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Abstract: β3 integrin (ITGB3), also known as CD61 or GP3A, is one of the most widely studied components in the in-
tegrin family. As an adhesion receptor on the cell surface, ITGB3 participates in reprogramming tumor metabolism, 
shaping the stromal and immune microenvironment, facilitating epithelial to mesenchymal transition (EMT) and 
endothelial to mesenchymal transition (End-MT) and maintaining tumor stemness, etc. Recent studies proposed 
various intervention strategies against ITGB3 and have achieved promising outcomes in several types of tumor. 
Here, we review the adaption response and cellular crosstalk in the tumor microenvironment mediated by ITGB3, 
as well as its upstream and downstream signaling pathways. Lastly, we focus on the inhibitors of ITGB3, ultimately 
indicating that ITGB3 is a promising target in the tumor microenvironment.
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Introduction

Tumors are serious disease risk that threatens 
human health. The malignancy of a tumor is 
driven by multiple factors, comprising prolifera-
tive signal pathways that promote angiogene-
sis, stimulate metastasis and invasion, as well 
as energy metabolism reprogramming and eva-
sion of immune surveillance [1]. Increasing evi-
dence emphasizes on the significance of the 
tumor microenvironment, and the regulation of 
this microenvironment is the most promising 
strategy for tumor therapy. It is necessary to 
screen for cross-functional targets that are 
robustly associated with tumor malignancy and 
microenvironment reprogramming. 

As the major cell adhesion receptors for the 
extracellular matrix (ECM), integrins are widely 
expressed on the cell membrane [2]. Integrins 
exert notable biological roles in linking cells to 
counter-receptors on other cells and ligands in 
the ECM, which lead to the changes in tumor 
cell behavior and microenvironment status by 
activating a variety of signal transduction path-
ways [3]. Integrin activation can also regulate 

ECM assembly and the polarity of migrating 
cells, thereby mediating tumor metastasis and 
non-tumor cell infiltration [4]. As a matter of 
fact, microenvironmental influences on cell 
behavior can be determined by the pattern of 
integrin expression on the cell surface [5]. Thus, 
integrins could function as the hub family that 
connects tumor cells and their surrounding 
microenvironment. 

β3 integrin (ITGB3), also known as CD61 or 
GP3A, is one of the most widely studied mem-
bers of the integrin family, which exerts diverse 
crucial roles in malignant tumor progression 
and in the reprogramming of the tumor micro-
environment. The present study provides an 
overview of the multi-functional roles that 
involve with ITGB3, such as metabolic repro-
gramming, epithelial to mesenchymal transition 
(EMT), endothelial to mesenchymal transition 
(End-MT), stemness regulation and drug resis-
tant acquisition, pro-angiogenesis, stromal and 
immune microenvironment re-education. We 
also discussed the regulation network of ITGB3. 
Furtherly we concluded the potential drug or 
inhibitors that target ITGB3, which might pro-
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vide new concepts in ITGB3 targeted therapy. 
Therefore, ITGB3 has a promising future as a 
novel target for comprehensive advanced can-
cer therapy strategies by targeting the tumor 
microenvironment, including anti-angiogenesis 
therapy, anti-stemness therapy, metabolism 
regulation therapy, and even immunotherapy. 

General description of ITGB3

As a heterodimer, ITGB3 has two main forms. 
The β3 subunit is mainly accompanied by αIIb 
and αv, both of which can distinguish ligands 
containing an RGD tripeptide active site selec-
tively, such as vitronectin and fibronectin [5, 6]. 
This improved the development of cilengitide, a 
cyclic peptide as well as an αvβ3-targeted 
antagonist, which has shown encouraging out-
comes in some phase I/II trials [7]. αIIb β3 inte-
grin is highly expressed in platelets, where it is 
associated with the pathogenesis of Glanzmann 
thrombasthenia [8] and might be involved in 
platelet tumorigenesis [9, 10]. Additionally, 
αvβ3 integrin overexpression was observed on 
angiogenetic endothelial cells and tumor cells, 
thereby promoting invasion and migration in 
several malignant tumors [11-15]. Furthermore, 
ITGB3 is regarded as a robust prognostic factor 
related to poor survival in non-small cell lung 
cancer, breast cancer, cervical cancers, pan-
creatic ductal adenocarcinoma, T-cell acute 
lymphoblastic leukemia and gliomas [16-22]. 

