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Targeting tumour microenvironment, a 
FAKtual challenge in pancreatic cancer
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In the past two decades, investigators have 
turned their attention to the development 
of new approaches to inhibit the aggres-
sive behaviour of the tumour microenvi-
ronment (TME) of pancreatic ductal 
adenocarcinoma (PDAC),1–7 a dismal 
disease predicted to be the second leading 
cause of cancer death by 2030. However, 
complete genetic or pharmacological abla-
tion of stroma results in more aggressive 
tumours. Furthermore, targeting the TME 
in patients with PDAC has grown contro-
versial due to failure of clinical trials to 
improve patient survival.8 9 Together, 
these findings highlight the need to 
increase our understanding of the role of 
TME components (cellular and non-
cellular) and their interplay in PDAC 
pathogenesis. This would better inform 
development of new treatment approaches 
not aimed at total stromal depletion, but 
rather TME reprogramming to ‘activate’ 
its antitumoural functions or to facilitate 
sensitivity to specific targeted therapies. In 
Gut, Jiang and colleagues elegantly report 
a novel therapeutic approach through 
partial stromal depletion, employing clini-
cally available focal adhesion kinase (FAK) 
inhibitors to sensitise PDAC to signal 
transducer and activator of transcription 3 
(STAT3) inhibitors. This opens new 
avenues to develop targeted therapy 
approaches for patients with PDAC having 
tumour stromal depletion following initial 
treatment.

Specifically, Jiang et al describe a FAK 
inhibition resistance mechanism associated 
with depletion of α-smooth muscle actin 
(α-SMA)-positive cancer-associated fibro-
blasts (CAFs) and subsequent decreased 
collagen deposition.10 A previous publica-
tion by this same group reported promising 
findings that abrogation of hyperactivated 
FAK signalling in PDAC models using 
VS-4718, an inhibitor currently in clin-
ical trials for patients with PDAC (clinical 
trials: NCT02546531, NCT03727880 
and NCT02758587), diminished 
stromal density, thereby increasing the 
tumour response to chemotherapy and 

immunotherapy. However, some PDACs 
exhibited a period of disease stabilisa-
tion followed by tumour resistance to 
VS-4718 and rapid tumour progression.11 
Using a combination of genetically engi-
neered mouse models and a well-executed 
set of in vitro assays, the authors identi-
fied STAT3 signalling hyperactivation 
as a compensatory survival mechanism 
following prolonged FAK inhibitor treat-
ment. The authors demonstrated increased 
expression levels of phosphorylated-
STAT3 (pSTAT3) in tumours with limited 
response to FAK inhibition and shorter 
survival in mice. Using well-established 
PDAC mouse models including KPC (p48-
Cre, LSL-KrasG12D/wt and p53flox/wt), KPPC 
(p48-Cre, LSL-KrasG12D/wt and p53flox/

flox) and syngeneic transplantable models, 
the investigators found that survival with 
VS-4718 FAK inhibitor treatment was 
inversely correlated with tumour pSTAT3 
levels. Further, using RNA interference-
based approaches in vitro and in vivo, the 
authors demonstrated STAT3 signalling 
as the primary modulator of resistance to 
FAK inhibition.

Further analysis of this phenomenon 
revealed that prolonged FAK inhibitor 
treatment led to a reduction in trans-
forming growth factor beta 1 (TGF-β1) 
and SMAD family member 3 (SMAD3) 
signalling in PDAC TME. This effect 
was accompanied by decreased α-SMA-
positive CAFs and collagen density. 
Treatment of KPPC animals with a 
TGF-β-neutralising antibody mimicked 
the phenotype of prolonged FAK inhibi-
tion, promoting upregulation of pSTAT3 
in PDAC tissues. This suggested that 
stromal TGF-β1-mediated antagonism 
of STAT3 activation prevented tumour 
resistance. The authors implicated the 
TGF-β1/SMAD3 signalling axis in this 
phenomenon without significant involve-
ment of other TGF-β or bone morphoge-
netic protein (BMP) receptors or other 
TGF-β receptors ligands. Moreover, the 
authors showed that the expression of 
TGF-β1 in the TME and activation of 
SMAD3 in PDAC cells counteracted the 
activation of STAT3 in a time-dependent 
and dose-dependent manner. In addition, 
genetic knockdown of STAT3 sensitised 
PDAC cells to FAK inhibition. Inter-
estingly, Jiang et al also showed that 

STAT3-mediated FAK inhibitor resistance 
could be overcome with a dual pharma-
cological inhibition of FAK and Janus 
kinase (JAK)/STAT3 pathways suppressed 
PDAC progression. FAK inhibitor combi-
nation with ruxolitinib (JAK1/2 inhibitor) 
or Stattic (STAT3 inhibitor) resulted in 
synergistic reduction in PDAC cell prolif-
eration in vitro and tumour growth in a 
syngeneic and KPPC models, suggesting 
that blocking JAK/STAT3 signalling 
favours PDAC responsiveness to FAK 
inhibition.10

In summary, these findings provide a 
new framework for the development of 
new treatment strategies, taking advan-
tage of the interplay between components 
of TME in PDAC. Jiang and colleagues 
proposed a new STAT inhibitor-based 
treatment for cases with significant stromal 
depletion. As opposed to complete abro-
gation of the PDAC TME, this represents 
a suitable alternative strategy as the field 
continues to develop a better under-
standing of the dynamic relationship 
between tumour and TME elements. Such 
clarity is necessary to develop new strate-
gies to tactically and dynamically modu-
late the TME to enhance PDAC therapy.
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