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Introduction: Nephrotic syndrome (NS) is a kidney disease that affects both children and adults. Glucocorti-

coids have been the primary therapy for >60 years but are ineffective in approximately 20% of children and

approximately 50% of adult patients. Unfortunately, patients with steroid-resistant NS (SRNS; vs. steroid-

sensitive NS [SSNS]) are at high risk for both glucocorticoid-induced side effects and disease progression.

Methods: We performed proton nuclear magnetic resonance (1H NMR) metabolomic analyses on plasma

samples (n ¼ 86) from 45 patients with NS (30 SSNS and 15 SRNS) obtained at initial disease presentation

before glucocorticoid initiation and after approximately 7 weeks of glucocorticoid therapy to identify

candidate biomarkers able to either predict SRNS before treatment or define critical molecular pathways/

targets regulating steroid resistance.

Results: Stepwise logistic regression models identified creatinine concentration and glutamine concen-

tration (odds ratio [OR]: 1.01; 95% confidence interval [CI]: 0.99–1.02) as 2 candidate biomarkers predictive

of SRNS, and malonate concentration (OR: 0.94; 95% CI: 0.89–1.00) as a third candidate predictive

biomarker using a similar model (only in children >3 years). In addition, paired-sample analyses identified

several candidate biomarkers with the potential to identify mechanistic molecular pathways/targets that

regulate clinical steroid resistance, including lipoproteins, adipate, pyruvate, creatine, glucose, tyrosine,

valine, glutamine, and sn-glycero-3-phosphcholine.

Conclusion: Metabolomic analyses of serial plasma samples from children with SSNS and SRNS identi-

fied elevated creatinine and glutamine concentrations, and reduced malonate concentrations, as auspi-

cious candidate biomarkers to predict SRNS at disease onset in pediatric NS, as well as additional

candidate biomarkers with the potential to identify mechanistic molecular pathways that may regulate

clinical steroid resistance.

Kidney Int Rep (2020) 5, 81–93; https://doi.org/10.1016/j.ekir.2019.09.010

KEYWORDS: biomarkers; metabolomics; nephrotic syndrome; steroid resistance

ª 2019 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spondence: Shipra Agrawal or William E. Smoyer, Center for

al and Translational Research, The Research Institute at

wide Children’s Hospital, 700 Children’s Drive, Columbus,

205, USA. E-mail: Shipra.agrawal@nationwidechildrens.org

illiam.smoyer@nationwidechildrens.org; or Susan J.

er, 500 Laureate Way, Kannapolis, NC 28081. E-mail:

_sumner@unc.edu

embers of The Midwest Pediatric Nephrology Consortium

ted in the Appendix.

SA, and SM contributed equally to the manuscript.

and SJS contributed equally to the manuscript.

ved 31 July 2019; accepted 9 September 2019; published

19 September 2019

International Reports (2020) 5, 81–93
G
lomerular disease is the third leading cause of
end-stage kidney disease in the United States and

its related health care costs are approximately $4.1
billion annually. Immunosuppressive drugs are the pri-
mary therapies for NS, as well as most glomerular dis-
eases, although approximately 20% to 50% of patients
with NS fail to achieve clinical remission in response to
glucocorticoid (GC) therapy. Unfortunately, in the
absence of biomarkers to predict treatment responsive-
ness, many patients receive prolonged yet ineffective
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GC therapy, leaving them at high risk for both toxic
side effects and disease progression. However, we still
do not have an adequate understanding of the prog-
nostic factors and specific molecular pathways that
are the most critical regulators of NS.

Potential strategies to develop biomarkers able to
predict clinical steroid responsiveness in glomerular
disease include the use of either directed approaches
using gene arrays (gene expression), enzyme-linked
immunosorbent assay testing (protein expression), or
unbiased methodologies, such as proteomics, metab-
olomics, or transcriptomics.1–6 Because the kidney is
the major organ regulating the composition of urine
and blood, kidney diseases are uniquely suited to be
studied by metabolomics. Indeed, some of the earliest
metabolic profiling studies were undertaken to identify
uremic toxins,7 and metabolomics has since been
widely applied to kidney diseases.8–12 However, only a
limited number of studies have focused on glomerular
disease and/or NS,1,2,13–18 and these studies have
focused primarily on urinary metabolomic profiling of
cases and controls, or disease severity in adults.

