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Abstract: Oxidative stress plays an important role in the degeneration of dopaminergic neurons in
Parkinson’s disease (PD). Altered redox homeostasis in neurons interferes with several biological
processes, ultimately leading to neuronal death. Oxidative damage has been identified as one
of the principal mechanisms underlying the progression of PD. Several studies highlight the key
role of superoxide radicals in inducing neuronal toxicity. Batryticatus Bombyx (BB), the dried
larva of Bombyx mori L. infected by Beauveria bassiana (Bals.) Vuill., has been used in traditional
medicine for its various pharmacological effects. In the present study, BB showed a beneficial
effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by directly
targeting dopaminergic neurons. Treatment with BB improved behavioral impairments, protected
dopaminergic neurons, and maintained dopamine levels in PD mouse models. Here, we investigated
the protective effects of BB on MPTP-induced PD in mice and explored the underlying mechanisms of
action, focusing on oxidative signaling. In MPTP-induced PD, BB promoted recovery from impaired
movement, prevented dopamine depletion, and protected against dopaminergic neuronal degradation
in the substantia nigra pars compacta (SNpc) or the striatum (ST). Moreover, BB upregulated
mediators of antioxidative response such as superoxidase dismutase (SOD), catalase (CAT), glutathione
(GSH), Heme oxygenase 1 (HO-1), and NAD(P)H (nicotinamide adenine dinucleotide phosphate)
dehydrogenase (NQO1). Thus, treatment with BB reduced the oxidative stress, improved behavioral
impairments, and protected against dopamine depletion in MPTP-induced toxicity.
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1. Introduction

Parkinson’s disease (PD) is the second most neurodegenerative disorder induced by a degenerative
loss of dopaminergic neurons in projecting from the substantia nigra pars compacta (SNpc) to the
striatum (ST), leading to decreased contents of dopamine in the basal ganglia [1]. Approximately 1–2%
of the population aged above 65 years and 4% of individuals above 85 years of age are affected by
PD [1]. Decreased dopamine contents are associated with adverse movement impairments, including
bradykinesia, resting tremor, and postural instability [1,2]. Although the plausible mechanism of
PD is unknown, neuronal oxidation, neuroinflammation, and consequent mitochondria-mediated
neuronal damage have been implicated in PD pathogenesis [1,3]. Dopaminergic neurons are rich in
reactive oxygen species (ROS), which are a major cause of PD due to oxidative stress. ROS is one of
the factors that reduces cognitive and motor performance in neurodegenerative diseases. Oxidative
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stress is associated with a decline in oxidative defense mechanisms mediated by catalase (CAT) and
glutathione (GSH), and increased oxidative damage involving hydroxyl radicals and peroxynitrite
levels [3,4]. Furthermore, ROS accumulation in PD may be increased by exposure to pesticides
and neurotoxins [2,4]. Increased levels of lipid peroxidation products are observed in the SNpc of
patients with PD. Thus, a high level of antioxidant activity has been linked to protection against
neurodegenerative diseases. Ropinirole (4-[2-(dipropylamino)ethyl]-1,3-dihydro-2H-indol-2-one),
a non-ergoline dopamine agonist with chemical structure similar to that of dopamine [5], is used to
treat the signs and symptoms of idiopathic PD, such as stiffness, muscle spasms, poor muscle control,
and tremors [6]. It is one of the most widely prescribed drugs for PD. We used ropinirole as a positive
control to compare the protective effects of dopaminergic neurons associated with Batryticatus Bombyx
(BB) against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity.