ITGB3 and metabolic reprogramming

Hypoxia and PH dependent adaption

Hypoxia is a critical biological process in the 
metabolism atlas of tumors, which also influ-
ences glucose metabolism and could even 
induce neo-angiogenesis [23, 24]. αvβ3 integ-
rin is an important mediator of hypoxia-related 
biological process, and is transcriptionally 
upregulated under hypoxia in human microvas-
cular endothelial cells and malignant cancer 
cells with a hypoxia induced factor 1A (HIF1A) 
dependent manner [25, 26]. Furthermore, evi-
dence demonstrated that epidermal growth 
factor receptor vIII (EGFRvIII) and ITGB3 tented 
to form complexes in the environment of hypox-
ia and vitronectin enrichment, which complex-
es could robustly accelerated the malignant 
process of glioblastoma [27].  

Cancer cells’ survival depends on a favorable 
acid-base balance, especially prefer acidic 

microenvironment [28, 29]. Evidences suggest-
ed that αvβ3 integrins can be stimulated by an 
extracellular acidic PH. Moreover, the acidic 
microenvironment of tumors also facilitates cell 
invasion by promoting the activity of matrix 
metalloproteases, which can bind with the β3 
integrins [30]. 

Glucose and lipid metabolism 

Glucose transporter type 3 (GLUT3) is a critical 
glucose transporter that has essential func-
tions in the mediation of glucose metabolism. 
Analyses of multiple datasets reveal that 
GLUT3 exhibited a robust positive correlation 
with ITGB3. During glioblastoma progression, 
knockdown of ITGB3 strongly inhibited GLUT3 
expression, glucose uptake, lactate production 
and even the levels of glycolysis [22]. Binding of 
the integrin ligand milk fat globule-EGF factor 8 
(MFGE8) with αvβ3 integrin assists the uptake 
of fatty acid by regulating the location of CD36 
and fatty acid transport protein 1 (FATP1) from 
cytoplasmic vesicles to the cell surface [31]. 

ITGB3 and tumor cell heterogeneity 

ITGB3 and epithelial-to-mesenchymal transi-
tion (EMT)

Epithelial-to-mesenchymal transition (EMT) has 
complex effects on carcinoma progression and 
metastasis [32]. ITGB3 is regarded as an EMT 
biomarker in colorectal cancer, prostate can-
cer, and breast cancer etc. [33, 34]. Studies 
have reported that ITGB3 was up-regulated 
during EMT, while it is expressed at a low level 
in normal epithelial tissues [32]. Silencing of 
ITGB3 inhibited metastasis and EMT in malig-
nant breast cancer mammary epithelial cells 
[35, 36]. Notably, ITGB3 is involved in EMT 
mainly under the induction of transforming 
growth factor-β (TGF-β), a core regulator of the 
malignant features of tumors [37]. TGF-β1 
mediates the upregulation of αvβ3 integrin 
expression at the transcription level, and then 
induces the auto-stimulation of the phosphory-
lation of the type II TGF-β receptor on its tyro-
sine sites via SRC and the stimulation of MAPK, 
thus mediating the progression of EMT [35, 38, 
39]. Additionally, the strengthening effect of 
fibroblast growth factor 1 (FGF1) in EMT, which 
is induced by TGF-β in epithelial cells, also 
requires enhanced expression of integrin αvβ3 
[40]. 
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ITGB3 and the maintenance of stemness

Cancer stem cells (CSCs), a special subpopula-
tion within the tumors, can initiate tumor 
growth, sustain self-renewal, and retain their 
differentiative ability, and ITGB3 exert key roles 
in this process [41, 42]. Integrin αvβ3 is es- 
sential and adequate to mediate the develop-
ment of lung, breast, and pancreatic tumor 
cells towards a stem-like phenotype [43]. 
Homeobox D3 (HOXD3), an upstream transcrip-
tion factor linked to ITGB3 expression, could 
increase stemness traits in breast cancer cells 
through β3 integrin-mediated Wnt/β-catenin 
signaling [42]. Mammary stem cells (MaSCs) 
can undergo oncogenic mutation and develop 
into cancer stem cells, resulting in the occur-
rence, metastasis and recurrence of breast 
cancer. ITGB3 stimulated by TGF-β2 relies on 
the expansion of pregnancy-related MaSCs and 
the promotion of stem-like cells in tumors by 
enhancing Slug expression [44, 45]. Moreover, 
transcription of ITGB3 in the side population 
(SP), a CSC rich population, is reported to be 
increased compared with that in the parent 

