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Kv11.1 potassium channels are essential for heart repolarization. Prescription medication that blocks
Kv11.1 channels lengthens the ventricular action potential and causes cardiac arrhythmias. Surprisingly
little is known about the Kv11.1 channel expression and function in the lung tissue. Here we report that
Kv11.1 channels were abundantly expressed in the large pulmonary arteries (PAs) of healthy lung
tissues from humans and rats. Kv11.1 channel expression was increased in the lungs of humans affected
by chronic obstructive pulmonary diseaseeassociated pulmonary hypertension and in the lungs of rats
with pulmonary arterial hypertension (PAH). In healthy lung tissues from humans and rats, Kv11.1
channels were confined to the large PAs. In humans with chronic obstructive pulmonary diseasee
associated pulmonary hypertension and in rats with PAH, Kv11.1 channels were expressed in both the
large and small PAs. The increase in Kv11.1 channel expression closely followed the time-course of the
development of pulmonary vascular remodeling in PAH rats. Treatment of PAH rats with dofetilide, an
Kv11.1 channel blocker approved by the US Food and Drug Administration for use in the treatment of
arrythmia, inhibited PAH-associated pulmonary vascular remodeling. Taken together, the findings from
this study uncovered a novel role of Kv11.1 channels in lung function and their potential as new drug
targets in the treatment of pulmonary hypertension. The protective effect of dofetilide raises the
possibility of repurposing this antiarrhythmic drug for the treatment of patients with pulmonary hy-
pertension. (Am J Pathol 2020, 190: 48e56; https://doi.org/10.1016/j.ajpath.2019.09.010)
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Kv11.1 potassium selective channels, also known as EAG-
related gene channels, are best known for their function in
the heart, where they are involved in the repolarization of
the cardiac action potential.1e4 Inhibition of Kv11.1 cur-
rents, due to the genetically occurring mutations or as a
side effect of a prescription medication, lengthens the QT
interval on electrocardiogram, causing long QT syndrome,
a potentially fatal cardiac arrhythmia.5e8 Kv11.1 channels
also play a role in cancer, in which inhibition of Kv11.1
channel expression and/or Kv11.1 currents decreases the
proliferation of cancer cells.9,10 In addition to the cardiac
tissue, Kv11.1 channels are also expressed in the
brain,11,12 retina,13 gallbladder,14 stomach,15 and
intestines.16e18 However, surprisingly little is known about
Kv11.1 channel expression and function in normal lung
tissue.
stigative Pathology. Published by Elsevier Inc
Potassium channels are essential for proper lung function,
and defects in ion channels have been linked to various res-
piratory diseases.19 Potassium channels are especially inti-
mately involved in vascular remodeling in pulmonary
hypertension, including pulmonary arterial hypertension
(PAH) and chronic obstructive pulmonary disease (COPD)-
associated hypertension.20e22 PAH and COPD are fatal dis-
eases associated with narrowing of the arteries in the lung,
with no known cure.23e25 Several types of potassium
. All rights reserved.
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Kv11.1 Channel in Pulmonary Hypertension
channels have been implicated in vascular remodeling in
PAH and COPD, including big potassium (BK) channels,
KATP channels, and two-pore domain potassium channels.26

The decrease in currents through potassium channels in
response to hypoxia leads to the cell depolarization that in-
creases Ca2þ influx through the voltage-gated calcium
channels, causing vasoconstriction.26,27

Despite the importance of Kv11.1 channels for many
physiologic processes, their expression and function in the
pulmonary vasculature and their potential role in PAH- and
COPD-associated vascular remodeling have not been
investigated. Here we report that Kv11.1 channels were
expressed in the lung vasculature of healthy humans and
rats. Kv11.1 expression was detected in large pulmonary
arteries (PAs; diameter �100 mm), and was undetectable in
smaller PAs (diameter <100 mm), in both healthy humans
and rats. In humans with COPD-associated pulmonary
hypertension and in rats with PAH, Kv11.1 channel
expression levels were increased and were detected not only
in the large-diameter PAs but also in the smaller PAs. The
increases in Kv11.1 channel expression levels closely fol-
lowed the time-course of vascular remodeling in PAH rats.
Surprisingly, treatment of PAH rats with the Kv11.1
channelespecific blocker dofetilide (Tikosyn), clinically
known as an antiarrhythmic drug, decreased PAH-associated
remodeling, by increasing the arterial lumen opening and by
decreasing the arterial wall thickness. Taken together, these
findings identify Kv11.1 channels as important players in the
function of healthy and pulmonary hypertensioneaffected
lungs in humans and rats. Therefore, Kv11.1 channels should
be considered as novel drug targets for the treatment of
pulmonary hypertension. Moreover, the Kv11.1 channel
blocker dofetilide may have potential in PAH treatment.