BB, called Back-Gang-Jam in Korea, is the dried larva of Bombyx mori L. infected by
Beauveria bassiana (Bals.) Vuill. BB, and was originally described in the Chung-bu, category of
Dongui-Bogam, an ancient Korean medical book [7]. BB exhibits various pharmacological activities,
including anticonvulsant, antiepileptic, and neurotrophic, anticoagulant, antitumor, antibacterial,
antifungal, antioxidant, and hypoglycemic effects [7]. Further, BB contains different proteins,
peptides, fatty acids, flavonoids, nucleosides, steroids, coumarin, and polysaccharides [7]. Moreover,
BB has recently been shown to exhibit neuroprotective and anti-necrotic effects in pyramidal
neurons, neurotrophic (upregulation of nerve growth factor) and anti-oxidative (upregulation of
superoxide dismutase, SOD) effects in astrocytes, and antiapoptotic effects (inhibition of lipid
peroxidation) in hippocampal neurons [7–9]. Recently, Hu et al. reported that BB exerts neuroprotective,
anti-oxidative, and anti-apoptotic effects against pentylenetetrazole- or H2O2-induced epileptic
neurotoxicity via the PI3K/Akt signaling pathways [10]. However, whether BB has beneficial effects
on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity directly by targeting
dopaminergic neurons and whether BB improved behavioral impairments, protected dopaminergic
neurons, and prevented dopamine depletion in PD mice models has yet to be reported. Further,
evidence supporting a mechanistic role of BB in PD is lacking. Thus, we investigated the neuroprotective
effects of BB against MPTP-induced neuronal damage and explored the underlying mechanisms.

2. Materials and Methods

2.1. Preparation of BB Extract

BB was purchased from Kwong-Mung-dang Company (Ulsan, Korea) and authenticated by
Dr. Goya Choi (Korea Institute of Oriental Medicine; KIOM, Naju-si, Korea). A voucher specimen
(3-18-0030) was deposited at the KIOM. BB was extracted in distilled water for 3 h under reflux
(100 ± 2 ◦C), filtered, evaporated on a rotary vacuum evaporator, and lyophilized (yield, 21.78%).
The extracts were stored at −20 ◦C for further use.

2.2. Animals and Drug Administration

Male C57BL/6 mice (8 weeks, 23–24 g, purchased from Doo Yeol Biotech, Seoul, Korea) were
maintained at 20–23 ◦C under 12-h light/12-h dark cycle with food and water provided ad libitum.
The experiment was performed according to the guidelines of the Animal Care and Use Committee of
KIOM and protocols approved by the Institutional Animal Care Committee of KIOM (KIOM-18-056).
Sixty mice were arranged by six groups: (1) Control (n = 10); (2) MPTP (n = 10); (3) MPTP + BB 1
mg/kg/day (n = 10); (4) MPTP + BB 5 mg/kg/day (n = 10); (5) MPTP + BB 25 mg/kg/day (n = 10); and (6)
MPTP + ropinirole 1 mg/kg/day (n = 10). BB was administered for 5 consecutive days. MPTP was
administered acutely as described previously. On day 3 of the experiment, MPTP (20 mg/kg) was
injected intraperitoneally four times at 2-h intervals [3,11]. The control group was administered an
equal volume (0.25 mL) of the vehicle.
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2.3. Rotarod and Pole Test

The rotarod and pole test were performed, as previously described, on days 1 (rotarod) or 5 and 7
(pole) after the last MPTP injection [3,11].

2.4. Brain Tissue Preparation

On day 7 after MPTP injection, mice were perfused transcardially with 0.05 M phosphate-buffered
saline (PBS). Brains were removed and fixed in 4% PFA (paraformaldehyde) 1 day at 4 ◦C, and immersed
in 30% sucrose for cryoprotection. Serial 30-µm-thick coronal sections were cut on a freezing microtome
and stored in 25% glycerol at 4 ◦C until use. Western blot and kit-based analyses were conducted
following rapid dissection, homogenization, and centrifugation of SNpc and ST. The final supernatant
was stored at –70 ◦C until use.