cells, demonstrating that ITGB3 expression in 
CSC-like SP cells is vital for peritoneal metasta-
sis of gastric cancer [41]. In addition, to regu-
late the differentiative ability of CSCs, ITGB3 
can promote trans-differentiation of human 
umbilical cord mesenchymal stem cells (hUC-
MSCs) into primordial germ-like cells (PGCs) 
[46]. Additionally, HER2/NEU-transformed tu- 
mor cells with overexpression of ITGB3 exhibit 
tumor initiating cell (TIC) characteristics com-
pared with non-transformed mammary epithe-
lial cells [47]. Therefore, we could regard ITGB3 
as a promising marker and modulator that 
maintains the stemness of tumors (Figure 1).

ITGB3 and drug resistant tumor cells

Drug resistance is another major feature of 
malignant tumor cells, which leads to a higher 
recurrence rate and mortality. In recent years, 
increasing researches suggested that ITGB3 
has a close relationship with drug resistance 
[48-50]. In glioma cells, the ITGB3 knockdown 
resulting in an enhanced temozolomide (TMZ) 
sensitivity by reducing repair of TMZ-induced 

Figure 1. The critical role of ITGB3 in the metabolic reprogramming and tumor cell heterogeneity. ITGB3 can be 
regulated and adapted in hypoxia and acidic environment. ITGB3 also mediated the glucose and lipid metabolism 
of tumor cells. Moreover, ITGB3 is involved in the regulation of EMT, stemness maintenance and drug resistance.
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DNA double-strand breaks [51]. Naik A et al 
indicated that NRP1-ITGB3 axis also mediated 
the chemoresistance response of breast can-
cer cells [52]. Other evidence suggested that 
ITGB3 inhibition enhances the antitumor activ-
ity of ALK inhibitor in ALK-rearranged non-small 
cell lung cancer (NSCLC) [53]. The overexpres-
sion of ITGB3 is also involved in the resistance 
to EGFR inhibition, Mechanistically due to the 
complex formed by ITGB3/KRAS/RalB and the 
activation of TBK1 and NFκB that the complex 
mediated [43, 54].

ITGB3 and the tumor stromal microenviron-
ment

Cross-talking with endothelial cell

Tumor angiogenesis is a complicated process, 
during which neovasculars are developed from 
a pre-existing vascular network to satisfy the 
demand of tumor tissues for oxygen, nutrition 
and metabolism. ITGB3 is regarded as a mark-
er of angiogenesis, which involves in the key 
steps of tumor angiogenesis not only by regu-
lating cell-cell, cell-matrix interaction but also 
involves in several signaling pathways [55]. 
ITGB3 binds with ECM via its ligand vitronectin 
and matrix metalloproteinases (MMPs), allow-
ing MMP2 to degrade and remodel the extra-
cellular matrix, which promoted the activation 
of endothelial cells [56]. Moreover, several new 
pro-angiogenic regulators such as Angiopoie- 
tin-2 and Nogo-B are found to bind with ITGB3, 
which results is sprouting angiogenesis via 
focal adhesion kinase (FAK) signaling [57, 58]. 
Meanwhile, the β3 subunit mediates the migra-
tion of endothelial cells, by promoting the phos-
phorylation and activation of VEGFR-2 mechan-
ically [59]. In addition, down regulation of ITGB3 
involves the loss of endothelial cell adhesion 
molecule (ECAM), causing the internalization 
of VEGFR2 [60]. ITGB3 can also inhibit endo-
thelial cell apoptosis via different mechanisms. 
For example, α5β3 integrin can bind fibronec-
tin, leading to increased expression of NFκB 
and the survival ability of endothelial cells, 
while other researches suggested that αvβ3 
inhibits p53 activity and the apoptosis rate of 
endothelial cells through the MAPK pathway 
[61, 62]. Interestingly, recent study claimed 
that TGF-β1 improved expression of ITGB3 sig-
nificantly, inducing the process of End-MT, 
which enhances endothelial cells’ migration via 
Notch signaling pathway [63].