Materials and Methods

Human Tissues

Samples of 10% formalin-fixed and paraffin-embedded lung
tissues from healthy control subjects and patients with
COPD were purchased from National Disease Research
Interchange (Philadelphia, PA). The human tissues were
selected from donors of both sexes within a postmortem
interval of 24 hours. Donors of healthy control tissue had no
lung diseases or heart diseases.

Animal Treatment

Male Sprague-Dawley and Fischer rats were purchased from
Charles River Laboratories, Inc. (Wilmington, MA). For the
induction of PAH, rats were subcutaneously injected with
SU5416 20 mg/kg of body weight (MedChemExpress,
Monmouth Junction, NJ) and maintained in hypoxia.28e30

For hypoxia, animals were placed in a chamber (30 inches
wide � 20 inches deep � 20 inches high) regulated by an
OxyCycler Oxygen Profile Controller (model A84XOV;
The American Journal of Pathology - ajp.amjpathol.org
BioSpherix, Redfield, NY) set to maintain 10% O2 with an
influx of N2 gas, located in the animal care facility at the
Georgetown University Medical Center (Washington,
DC).28,29 Ventilation to the outside of the chamber was
adjusted to remove CO2, such that its level did not exceed
5000 ppm. Animals were fed normal rat chow.

To determine the effects of a Kv.11.1 inhibitor (dofeti-
lide), Sprague-Dawley rats were divided into four groups
that were treated with i) dimethyl sulfoxide (DMSO), ii)
dofetilide, iii) DMSO þ SU5416/hypoxia, and iv)
dofetilide þ SU5416/hypoxia (n Z 4 per group). Dofetilide
(10 mg/kg of body weight), dissolved in DMSO, was
injected i.p. before the injection of SU5416. The George-
town University Animal Care and Use Committee approved
the protocols of all of the animal experiments, and the
investigation conformed to the NIH’s Guide for the Care
and Use of Laboratory Animals.31
Histologic Measurements

For histologic examination, lung tissues from both the left and
right lungs, all lobes in rats and indicated lobes in humans,
were fixed in 10% formalin and embedded in paraffin.
Paraffin-embedded tissues were cut and mounted on glass
slides. Tissue sections were subjected to hematoxylin and
eosin (H&E) staining and immunohistochemistry (IHC)
analysis using the a-smooth muscle actin primary antibody
(1:300; catalog number ab5694; Abcam, Cambridge, UK) or
Kv11.1 primary antibody (1:1000; catalog number APC-016;
Alomone Laboratories, Jerusalem, Israel), followed by a
secondary horseradish peroxidaseeconjugated antibody
(catalog number K4003; Agilent, Santa Clara, CA).
Negative-control experiments using Kv11.1 staining were
also performed. In these experiments, consecutive sections
(where possible) or sections from a region of the tissue that
was the same as those in the corresponding noncontrol
experiments were stained in the absence of the primary
antibody with only the secondary antibody, were stained. No
Kv11.1 channel staining was detected in the negative-control
experiments.
IHC Image Analysis

Kv11.1 antibody staining on IHC images was quantified
using ImageJ software version 1.52n (NIH, Bethesda, MD;
https://imagej.nih.gov/ij).32 For each PA analyzed,
background-subtracted antibody staining intensity values, in
arbitrary units (au), of five different regions were averaged
and plotted as a point on scatterplots, with n depicting the
number of different PAs analyzed from different humans or
rats. The means of the data on the scatterplots are presented
as red lines.

For PAwall thickness, 30 vessels per animal were analyzed
in each group. Four values of external and internal diameters
were measured and averaged for each vessel. The percentage
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of wall thickness values, calculated as wall thickness divided
by vessel radius, were determined using ImageJ.

Statistical Analysis

Means � SEM were calculated. Comparisons between two
groups were performed using the t-test, whereas comparisons
between three or more groups were performed using analysis
of variance. P< 0.05 was considered statistically significant.