NS is a kidney disease that affects both children and
adults. The annual incidence in children is 2 to 7 new
cases, and the prevalence is 16 cases per 100,000 chil-
dren.19–21 Although GC treatment has been the main-
stay of therapy for >60 years, approximately 20% of
children and approximately 50% of adults with NS fail
to enter complete remission after 6 to 8 weeks of oral
GC therapy, at which point children are then referred
to as having SRNS. This distinction is critical, because
patients who present with or develop SRNS have a
dramatically higher risk (approximately 50%) for
developing progressive kidney disease or end-stage
kidney disease within the following 5 years,22 unlike
patients who enter complete remission following GC
treatment (SSNS) and are at low risk.

Unfortunately, no validated biomarkers have yet
been identified that are reliably able to predict SRNS,
leaving many patients at high risk for both toxic side
effects of GC treatment, as well as disease progression.
Thus, the identification and validation of biomarkers
able to predict the clinical response to GC at disease
onset could avoid significant GC-induced drug toxicity
by enabling physicians to more rapidly initiate alter-
native treatments more likely to induce disease remis-
sion and delay or prevent disease progression. In
addition, the identification of specific molecular path-
ways and targets responsible for NS and/or GC resis-
tance could enable the development of more effective
and less toxic targeted future therapies for NS.

The present studies were designed to test the hy-
potheses that metabolomic analyses of paired plasma
82
samples from children with SSNS and SRNS can be
used to identify biomarkers able to (i) predict clinical
steroid resistance, (ii) define specific molecular path-
ways or targets mechanistically associated with clinical
steroid resistance, and (iii) differentiate steroid sensi-
tivity from steroid resistance in NS (see Figure 1). To
test these hypotheses, we analyzed paired plasma bio-
samples collected from 2008 to 2014 through the Mid-
west Pediatric Nephrology Consortium from children
with NS that were obtained both at the time of disease
presentation (before initiation of GC therapy) and after
an average of approximately 7 weeks of GC treatment,
when the clinical determination of SRNS versus SSNS
was made by the treating nephrologist.

METHODS

Study Approval and Ethics Statement

All research protocols and consent documents were
approved by the institutional review board of Nation-
wide Children’s Hospital as the coordinating center
(approval numbers IRB07–00400, IRB12–00039 and
IRB05–00544), as well as by each of the other partici-
pating centers of the Midwest Pediatric Nephrology
Consortium. Informed written consent (and assent,
where appropriate) was obtained from the parents
of all participants before samples were collected, in
accordance with the Declaration of Helsinki.

Pediatric Patients With NS and Plasma

Collection

Pediatric patients with NS aged between 18 months
and 18 years were included in this study if they
exhibited 3þ proteinuria and edema. The clinical
response of each patient to GC (i.e., SRNS or SSNS)
was assessed approximately 6 to 10 weeks after initial
presentation and is also shown in Table 1. Fifty
percent of the patients enrolled were excluded from
this study because of our inability to confirm with
certainty that they had not received even a single
dose of GC therapy before beginning the study, or
before the first (pre-steroid) sample collection. Paired
plasma samples were collected for each patient, first
sample “pre” at the time of disease presentation
before even a single dose of GC, and second sample
“post” after 6 to 10 weeks of GC therapy. There were
4 patients (3 SSNS and 1 SRNS) who did not have the
second sample collected. Broad-spectrum NMR data
were acquired for 86 patient samples and the distri-
bution of sample sizes is described in detail in
Figure 1 and provided in figure legends and tables.
One patient was identified as steroid-dependent and
was excluded from all further analyses. Please see
Supplementary Material for additional details.
Kidney International Reports (2020) 5, 81–93



Figure 1. Study hypothesis and design. The present studies were designed to test the hypothesis that metabolomic analyses of paired plasma
samples from children with steroid-sensitive nephrotic syndrome (SSNS) and steroid-resistant nephrotic syndrome (SRNS) can be used to
identify biomarkers able to (approach I) predict clinical steroid resistance, (approach II) define specific mechanistic molecular pathways or
targets associated with clinical steroid resistance, and (approach III) differentiate clinical steroid sensitivity from steroid resistance. SSNS Pre,
light blue circle; SRNS Pre, yellow triangle; SSNS Post, dark blue circle; SRNS Post, orange triangle. Starting patient samples: n ¼ 86 (SSNS
Pre ¼ 30, SSNS Post ¼ 27, SRNS Pre ¼ 15, SRNS Post ¼ 14). Approach I: Thirty SSNS patient samples were subjected to 1H NMR and 27 were
analyzed after removing 2 outliers and 1 steroid-dependent [SD] patient; 15 SRNS patient samples were subjected to HNMR and were analyzed.
Approach II: Twenty-seven SSNS pre-patient samples were analyzed after removing 2 outliers and 1 SD patient; 26 SSNS post-patient samples
were analyzed after removing 1 SD patient; 24 sample pairs were analyzed for relative concentration data; 15 SRNS pre-patient samples were
analyzed; 14 SRNS post-patient samples were analyzed; and 14 pairs were analyzed for relative concentration data. Approach III: Twenty-six
SSNS post-patient samples were analyzed after removing 1 SD patient; 14 SRNS post-patient samples were analyzed.