Cross-talking with cancer associated fibro-
blasts (CAFs)

Cancer associated fibroblasts (CAFs) are the 
most abundant components of the tumor stro-
mal microenvironment [64]. Increasing evi-
dence suggested that CAFs exerting pivotal 
roles in the tumor microenvironment repro-
gramming as well as the tumor cells behavior 
[65, 66]. ITGB3 functionally mediated the sig-
nal communications between tumor cells and 
CAFs. For example, CAFs assemble fibronectin 
and trigger invasion of cancer cells mainly via 
integrin-αvβ3 [67]. Moreover, Wen S et al found 
that interaction of interleukin 32 with integrin 
β3 mediating the cross-talk between CAFs and 
breast cancer cells plays a crucial role in CAF-
induced breast tumor invasiveness [68]. The 
communications between tumor cells and stro-
mal cells that mediated by ITGB3 were visual-
ized in Figure 2. 

ITGB3 and the immune microenvironment 

Current evidence shows that ITGB3 affects 
tumor immunity via both the innate and adap-
tive immune systems. ITGB3 showed transcrip-
tional upregulation and a progressive increase 
of surface expression after neutrophils infiltra-
tion [69]. H2O2 and HOCl are the reactive oxy-
gen species produced by neutrophils. ITGB3 
could act as a regulator to augment TGF-β/
H2O2/HOCl signaling, transforming non-meta-
static tumors to a metastatic phenotype [70]. 
Additionally, a study of tuberculosis revealed 
that αvβ3 integrin expression is improved on 
monocytes, leading to increased monocyte 
recruitment [71]. The interaction between 
ITGB3 and MFGE8 inhibits macrophages to  
produce IL-1β in a necrotic cell-induced and 
ATP-dependent manner [72]. As we known, 
classical activated macrophages exert anti-
tumor effects by producing inflammatory cyto-
kines such as IL-1β. Furthermore, βig-h3 is a 
protein secreted mainly from the ECM of tumor 
associated fibroblasts, which could interact 
with ITGB3 expressed on the surface of CD8+ T 
cell and macrophages, thus leading to the inac-
tivation of CD8+ T cells and F4/80 macroph- 
ages [73]. Meanwhile, specific phagocytosis of 
apoptotic bodies by dendritic cells depends on 
the engagement of β3 integrin [74, 75]. More- 
over, human plasmacytoid dendritic cells 
express CD36 and CD61 (ITGB3), both of which 
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are involved in uptake of apoptotic cells and 
the induction of immune tolerance [76]. In con-
clusion, ITGB3 is more likely to be an immuno-
suppressive target in solid tumors. 

Inconsistent results exist concerning ITGB3’s 
involvement in immune regulation of hemato-
logical tumor. Soluble ITGB3 is a robust natural 
killer (NK)-cell activator against acute myelo-
cytic leukemia (AML) cells. This is accompanied 
by the induction of cytokines to improve the 
proliferation of NK cells, which specifically 
increases the cytotoxicity of NK cell against 
AML blasts and induces increased granzyme B 
and FAS ligand transcript levels. Moreover, 
ITGB3 favors the excretion of pro-inflamma- 
tory cytokines, directing a cytotoxic effect and 
amplify the immune response in acute myeloid 
leukemia cells [77]. Platelet β3 integrin can 

interact with fibrinogen, inducing the synthesis 
of P-selectin, which can mediate inflammation 
and the Th1 immune response [78]. In conclu-
sion, the function of ITGB3 in immune regula-
tion might be different under varies of circum-
stances (Figure 3). 