Results

Kv11.1 Channel Expression in the SMCs of Large PAs in
the Lungs of Healthy Humans

To investigate Kv11.1 channel expression in human lungs,
histologic examination of H&E-stained postmortem lung
tissues from healthy individuals was performed (Figure 1, A
and B). The examination revealed normal lung structure,
with bronchiole, alveoli, and a thin layer of connective tis-
sue between the alveoli and a multitude of pulmonary ves-
sels (Figure 1, A and B). IHC analysis with Kv11.1 channel
antibody revealed a robust expression of Kv11.1 channels in
the smooth muscle cell (SMC) layer of bronchiole and
large-diameter PAs in the lungs of the individuals (Figure 1,
C and D). Kv11.1 expression was detected in the large PAs
(Figure 1, E and F), and no expression of Kv11.1 channels
was detected in the small PAs (Figure 1, G and H). On
quantitative comparison of Kv11.1 channel expression in
the small and large PAs (Figure 1I), the absence of Kv11.1
channel expression in small PAs was statistically significant.
No Kv11.1 channel staining was detected in the negative-
control experiments (Figure 1, JeM). No statistically sig-
nificant sex-dependent differences were observed.

Kv11.1 Channel Expression in the SMCs of Small PAs in
the Lungs of Humans with COPD

To determine whether the Kv11.1 channel expression level
is altered in respiratory disease, channel expression was
Figure 1 Kv11.1 channels are expressed in human lungs. Normal human
lung hematoxylin and eosin (H&E) staining in a 41-year-old man (A) and 65-
year-old woman (B). Shown are sections of the lung composed of terminal
bronchiole (b) and thin-walled alveoli (a). Also shown is a thin layer of alveoli
connective tissue and amultitude of pulmonary vessels (pv; arrows). C andD:
Kv11.1 antibody staining of normal human lung in the 41-year-old man (C,
right upper lobe) and 65-year-old woman (D, left lower lobe), with the
structural elements denoted in the samemanner as inA andB. E and F: Kv11.1
staining in bronchial smooth muscle layer (red arrows) and in the media of
pulmonary arteries (PAs) of diameter>100mm(black arrows) in the 41-year-
oldman (E) and 65-year-oldwoman (F).G andH: Arrows indicate the absence
of Kv11.1 staining in small PAs (diameter <100 mm). I: Quantification of
Kv11.1 channel expression [in arbitrary units (au)] in large and small PAs.
JeM: Negative controls for EeH, correspondingly, with the primary antibody
omitted and only the secondary antibody used. The mean of the data is
indicated (red lines). nZ 37 per group. *P< 0.05. Scale bars: 1 mm (AeD);
200 mm (EeH, JeM). Original magnification:�16 (AeD);�200 (EeH). IHC,
immunohistochemistry.
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examined in postmortem lung tissue samples from humans
with COPD-associated pulmonary hypertension. H&E
staining revealed emphysematous distention and collapse of
alveoli, mild edema of the arterial wall, peribronchial and
perivascular fibrosis, and thickening of walls of PAs
(Figure 2, A and B). On IHC analysis of COPD-affected
lungs from individuals of different ages using Kv11.1
channel antibody, Kv11.1 channels were expressed in the
media of not only large PAs but also small PAs (Figure 2,
CeH). On quantitative comparison of Kv11.1 channel
expression in the small PAs of lungs from healthy humans
and COPD patients (Figure 2I), the increase in the expres-
sion of Kv11.1 channels in small PAs in COPD patients was
statistically significant. No Kv11.1 channel staining was
detected in the negative-control experiments (Figure 2,
JeO). No statistically significant sex-dependent differences
were observed.