JR Gooding et al.: Metabolomic Biomarkers of Steroid Resistance in NS TRANSLATIONAL RESEARCH
1H NMR Metabolomics
1H NMR spectra of diluted plasma samples were ac-
quired with a 1D Carr-Purcell-Meiboom-Gill pulse
Table 1. Demographic of patients with nephrotic syndrome

Patient attributes

Steroid-resistant
(n [ 15)

Steroid-sensitive
(n [ 30)

P
Mean (SD)
or count (%)

Mean (SD)
or count (%)

Male 5 (33.3%) 13 (43.3%) 0.57

Female 9 (60%) 16 (53.3%)

Unknown 1 (6.7%) 1 (3.3%)

White 6 (40%) 13 (43.3%) 0.28

Black/African American 7 (46.7%) 7 (23.3%)

Othera 0 (0%) 7 (23.3%)

Unknownb 2 (13.3%) 3 (10%)

Body mass index percentile 88.7 (12.0) 85.3 (20.4) 0.50

Subjects with nonmissing data 13 27

Age (yr) 9.5 (3.8) 5.8 (3.7) 0.0006

Subjects with nonmissing data 14 28

Weeks to post-treatment sample 7.0 (2.2) 6.9 (2.8) 0.84

Subjects with nonmissing data 14 27

aIncludes Asian and Native American persons.
bRace not disclosed or missing.
Demographics of the phenotypic groups indicating count (%) and P value from a c2 test
of males, females only, or white, black/African American only for categorical variables.
The mean (SD) and P value from a t test with Satterthwaite approximation for unequal
variances are reported for continuous variables. Bold value is statistically significant.

Kidney International Reports (2020) 5, 81–93
sequence (cpmgpr1d) on a Bruker (Billerica, MA)
Avance III 700 MHz NMR spectrometer (located at the
David H. Murdock Research Institute at Kannapolis,
NC) using a 3-mm cryogenically cooled CRYO QNP
probe and ambient temperature of 25 �C. Representa-
tive 1H NMR spectra can be found in Supplementary
Figure S1 and further procedural details are outlined
in the Supplementary Material.

Statistical Methods

For univariate statistics, the count (%) and P value
from a c2 test is reported for categorical variables
(demographics). The mean (SD) and P value from a
t test with Satterthwaite approximation for unequal
variances are reported for continuous variables (de-
mographics, bins, and concentrations). A P value less
than 0.05 was considered significant, and P values were
not adjusted for multiple testing because this was an
exploratory analysis. Statistical analyses were con-
ducted using SAS 9.4 (SAS Institute Inc., Cary, NC).
Unsupervised (principal component analysis) and su-
pervised (orthogonal partial least-squares discriminate
analysis [OPLS-DA]) multivariate analyses were
completed in SIMCA 14.1 (Umetrics, Malmo, Sweden)
using mean centering and pareto scaling to reduce the
dimensionality of the binned data and visualize the
variation in the data.23,24 OPLS-DA allows visualization
83
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of the separation of the study groups, and the variable
influence on projection (VIP) statistic provides infor-
mation on the importance of a bin in differentiating
these groups with higher VIP values, indicating greater
importance. Bins important to differentiating the
phenotype had either VIP $1 where the jack-knifed CI
does not include 0 OR a P < 0.1 from a t test with a
Satterthwaite approximation when paired samples were
treated as independent, to be consistent with the
comparison of 2 classes in the binned analyses.

Logistic regression models for the odds of steroid
resistance among subjects were created using a step-
wise selection procedure with candidate predictors
entering the model at P < 0.05 and exiting the model at
P < 0.05. Three models were created: (i) demographics
alone, (ii) metabolites (relative concentration) alone,
and (iii) metabolites plus demographics. The candidate
predictors for the demographics-only model were age
(years), body mass index percentile, and dichotomized
race/ethnicity (African American or white/other). The
concentration fit metabolites were candidate predictors
for the metabolites-only model. The final model
including demographics and metabolites always
included the final result from the demographics model,
and the model selection algorithm chose the metabo-
lites. Continuous variables were centered, and the fit of
each model was assessed using the Hosmer-Lemeshow
goodness of fit test. Receiver operating characteristics
curve and area under the curve (AUC) analyses were
used to assess each model’s ability to predict clinical
steroid resistance. Subjects identified as outliers (n ¼ 2)
or who were missing age (n ¼ 3) were excluded from
the modeling.

