not reflect how the brain actually responds to the task 

information. Instead, these models focus on whether the experimenter can map task 

information onto neural responses, rather than how a neural entity actually encodes task 

information through its network connectivity [89]. B) Network coding models (see Figures 1 

and 2) utilize mechanistic constraints (e.g., brain network connectivity) to investigate how a 
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neural entity’s connections might drive its task-related response. The first approach is to 

estimate connectivity directly, and then predict (via activity flow estimation) neural 

responses in a downstream neural entity to characterize how those responses likely emerge 

from activity flow processes via connectivity. C) The second, more top-down approach (see 

Figure 4) uses behavior or task performance to learn the network connectivity patterns 

necessary to encode task representations (through learning algorithms). These artificial 

neural networks implicitly model activity flow processes to implement the neural 

computations underlying cognitive task functions. When provided with sufficient biological 

constraints (e.g., the visual system’s “deep” network architecture), these models can be 

directly compared to empirical data, producing unique insight into the network principles 

that are instrumental to performing cognitive processes (which include cognitive encoding 

and decoding) [41,46,48].
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Figure 4. Leveraging neural network models to explain empirical neural data in the visual 
system.
A) When appropriately constrained with biological and structural priors, artificial neural 

networks can be used to model empirical neural data [50]. Wen and colleagues compared 

representations in a brain-inspired neural network to representations found in empirical 

fMRI data during presentation of the same naturalistic stimuli (movies). B) Stimulus 

activations in different layers of the deep convolutional neural network corresponded to 

different brain areas in the visual system. For example, brain areas in earlier visual 
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processing areas (e.g., V1 and V2) contained representations more similar to representations 

in earlier layers in the artificial neural network. C) The activation time series of face-

selective areas in fMRI data and the face-selective unit in the artificial neural network had 

highly similar and comparable time series during presentation of the dynamic naturalistic 

stimuli. Figures adapted with permission from [50].
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