Kv11.1 Channel Expression in the SMCs of Large PAs in
the Lungs of Healthy Rats

To determine whether the Kv11.1 channel expression
observed in healthy human lungs is also present in rat lungs,
histologic examination of H&E-stained lung tissue from
healthy Sprague-Dawley rats was conducted. The examination
revealed a lung parenchyma with a bronchiole, alveoli, and
different-diameter pulmonary vessels of expected sizes
(Figure 3A). IHC analysis with the a-smooth muscle actin
antibody indicated a typical SMC layer of a bronchiole and
large PAs and an absence of smooth muscle expression in the
small PAs (Figure 3B). The expression of Kv11.1 channels in
healthy rat lung tissue was then examined using Kv11.1
channel antibody. IHC analysis revealed robust Kv11.1
expression in the SMC layer of the bronchioles and large-
diameter PAs (Figure. 3C). No Kv11.1 channel expression
was detected in the small PAs (Figure 3C), similar to the
observed absence of Kv11.1 channel expression in small PAs
in human lungs. On quantitative comparison of Kv11.1
channel expression in the small and large PAs (Figure 3D), the
absence of Kv11.1 channel expression in the small PAs was
Figure 2 Kv11.1 channel expression is increased in chronic obstructive
pulmonary disease (COPD)-affected human lungs. A and B: Hematoxylin and
eosin (H&E) staining of the lung tissue in individuals of the indicated age and
sex showing alveoli emphysema (a), bronchiole (b), peribronchial fibrosis
(asterisk), perivascular fibrosis, and pulmonary artery (PA) wall thickness
(arrows). CeH: Kv11.1 antibody staining of media of large PAs
(diameter>100 mm; black asterisks) and small PAs (diameter<100 mm; red
asterisks) in six different individuals with COPD of the indicated age and sex.
Tissue sections in C and E are from the right lower lobe;D, from the right upper
lobe; F andG, from the left upper lobe; andH, from the left lower lobe of lungs.
Arrows, pulmonary vessels; a, alveoli. I: Quantification of Kv11.1 channel
expression (in arbitrary units; au) in small PAs of healthy and COPD-affected
lungs. JeO: Negative controls for CeH, correspondingly, with the primary
antibody omitted and only the secondary antibody used. Themean of the data
is indicated (red lines). nZ 37 (control); nZ 79 (COPD). *P < 0.05. Scale
bars: 1 mm (A and B); 200 mm (CeH, JeO). Original magnification: �16
(A and B); �200 (CeH). IHC, immunohistochemistry.
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Figure 3 Kv11.1 channels are expressed in healthy rat lungs. A: Hema-
toxylin and eosin (H&E) staining of Sprague-Dawley rat lung tissue showing a
normal structure of a bronchiole (b), alveoli (a), thin interstitial alveolar wall,
and normal pulmonary arteries wall thickness (pv; arrows) in control rats.
B:a-Smoothmuscle actin antibody staining in the smoothmuscle cell layer of
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body staining in the media of PAs at diameter <100 mm (red arrows).
C: Kv11.1 antibody staining in bronchial SMC layer (asterisk) and in the
media of PAs at diameter >100 mm (black arrow). Images in �400 magni-
fication illustrate the absence of Kv11.1 antibody staining in small PAs (red
arrows). D: Quantification of Kv11.1 channel expression in large and small
PAs. E: Negative control for Cwith the primary antibody omitted and only the
secondary antibody used. The mean of the data is indicated (red lines).
nZ 11 per group. *P < 0.05. Scale bars: 100 mm (AeC, right panels); 200
mm (AeC, left panels, E). Original magnification:�200 (AeC, left panels);
and �400 (AeC, right panels). IHC, immunohistochemistry.
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statistically significant. No Kv11.1 channel staining was
detected in the negative-control experiments (Figure 3E).

Kv11.1 Channel Expression in the SMCs of Both Large
and Small PAs in Rats with PAH

Next, it was determined whether, similar to humans with
COPD, Kv11.1 channel expression is altered in PAH rats.
52
To induce PAH, Sprague-Dawley rats were injected with
SU5416, placed in hypoxia for 3 weeks, and then main-
tained in normoxia for 5 weeks.28e30 The animals were then
euthanized and histologic data were obtained. Histologic
examination of the H&E-stained lung tissues revealed the
alterations in the lung structure with PAH, including medial
hypertrophy and alveolar wall thickening (Figure 4A).
These changes lead to the narrowing or occlusion of the
lumen in PAs. IHC analysis with a-SMA antibody indicated
proliferation of SMCs and muscularization of the small-
diameter PAs (Figure 4B) not seen in the normal lung tis-
sue (Figure 3B). IHC analysis with Kv11.1 antibody
revealed Kv11.1 channel expression in the SMCs of both
the large and small PAs (Figure 4C). The appearance of
Kv11.1 channels in small-diameter PAs in rats with PAH
was similar to that observed in human lungs with COPD
(Figure 2). On quantitative comparison of the Kv11.1
channel expression in the small PAs of lungs from healthy
and PAH rats (Figure 4D), the increase in the expression of
Kv11.1 channels in PAH rats was statistically significant.
No Kv11.1 channel staining was detected in the negative-
control experiments (Figure 4E).
Changes in Kv11.1 channel expression with PAH-

associated vascular remodeling were also observed in
Fischer rats at 1, 2, 3, 4, and 5 weeks after the initiation of
SU5416/hypoxia treatment. The time-course experiments
revealed that the appearance of the Kv11.1 channel
expression in the small-diameter PAs closely followed the
time-course of vascular remodeling in PAH and the asso-
ciated increased muscularization (Figure 5A). No Kv11.1
channel staining was detected in the negative-control
experiments (Figure 5B). Quantitative analysis indicated
that the changes in the Kv11.1 channel expression with time
were statistically significant (Figure 5C).