2.5. Immunohistochemistry (IHC) Analysis

IHC was performed as described previously [11]. Briefly, treated with 1% H2O2 (Sigma-Aldrich,
St. Louis, MO, USA) for 15 min, and incubated with rabbit anti-tyrosine hydroxylase (TH) (1:1000)
overnight at 4 ◦C. After washing in PBS, the sections were incubated with biotinylated anti-rabbit
IgG (Vector Laboratories, Burlingame, CA, USA) (1:200) for 90 min, washed, and incubated with
ABC (Vector Laboratories, Burlingame, CA, USA) (1:100) for 1 h. Peroxidase response was visualized
with DAB (Sigma-Aldrich, St. Louis, MO, USA). Images were detected using a microscope (Olympus
Microscope System BX53; Olympus, Tokyo, Japan) equipped with a 20× objective lens.

2.6. Western Blot and Determination of Dopamine Content and SOD, CAT, and GSH Levels

Western blot was performed as described previously [12]. The dopamine content in the ST of
the mouse brain was assessed using a commercially available fluorometric assay kit, following the
manufacturer’s protocol (Rocky Mountain Diagnostics, Colorado Springs, CO, USA). Further, the levels
of SOD, CAT, and GSH expression in the SNpc of the mouse brain were determined using ELISA
(enzyme-linked immunosorbent assay) kits, following the manufacturer’s instructions (Biovision,
Mountain, CA, USA for SOD and CAT ELISA kits and Cayman chemical, Ann arbor, MI, USA for GSH
ELISA kit).

2.7. Statistical Analyses

All statistical parameters were calculated using the Graphpad Prism 7.0 software (Graphpad
Software, San Diego, CA, USA). Values are expressed as means ± standard error of the mean (S.E.M.).
Statistical analyses were performed using one-way analysis of variance (ANOVA) with Tukey’s multiple
comparison post-hoc test. p < 0.05 was considered statistically significant.

3. Results

3.1. Effect of BB on MPTP-Induced Behavior Impairment

To evaluate the effect of BB on MPTP-induced motor deficits and postural imbalance, a rotarod
test was performed. MPTP significantly reduced the latency time to 16.40 ± 2.99 s on day 1.
However, latency times significantly increased in the MPTP + 1–25 mg/kg/day BB and ropinirole
groups to 20.60 ± 3.71-48.61 ± 7.32 s on day 1 (Figure 1). Additionally, to measure the effect of BB on
MPTP-induced bradykinesia, a pole test was performed. T-turn (time to turn) and T-LA (locomotion
activity time) were significantly increased to 4.62 ± 1.17 s and 10.70 ± 2.19 s, respectively, on day
5. However, T-turn and T-LA were significantly shortened in the MPTP + 25 mg/kg/day BB group
to 2.17 ± 0.32 and 6.58 ± 0.61, respectively, on day 5. Further, T-turn and T-LA were significantly
increased to 5.56 ± 1.59 s and 11.09 ± 1.94 s, respectively, on day 7, but were significantly shortened in
the MPTP + 25 mg/kg/day BB group to 1.44 ± 0.19 and 5.31 ± 0.47, respectively, on day 7 (Figure 1).
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Figure 1. Effects of Batryticatus Bombyx (BB) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced behavior impairment. One day after MPTP treatment, the retention time on the rotating rod
was recorded (A). On days 5 and 7 after MPTP treatment, time to turn (T-T) completely downward
and time to fall off the rod onto the floor (T-LA) were recorded (B). Values represent means ± standard
error of the mean (S.E.M.). * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the control group,
and # p < 0.05 and ## p < 0.01 compared with the MPTP-treated group.

3.2. Effect of BB on MPTP-Induced Dopamine Depletion

We determined striatal dopamine contents (Figure 2). Injection with MPTP significantly decreased
striatal dopamine (to 8.47 ± 0.25 nmol/mL), whereas treatment with 1–25 mg/kg BB increased dopamine
contents in ST reduced by MPTP induction (from 13.37 ± 1.57 to 16.79 ± 1.20 nmol/mL).
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with the MPTP-treated group or control group.