The regulation network of ITGB3

Upstream signaling pathway of ITGB3

TGF-β is the main upstream factor of integrins, 
which controls the malignant phenotype of 
tumors, such as invasiveness, stemness, and 
immune suppression [14]. TGF-β regulates the 
expression of integrin ligands and stimulates 
the expression of integrin-associated proteins. 
Chronic TGF-β exposure leads to increased lev-
els of mesenchymal-like cancer cells with 

Figure 2. ITGB3 mediated the cross-talking between tumor cells and stromal microenvironment. The ITGB3 medi-
ated signal is critical in the communication between tumor cells and stromal cells like fibroblasts and endothelial 
cells.
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enhanced ITGB3 expression, which is upregu-
lated by constant extracellular signal-regulated 
kinase (ERK) 1/2 activation [79]. The binding of 
fibroblast growth factor 1 (FGF1) to β3 integrin 
is significant for the enhanced TGF-β-stimula- 
ted EMT. FGF1 coupled with αvβ3 integrin sig-
naling also increased SMAD2 signaling [40]. In 
addition to TGF-β and FGF1 signaling, another 
critical ligand of β3 integrin, MFGE8, is involved 
in β3 integrin/FAK/PI3K/AKT pathway [80]. 
HOXD3, an upstream transcription factor linked 
to β3 expression, activates β3 integrin-mediat-
ed WNT/β-catenin signaling, which is critical to 
maintain cancer stemness [42]. Chronic and 
continuous production of reactive oxygen spe-
cies (ROS) can stimulate integrins, and ITGB3 is 
a core regulator in ROS-mediated activation of 
the PI3K-AKT-mTOR pathway [34]. Currently, 
several miRNAs have been proven to target 
ITGB3 and mediate ITGB3 signaling. For exam-
ple, miR-483-3p targets ITGB3 directly, thus 
repressing its downstream FAK/ERK signaling 

[81]. MiR-98 blocks the proliferation, invasion 
and metastasis of lung cancer cells by combin-
ing with the 3’-UTR of ITGB3 mRNA directly 
[82]. Moreover, miR-30a-5p and miR-320a can 
also exert tumor suppressive roles through the 
inhibition of ITGB3 [83, 84]. 

Downstream signaling pathway of ITGB3

The interaction between ITGB3 and Src is  
selective and is mediated by the tail of ITGB3. 
Src combines directly with ITGB3, resulting in 
the autophosphorylation and activation of SRC 
[85]. The ITGB3-c-Src signaling axis explains 
the aggressive behavior of αvβ3 integrin 
expression in tumors. Blockade of C-SRC 
kinase activity or decreased expression of 
endogenous ITGB3 could inhibit anchorage-
independent growth and metastatic ability [15]. 
Focal adhesion kinase (FAK), a non-receptor 
protein tyrosine kinase, exerting roles in local-
izing integrins to focal adhesions and assem-

Figure 3. The multiple functions of ITGB3 in tumor immune microenvironment. In solid tumor, the enhanced ITGB3 
signaling facilitates an immunosuppressive environment by recruiting M2 type macrophages and neutrophils, and 
making CD8+ T cells inactivation. While in hematological tumor, ITGB3 promotes NK cell and Th1 cell activation, thus 
amplifies the anti-tumor effects.  
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bling integrin signaling molecules. Besides, the 
autophosphorylation FAK at tyrosine 397 
(Y397) produces a binding site for Src [20]. It 
was revealed that β3 integrin regulated MMP2 
expression by activating FAK-PI3K-AKT signal-
ing, contributing to the increased metastatic 
potential of residual cancer in hepatocellular 
carcinoma [11]. ITGB3-AKT signaling mediates 
the proliferation of platelet-induced hemangio-
endothelioma cells [9]. In addition, ITGB3 can 
activate the P21 (RAC1) activated kinase 4 
(PAK4)-Yes Associated Protein 1 (YAP) axis, 
which contributes to the enhanced expression 
of GLUT3, a driver of cancer stem cells and gly-
colysis ability [22]. Interestingly, YAP-defective 
cells exhibited displaced expression of β3 inte-
grin [86]. Unliganded αvβ3 integrin can couple 
to Kirsten rat sarcoma viral proto-oncogene 
(KRAS), promoting the recruitment and activa-
tion of RAS like proto-oncogene B (RALB) to the 
tumor cell surface, resulting in the activation of 
NF-κB, a necessary factor for tumor prolifera-
tion and self-renewal ability [43]. The regulation 

potential strategy to inhibit TGF-β-related malig-
nant features such as invasiveness, stemness, 
and immunosuppression by targeting αvβ3 
integrin in glioblastoma [14]. Phase II clinical 
trials in non-metastatic castration-resistant 
prostate cancer have shown that CLG has a 
good tolerance, although it elicited a negative 
PSA response [89]. A recent a phase II clinical 
trial in advanced non-small-cell lung cancer, 
CLG combined with standard therapy was well 
tolerated with no unexpected adverse events 
or dose-limiting toxicities [90]. However, CLG 
combined with temozolomide chemoradiother-
apy exerted little improvement in outcomes in a 
phase III study of glioblastoma [91]. 