Effects of Kv11.1 Channel Blocker Dofetilide on PA Wall
Remodeling in PAH Rats

To determine whether pharmacologic inhibition of Kv11.1
channels would affect PAH progression, healthy and PAH
rats were treated with the Kv11.1 channelespecific blocker
dofetilide.
Lung tissues were examined with H&E staining. The rats

in the control (no PAH) groups (DMSO and dofetilide) had
similar lung structure, with no statistical differences in the
small and large PA media wall thickness. The PAH rats in
the DMSO þ SU5416/hypoxia group had increased intimal
endothelial cell proliferation, increased small PA wall
thickness, and reduced lumen diameter compared to those in
the DMSO and dofetilide groups (Figure 6, A and B).
Surprisingly, PAH rats in the dofetilide þ SU5416/hypoxia
group had reduced wall thickness and increased lumen
diameter compared with PAH rats in the DMSO þ SU5416/
hypoxia group (Figure 6, C and D). Moreover, dofetilide
was associated with an elimination of PAH-related occlu-
sion of the lumen.
ajp.amjpathol.org - The American Journal of Pathology
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Discussion

The findings from this study demonstrate that Kv11.1
channels are expressed in the lungs of rats and humans. In
healthy lung tissues, Kv11.1 expression was limited to the
SMC layer of large PAs (diameter �100 mm). In rats with
PAH and humans with COPD-associated pulmonary hy-
pertension, Kv11.1 channel expression was detected not
only in the large PAs but also in the small PAs (diameter
<100 mm). Importantly, treatment with the Kv11.1 channel
blocker dofetilide was associated with reduced vascular
remodeling in PAH rats and maintenance of media wall
thickness at the level seen in healthy rats. Dofetilide is
clinically used to treat atrial fibrillations. These results
provide a rationale for further exploring the modulation of
Kv11.1 channels as a potential treatment of pulmonary
hypertension and repurposing of dofetilide for the treatment
of PAH and COPD patients.

Kv11.1 channels are abundantly expressed in the heart33,34

and brain.11,34 In the heart, Kv11.1 channels are expressed in
cardiac myocytes,35,36 and their function is to repolarize
cardiac action potential.1e4 In the brain, Kv11.1 channels are
expressed in various regions, and their function is to regulate
neuronal excitability.11,37e39 In addition to the heart and
brain, Kv11.1 channels are also expressed in a variety of other
tissues and organs,10 including retina13; chromaffin cells40;
and SMCs of gallbladder,14 stomach,15 and intestines.16e18

Although Kv11.1 channel mRNA was detected in rat lung
tissue,34 the pattern of Kv11.1 channel protein expression has
not been known. Histologic examination of human and rat
lung tissues indicated that Kv11.1 channels were expressed in
the SMC layer of large-diameter PAs (Figures 1, E and F, and
3C). Interestingly, in healthy lungs, Kv11.1 channel expres-
sion was not detected in the SMC layer of small-diameter PAs
(Figures 1, G and H, and 3C). These findings indicate that
Kv11.1 channels are part of the ion channel landscape of the
lung smooth muscles and should be considered a novel target
for their modulation.

Importantly, in humans with COPD and in rats with PAH,
the expression of Kv11.1 channels was increased and was
The American Journal of Pathology - ajp.amjpathol.org
detected in not only large but also small PAs (Figures 2 and 4).
The increased Kv11.1 expression in pulmonary hypertension
suggests that Kv11.1 channel expression is linked to vascular
remodeling. This idea is further supported by the time-course
of changes in Kv11.1 channel expression. The Kv11.1
channel expression increased gradually in the PAH rats, with
the time-course closely following that of the arterial wall
thickening (Figure 5).