3.3. Effects of BB on MPTP-Induced Dopaminergic Neuronal Loss in SNpc and ST

To confirm the effects of BB on dopaminergic neuronal death, we performed TH-specific IHC
in the SNpc and ST of mouse brains. In MPTP-treated mice, the number of TH-positive cells in the
SNpc and the optical density (OD) in the ST were decreased to 50.66 ± 3.53% and 43.56 ± 6.16%,
respectively, compared with the control group. However, these OD levels were significantly increased
by 5–25 mg/kg BB treatment (94.28 ± 13.36% to 95.67 ± 6.69% and 65.65 ± 11.92% to 66.01 ± 2.83%,
respectively, compared with the control group) (Figure 3 or Supplementary Figure S1).
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Figure 3. Effects of BB on MPTP-induced dopaminergic neuronal damage. Dopaminergic neurons
were visualized by tyrosine hydroxylase (TH)-specific Immunohistochemistry (IHC). The TH-positive
neurons in the substantia nigra pars compacta (SNpc) were counted (A) and the optical density in the
striatum (ST) was measured (B). Representative photomicrographs were taken of the SNpc and ST (C).
Values are presented as means ± S.E.M. ** p < 0.01 and *** p < 0.001 compared with the control group.
Scale bar: 200 µm.

3.4. Effects of BB on MPTP-Induced Expression Levels of Antioxidant Enzymes

To evaluate the effects of BB on MPTP-induced expression of antioxidant enzymes, we evaluated
SOD, CAT, and GSH levels in the mouse SNpc by ELISA. MPTP significantly decreased SOD
(to 43.16 ± 5.74%), CAT (to 2.09 ± 0.17 µM/mL), and GSH (to 0.25 ± 0.04 µM) levels, compared
with the control levels, while treatment with 1–25 mg/kg BB increased MPTP-induced decrease in
levels of SOD (from 52.05 ± 2.40% to 104.86 ± 8.64%), CAT (from 2.58 ± 0.07 to 2.85 ± 0.11 µM
/mL), and GSH (from 0.29 ± 0.09 to 0.89 ± 0.19 µM), compared with the control group (Figure 4).
Moreover, MPTP significantly decreased HO-1 (to 40.51 ± 7.12%) and NAD(P)H dehydrogenase
(NQO1) (to 45.72 ± 4.29%) levels, compared with the control, while treatment with 1–25 mg/kg BB
increased MPTP-induced decrease in levels of HO-1 (from 77.95 ± 8.25% to 98.97 ± 4.54%) and NQO1
(from 63.31 ± 1.02% to 84.62 ± 5.91%), compared with the control group (Figure 5).

Figure 4. Effects of BB on MPTP-induced antioxidant enzyme levels. Levels of antioxidant enzymes
such as superoxidase dismutase (SOD; A), catalase (CAT; B) and glutathione (GSH; C) in SNpc were
measured using ELISA kits. Values represent means ± S.E.M. ** p < 0.01 compared with the control
group, and # p < 0.05 and ## p < 0.01 compared with the MPTP-treated group.
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Figure 5. Effects of BB on MPTP-induced Heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase
(NQO1) expression. Bar graphs represent the relative proteins expression of HO-1 (A) and NQO1
(B) adjusted to β-actin expression. The cellular proteins were used for the detection of HO-1 and NQO1
by Western blot (C). Values represent means ± S.E.M. ** p < 0.01 and *** p < 0.001 compared with the
control group, and ## p < 0.01 and ### p < 0.001 compared with the MPTP-treated group.

4. Discussion

We investigated whether BB ameliorated the behavioral impairments and pathology associated
with PD using an MPTP-induced PD mouse model. We found that BB attenuated dopamine depletion
and inhibited motor impairment in MPTP mice. Moreover, BB increased the number of TH-positive
cells in the SNpc and the fiber density in the ST. Further, BB inhibited the downregulation of oxidative
stress-related signaling molecules such as SOD, CAT, GSH, heme oxygenase-1 (HO-1), and NAD(P)H
dehydrogenase (NQO1) in the SNpc, suggesting a neuroprotective effect.