MK-0429, an orally active and non-peptide 
αvβ3 integrin antagonist, has high affinity for 
the purified αvβ3 integrin [92]. This inhibitor 
blocks the adhesion of HeK293-αvβ3 cells to 
vitronectin, displayed in the early stages of mel-
anoma metastasis, and the colonization and 
growth of this murine melanoma in the lungs 

Figure 4. The regulation network of ITGB3 in tumor cells. TGF-β is the main 
up-stream of ITGB3, other upstream modulators like MEGF8, HOXD3 and 
several mi-RNAs have been confirmed to regulate ITGB3 expression. The 
classical downstream signaling of ITGB3 including FAK/PI3K/AKT, MEK/
ERK, Akt, YAP/TAZ, KRAS/RalB/NF-κb, etc.

network of ITGB3 was summa-
rized in Figure 4. 

Target therapies for ITGB3

With the development of phar-
macological research in IT- 
GB3, several inhibitors target-
ing ITGB3 have been studied, 
some of which have been put 
into clinical trials, includ- 
ing cilengitide, MK0429, and 
vitaxin. Cilengitide (CLG, EMD 
121974), a cyclic RGD pep-
tide, blocks the αv subunit of 
integrins specifically, and has 
a high specificity for αvβ3 in- 
tegrins [7]. CLG inhibits the 
binding of αvβ3 integrins to 
the ECM, and has shown anti-
angiogenic and anti-tumor ef- 
fects prospectively in many 
cancers [87]. CLG can also 
promote the separation of 
glioblastoma and mesothelio-
ma cells from the ECM com- 
ponents via exposed RGD 
sequences, thereby leading to 
anoikis-dependent apoptosis 
and inhibition of invasion [7, 
88]. CLG was validated as a 
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was achieved by blocking the function of αvβ3 
integrin [93]. MK-0429 is undergoing clinical 
development to treat prostate cancer. Clinical 
research in men with hormone refractory pros-
tate cancer (HRPC) and metastatic bone dis-
ease (MBD) suggested that MK-0429 was gen-
erally well tolerated, with evidence of an early 
reduction in bone turn over, indicating a poten-
tial for clinical application [94]. 

Vitaxin, a synthetic monoclonal antibody that 
binds an epitope composed of αv and β3 integ-
rin subunits, thus blocking αvβ3 integrins, was 
implemented in clinical trials for the treatment 
of stage IV metastatic melanoma and andro-
gen-independent prostate cancer [19]. There 
are also several kinds of inhibitors targeting 
ITGB3, the full list of which is presented in Table 
1.

Conclusions and perspective

Currently, increasing numbers of studies are 
emphasizing the concept of “the tumor micro-
environment”. Traditionally, research usually 
focused on the tumor cells themselves, but 
ignored the other non-tumor cell components 
in the tumor microenvironment, as well as the 
adaption-related changes in the tumor micro-
environment, which may be the main reason for 
the robust resistance by tumors to classical 
intervention strategies such as chemotherapy 
and radiotherapy. In recent years, with a more 

comprehensive understanding of tumor hall-
mark characteristics, the concept of “the tumor 
microenvironment”, as well as “microenviron-
ment metabolism reprogramming” and “disor-
ganized microenvironment components” have 
been emphasized. Moreover, the driving roles 
of metabolic reprogramming and disordered 
microenvironment components in tumor malig-
nancy have been validated by large scale  
cohort studies and biological experiments [95-
99]. There is an urgent need to screen for a 
cross-functional target that is robustly associ-
ated with tumor malignancy and microenviron-
ment reprogramming, which has great potential 
as a promising intervention target in future 
tumor therapy. 