To test whether pharmacologic inhibition of Kv11.1
channels could affect vascular remodeling in PAH, the
Kv11.1 channel blocker dofetilide was injected at the time
of PAH induction. Dofetilide was associated with substan-
tial inhibition of PAH-associated vascular remodeling in the
dofetilide-treated rats (Figure 6). Dofetilide was also asso-
ciated with increased lumen diameter and decreased PA wall
thickness, to the levels seen in the control rats without PAH.
These findings suggest that inhibition of Kv11.1 channels
has a protective effect in pulmonary hypertension. The
effect of dofetilide is opposite to the expected role based on
the conventional role of Kþ channels as hyperpolarization
generators in SMCs. Kv11.1 channels have been shown to
regulate the excitability of SMCs in various tissues,
including epididymal duct,41 gastrointestinal tract,16,18,42

gallbladder,14 and portal vein,43 by contributing to the
resting membrane potential and to the repolarization phase
of the action potential.36,44,45 Based on those previous re-
ports, Kv11.1 channels would be expected to hyperpolarize
SMCs in the lung tissue and decrease the SMC contractile
tone. Therefore, Kv11.1 channels are expected to play a
protective role in PAH, and Kv11.1 channel blockers would
then exacerbate PAH-induced vascular remodeling, which is
opposite to what we report here.

These findings may be reconciled based on another well-
established role of Kv11.1 channels: the regulation of cell
proliferation during normal development and cancer.46

Kv11.1 channelemediated hyperpolarization is crucial for
the progression of the normal cell cycle.47,48 Importantly,
the expression of Kv11.1 channels is up-regulated in many
cancerous tissues,46,49 and the inhibition of Kv11.1 channel
activity with Kv11.1 channelespecific blockers decreases
53
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Figure 5 Kv11.1 channel expression gradually increases with the development of
pulmonary arterial hypertension (PAH) in rats. A: Time course examination of Kv11.1
expression in PAH rats (brown; arrows). For this experiment Fischer rats were injected with
SU5416, placed in hypoxia for 3 weeks, and then maintained in normoxia for 2 weeks to
obtain time points of 0, 1, 2, 3, 4, and 5 weeks after the SU5416 injection. B: Negative
control for the corresponding images in A with the primary antibody omitted and only the
secondary antibody used. C: Quantification of the changes in Kv11.1 channel expression [in
arbitrary units (au)] with PAH development in small pulmonary arteries (PAs). The mean of
the data is indicated (red lines). n Z 10. *P < 0.05. Scale bars Z 100 mm (A and B).
Original magnification, �400 (A). IHC, immunohistochemistry.
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cell proliferation.50 Although the mechanism of Kv11.1
channel regulation of tumor progression is not completely
clear, a few potential leads are worth mentioning. The
promoter region of Kv11.1 channel gene contains binding
sites for many oncoproteins, enabling Kv11.1 channels to
regulate cell-growth in response to the activation of onco-
genes.51 There is evidence of an interaction between Kv11.1
channels and b1-integrins that in turn affects the migra-
tion.52 We hypothesize that, similar to that in cancer, the
growth of SMCs in PAH is associated with overexpression
PAHControlA B C
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Figure 6 Dofetilide inhibits pulmonary vascular remodeling. Representative im
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Data are expressed as means (red lines) � SEM. *P < 0.05. Scale bars Z 50 mm
W, pulmonary artery wall.
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of Kv11.1 channels, and that the application of the Kv11.1
channel blocker dofetilide decreases SMC growth and PAH-
associated vascular remodeling.
Dofetilide is a drug approved by the US Food and Drug

Administration for use in the treatment of irregular heart-
beat. As other Class III antiarrhythmic drugs, it acts by
prolonging the cardiac action potential via blocking Kv11.1
channels in the heart.53 In cases of cardiac arrhythmia
associated with faster-than-normal heart rate, such as
tachycardia, delaying cardiac repolarization and reducing
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the heart rate by blocking Kv11.1 channels would then
stabilize the heart rate.54,55 The findings from this study
indicate that Kv11.1 channels are expressed in the lungs and
their inhibition by dofetilide prevents the symptoms of
arterial muscularization associated with PAH. These find-
ings warrant further investigation of the potentially positive
effects of dofetilide in patients with PAH.

In summary, in healthy humans and rats, Kv11.1 channels
are expressed in the SMCs of large PAs only, whereas in
humans with COPD and rats with PAH, Kv11.1 channels
are expressed in both the large and small PAs. Inhibition of
Kv11.1 channels by dofetilide was associated with
decreased PAH-associated vascular remodeling, suggesting
that Kv11.1 channel blockers might have potential in PAH
treatment.
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