To evaluate the inhibitory effects of BB on motor impairment, behavioral tests (pole and rotarod
tests) used in PD mouse models were conducted in the MPTP mouse model in this study. The rotarod
test measures motor coordination, postural balance, and bradykinesia. The pole test determines the
agility of animals and measures bradykinesia. Both tests are used to identify behavioral impairments in
PD [3,11,13]. Our behavioral analysis revealed that BB significantly improved motor impairment in the
MPTP mouse model. Behavior impairments in PD are caused by dopamine deficiency via dopaminergic
neurons loss. The most general forms of PD are sporadic with unknown cause, but postmortem studies
suggest that apoptosis, oxidative stress, neuroinflammation, and abnormal aggregation are related with
dopaminergic neuronal loss [14,15]. In this study, IHC for TH was performed to evaluate the protective
effect of BB on dopaminergic neurons in the MPTP model. TH converts tyrosine to dopamine, which is
the rate-limiting step in dopamine biosynthesis [16]. Therefore, TH immunoreactivity may accurately
reflect the activity of dopaminergic neurons and neurites in animal models of PD [17]. IHC results
show that BB protected dopaminergic neurons in both the ST and SNpc, indicating its neuroprotective
effect. Moreover, BB significantly restored dopamine levels in the MPTP mouse model. Therefore,
BB strongly protects against dopaminergic neuronal degeneration in PD.

Oxidative stress is a central event contributing to the degeneration of dopaminergic neurons in PD
pathogenesis [1]. Although ROS production induces PD, the cellular and molecular mechanisms linking
oxidative stress to dopaminergic neuronal death are poorly characterized [18,19]. The primary insults
induce the greatest spike in ROS levels, which contributes to oxidative damage of lipids, proteins,
and nucleic acids, resulting in physiological deficits [19]. Defective macromolecule synthesis or
physiological imbalance results in mitochondrial dysfunction and neuroinflammation, which enhances
ROS synthesis, resulting in neuronal damage [19]. ROS cytotoxicity is mediated via oxidation of
cell constituents, which leads to deterioration of architecture and, finally, death [20]. Under normal
conditions, continuous free radical production is neutralized by the protection of antioxidant enzymes,
such as SOD, CAT, and GSH [19]. The superoxide radical or singlet oxygen radical generated via cellular
metabolism is catalytically converted to H2O2 and O2 by SOD [21]. Toxic H2O2 in neurons is converted
to deleterious hydroxyl radical (OH•) in the presence of Fe2+ via Fenton reaction [21,22]. Therefore,
CAT reduces H2O2 to water and molecular oxygen in peroxisomes to curtail free radical-induced
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neuronal damage [21,23]. However, CAT is absent in mitochondria, where glutathione peroxidase
(GPx) catalyzes the reduction of H2O2 to water and lipid peroxides to their corresponding alcohols [21].
Thus, the antioxidants are involved in first-line defense against oxidative stress [21,22]. Effective
first-line defense mediated via SOD, CAT, and GPx is indispensable to the defense strategy, especially
the detoxification of superoxide anion radical (O2•), which is perpetually generated in normal body
metabolism via several processes [21,23]. Oxidative stress may be triggered by reduced efficiency of
these endogenous antioxidants, especially in PD patients [21]. Glucose 6-phosphate dehydrogenase
is essential for maintaining glutathione levels in the reduced state. A decrease in SOD and other
antioxidant enzyme activities and increase in various markers of lipid peroxidation may occur in the
SNpc of PD patients [24]. In this study, the activity of SOD, CAT, and GSH was significantly decreased
in the group exposed to MPTP only, suggesting that oxidative stress mediates the pathogenesis
of PD. BB treatment significantly enhanced the levels of SOD, CAT, and GSH in mice exhibiting
MPTP-induced PD.