As a membrane receptor, ITGB3 exhibits a can-
cer-promoting function through its interactions 
with the tumor microenvironment. ITGB3 is one 
of the biomarkers of tumor angiogenesis and 
has multiple roles in the key steps of angiogen-
esis. ITGB3 enhances the glycolysis rate and 
lipid uptake, indicating that ITGB3 is involved in 
metabolic reprogramming, which is related to 
poor survival in many malignant tumors (Figure 
1). A hypoxic and acidic environment in tumors 
can also facilitate the expression and activa-
tion of ITGB3, which suggested the existence of 
a positive feedback loop between ITGB3 and 
microenvironment metabolic reprogramming. 
In TGF-β-induced EMT and tumor initiating 
cells, ITGB3 is upregulated, enhancing the 

Table 1. The summary of ITGB3 inhibitors
Inhibitor Mechanism Clinical trials Reference
Cilengitide Selectively bind to the ligand 

of integrin αvβ3
NCT01118676 Phase I NSCLC 
NCT00121238 Phase II Prostate cancer 
NCT01044225 Phase II  
GBM 
NCT00689221 Phase III  
GBM

PMID: 21269250  
[100] 
PMID: 21049281  
[89] 
PMID: 25163906 
[91]

MK-0429 Selectively inhibit binding of 
the ligand to integrin β3

NCT00302471 Phase I 
Hormone Refractory Prostate Cancer and 
Metastatic Bone Disease

PMID: 20398037  
[94]

Vitaxin Integrin ανβ3-specific mono-
clonal antibody

NCT00066196 Phase II Metastatic melanoma 
NCT00072930 Phase II Metastatic Androgen-
Independent Prostate Cancer

PMID: 9600913  
[103]

Luteolin Inhibit the integrin β3-FAK 
signal pathway

Null PMID: 22983392  
[104]

Methylseleninic acid (MSA) Down-regulate integrin β3 
signal pathway

Null PMID: 28842587  
[105]

Phoyunnanin E Down-regulate integrins αv 
and β3

Null PMID: 29284478 
[106]

Pinocembrin Inactivate the integrin β3-
FAK-p38α signaling pathway

Null PMID: 25949790 
[107] 
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migration, invasion, maintaining stemness and 
thus exhibiting resistance to target therapy 
(Figure 1). Notably, ITGB3 is highly expressed in 
non-tumor cells and is associated with the 
cross-talking between tumor cells and stromal 
cells as well as immune cells. Furthermore, the 
signaling crosstalk of ITGB3 includes TGF-β, the 
main upstream regulator of ITGB3, and a se- 
ries of downstream regulators, such as FAK, 
YAP1/TAZ, extracellular signal-regulated kina- 
se (ERK), and AKT, which then leads to cellu- 
lar behavior changes, including angiogenesis, 
EMT, apoptosis, maintenance of stemness, and 
immune suppression.

The multiple functions of β3 integrin in tumor 
progression and metastasis mean that many 
inhibitors such as cilengitide, MK-0429, and 
Vitaxin have already been put into both pre-
clinical and clinical trials. Notably, as an αvβ3 
integrin-specific inhibitor, cilengitide was the 
first candidate antiangiogenic drug and has 
been put into phase I and II clinical trials, which 
showed encouraging outcomes in pancreatic 
cells, glioma, and some metastatic solid tumors 
[100]. However, phase III trials of cilengitide did 
not show significantly improved outcomes in 
newly diagnosed glioblastoma, prostate can-
cer, lung cancer, or malignant melanoma, sug-
gesting that further research is needed [89, 90, 
101]. Recently, some findings lead us to con-
sider the complex roles of β3 integrin, such as 
its influence on the polarization of M2 macro-
phages in solid tumor, which have immunosup-
pressive functions. ITGB3 also could cause 
CD8+ T cell inactivation. Although the effects of 
β3 integrin on the tumor immune microenviron-
ment are complicated and confusing, they 
might explain the unexpected results in phase 
III trials [102], which indicated that the combi-
nation of ITGB3 targeted therapy with classical 
immunotherapy might be a promising strategy 
to treat patients resistant to ITGB3 targeting. 

Collectively, ITGB3 might regulate cell behavior 
differently in a variety cell types. Understanding 
the multiple roles of ITGB3 in the tumor micro-
environment is necessary to help direct prog-
ress in the design of specific targeting strate-
gies to maximize their clinical effects.
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