Modeling was completed for 2 sets of samples: (i)
samples from subjects of all ages (n ¼ 39) and (ii)
samples from subjects older than 3 years (n ¼ 28).
RESULTS

Patients

Eighty-eight pediatric patients were enrolled from 2008
to 2014, although only approximately 50% of these pa-
tients (n ¼ 45) were able to be enrolled before receiving
even a single dose of steroids. All 45 patients who had
not received any steroids before the first sample collec-
tion (pretreatment) were included in the metabolomic
analyses, and the other patients were excluded. Detailed
clinical data were obtained from all patients and included
in the analysis (Table 1). Of these, paired samples were
used from 41 patients (27 SSNS and 14 SRNS), and pre-
treatment only samples were used from 4 additional
patients (3 SSNS and 1 SRNS). Patients clinically phe-
notyped as SSNS achieved complete remission of pro-
teinuria within an average of approximately 7 weeks of
84
steroid therapy, whereas patients who did not achieve
remission during this time frame were phenotyped as
SRNS. Children with SSNS differed from those with
SRNS in age, as SRNS patients presented (as expected) at
a later age than SSNS (9.5 vs. 5.8 years).25 To account for
differences in the pharmacodynamics of steroids in
children with SSNS versus SRNS due to differences in
weight, height, and body mass index, we calculated the
average prescribed steroid dosage in a representative
subset cohort of these 2 groups. The differences in ste-
roid dosage (SSNS, 1.81 � 0.23 mg/kg per day vs. SRNS,
1.24 � 0.14 mg/kg per day) were found to be not
significantly different between the 2 groups by
nonparametric Mann-Whitney test (P > 0.05). More-
over, SRNS was associated with a trend toward a higher
percentage of African American patients (46.7% of SRNS
patients) than in SSNS (23.3% of total SSNS patients).

Metabolite Biomarkers to Predict Steroid

Resistance

NMR metabolomics data quality and metabolic
profiling are described in the Supplementary Material
and presented in Supplementary Figure S2. The
various approaches to analyze the data are outlined in
Figure 1 and the results described later in this article.
Although NMR data were collected from all the patient
samples, 2 SSNS pretreatment samples were identified
as outliers and excluded from all analyses for predic-
tive markers and for paired analyses. In addition, 1
patient identified as having steroid-dependent NS was
also excluded from all future analyses.