Further, HO-1 is an enzyme that catalyzes the heme degradation, that generates carbon monoxide,
biliverdin, and ferrous iron [25]. HO-1 levels increase by several fold in response to various inter-cellular
stresses, including oxidative damage and inflammation, suggesting an important role of this enzyme
in cellular protection. Accumulating evidence indicates that HO-1 overexpression protects various
tissues from injury, whereas decreased HO-1 expression increases susceptibility to injury due to
various stress conditions [25,26]. In the brain, HO-1 expression is low and restricted to small groups
of neurons and glial cells [25,27]. Conversely, HO-1 mRNA is physiologically detectable at high
levels in the hippocampus and cerebellum, suggesting a cellular reserve of HO-1 transcript that is
rapidly available for protein synthesis [28]. It is generally accepted that elevated HO-1 levels restore
redox homeostasis and down-modulate inflammation. We previously demonstrated that induction
of the enzyme NQO1, which catalyzes the removal of quinone, leads to protection of dopaminergic
cells in vitro [29]. Additionally, NQO1 overexpression protected cells against dopamine-induced
cell death [30]. The SNpc expresses NQO1 in the brains of normal, as well as PD, patients [31].
Thus, the interaction between various players generates a positive feedback loop, inducing the
progressive loss of dopaminergic neurons in PD. Also, understanding the mechanistic system of
oxidative stress underlying the dopaminergic neuronal loss may provide a therapeutic approach
against PD. Furthermore, in this study, the levels of HO-1 and NQO1 were significantly decreased in
the group exposed to MPTP only, suggesting that oxidation was related to the pathogenesis of PD.
HO-1 and NQO1 levels significantly improved by BB treatment in MPTP-induced PD mice. Recently,
many neuroprotective proteins, including GSH, HO-1, and NQO1, were controlled by Nrf2, a master
regulator of antioxidant response in neurons. Studies related to the Nrf2/dopaminergic system reported
that Nrf2 activation is the key factor regulating cytoprotective gene expression in knockout Nrf2
mice [32]. Therefore, functional Nrf2 regulation is of major importance in PD-related pathology. In this
study, we explored the regulatory effects of BB on MPTP-induced antioxidant signaling by measuring
the Nrf2-related proteins HO-1, GSH, and NQO1. The results suggest that BB exerts a therapeutic effect
on MPTP-induced oxidative stress, perhaps due to its antioxidant activity and reduced cellular toxicity.

However, the study limitations need to be addressed in future studies. First, studies should
focus on in vivo evidence using transgenic animal models to establish the antioxidant potential of
BB. Second, we mainly analyzed and separated the components of BB. Studies should isolate the
active ingredient by analyzing the components of BB penetrating through the blood–brain barrier,
and determine the underlying dopaminergic neuronal protective mechanism. Third, clinical studies
are needed to investigate the role of BB and its components in PD prevention/treatment in humans.
Based on human equivalent dose calculation, the human dose of the BB extract corresponding to a
bodyweight of 60 kg is 121.8 mg/day. Since animal intervention studies differ from randomized clinical
trials, it is necessary to adjust and optimize the dosages for animal intervention studies based on
clinical trial methodology [33]. Because BB affects multiple signaling pathways of antioxidant response,
it may be used in combination therapies for the treatment of PD.
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5. Conclusions

BB restored impaired movement and dopamine depletion in MPTP-induced PD mice. In addition,
BB decreased dopaminergic neuronal loss in the SNpc and ST of MPTP-induced PD mice and increased
key indicators of antioxidant response reduced by MPTP. These results strongly suggest that BB is a
potential neuroprotective agent that can be used to prevent PD progression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/8/12/574/s1:
Figure S1: Effects of Batryticatus Bombyx (BB) on MPTP-induced dopaminergic neuronal death. Dopaminergic
neurons were visualized by TH-specific immunostaining. Representative photomicrographs of the striatum (ST)
were taken.
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