Multivariate analysis using both principal component
analysis and OPLS-DA of binned NMR data (Figure 2a
and b) from only pretreatment samples (approach I,
Figure 1) did not distinguish the SSNS and SRNS patients’
baseline samples. Concentration fitting, followed by
comparison of concentrations in the pretreatment sam-
ples, found only creatinine to be significantly different
between the SRNS versus SSNS groups (Supplementary
Table S1). Logistic regression modeling (25 SSNS, 14
SRNS) (after deleting 2 outliers, 1 steroid-dependent pa-
tient and 2 with missing ages from initial 30 SSNS and
deleting 1 with missing age from 15 SRNS patients) using
the relative concentration data for 22 metabolites also
selected creatinine (Figure 2c and e; AUC ¼ 0.79, OR:
1.07; OR 95% CI: 1.02–1.12; goodness of fit c2 ¼ 4.23,
df ¼ 8, P ¼ 0.84) as a metabolite able to predict the
subsequent response to GC treatment. Creatinine is a
well-known marker of kidney function and has previ-
ously been correlated with the known steroid resistance
risk factor, age at presentation. Age alone predicted SRNS
(OR: 1.33; OR 95% CI: 1.09–1.64; goodness of fit c2 ¼
5.42, df ¼ 6, P ¼ 0.49). When age was included in the
stepwise selection algorithm for metabolites, age (OR:
Kidney International Reports (2020) 5, 81–93
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Figure 2. Metabolite biomarkers to predict steroid resistance. Score plots for binned data comparing steroid-sensitive nephrotic syndrome
(SSNS) (n ¼ 27) and steroid-resistant nephrotic syndrome (SRNS) (n ¼ 15) pretreatment samples: (a) Principal component analysis, R2X(cum)
0.904; Q2(cum) 0.803. (b) Orthogonal partial least-squares discriminate analysis scores plot R2X(cum) 0.719; R2Y(cum) 0.16; Q2(cum) �0.0467;
SSNS Pre, light blue circle; SRNS Pre, yellow triangle; pools, black diamond. (c) Box plots showing the pretreatment concentration by
phenotype of metabolites selected by stepwise selection algorithms for inclusion in a logistic regression model of the odds of SRNS among
subjects of all ages. (d) Box plots showing the pretreatment concentration by phenotype of malonate, which was significantly different between
patients >3 years of age with SSNS versus SRNS. (e) A logistic regression model comparing the known risk factor age with metabolites for
prediction of SRNS. (f) A logistic regression model comparing the known risk factor, age, with metabolites for prediction of SRNS in patients >3
years of age. ROC, receiver operating characteristic.
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1.38; OR 95% CI: 1.10–1.73) and glutamine (OR: 1.01, OR
95% CI: 1.00–1.02), but not creatinine, were selected as
predictors of response to GC treatment (goodness of fit
c2 ¼ 5.69, df ¼ 8, P ¼ 0.68). The AUC for the age and
glutamine model was 0.81, compared with 0.77 in a
Kidney International Reports (2020) 5, 81–93
model using age alone (Figure 2e). With one exception,
SRNS cases in this cohort were observed beginning at age
4. Therefore, a similar modeling approach was completed
for samples with age >3 years only (n ¼ 28, 15 SSNS and
13 SRNS) for which age was more likely to misclassify
85
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samples. Using age as a predictor in the logistic regression
model (OR: 1.3; OR 95% CI: 1.00–1.71; goodness of fit
c2 ¼ 4.80, df ¼ 5, P ¼ 0.44) resulted in an AUC ¼ 0.72.
Creatinine (OR: 1.08; OR 95% CI: 1.00–1.16) and malonate
(OR: 0.93; OR 95% CI: 0.88–0.99) were selected for the
metabolites-only model (goodness of fit c2 ¼ 12.69, df ¼
7, P ¼ 0.08, AUC ¼ 0.84). When age was included in the
model and the selection algorithm was used to select
metabolites, the OR for age was 1.36 (OR 95% CI: 0.99–
1.86) and malonate was selected (OR: 0.94; OR 95% CI:
0.89–1.00). The model with age and malonate (goodness
of fit c2 ¼ 4.26, df ¼ 7, P ¼ 0.75) had an AUC of 0.84,
compared with 0.72 for age alone (Figure 2d and f).

Metabolite Biomarkers to Define Mechanistic

Molecular Pathways/Targets of Steroid

Resistance

Differentiation of the SSNS samples (approach II,
Figure 1) in the first 2 components of the unsupervised
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treatment samples. Supervised analysis (OPLS-DA)
found a model meeting guidelines for acceptability23
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concentration determined relative to the 1-mM format
reference standard. Concentration fitting, followed by
1-sample t tests, of the concentration difference be-
tween pre- and post-treatment samples identified adi-
pate, alanine, creatine, glucose, glutamine, pyruvate,
tyrosine, and valine as significantly affected by treat-
ment in SSNS samples (Figure 3c, Supplementary
Table S3). Results from these same metabolites in
SRNS pretreatment versus post-treatment samples are
also shown for comparison purposes and are described
as follows.

Using the same multivariate modeling approach, the
SRNS samples (approach II, Figure 1) did not show
differentiation in the unsupervised or supervised score
plots. No model could be fit that met the criteria for
acceptance (Figure 4a and b), indicating that the overall
metabolomics profiles between these 2 groups were not
significantly perturbed. However, concentration fitting
followed by 1-sample t tests of the concentration dif-
ference between pre- and post-treatment SRNS samples
did identify alanine, propylene glycol, and sn-glycero-
3-phosphocholine as affected by GC treatment in SRNS
samples (Figure 4c, Supplementary Table S3). Alanine
concentration was also perturbed in the SSNS group,
and thus may be interpreted as resulting from GC
treatment. This is an important proof-of-concept that
the metabolites of children with SRNS are in general
not being perturbed in response to GC treatment to the
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same extent as the metabolites of children with SSNS.
When post-treatment concentration changes in chil-
dren with SSNS were compared with those with SRNS
(approach II, Figure 1), D[adipate] (P ¼ 0.002) and D
[pyruvate] (P ¼ 0.004) were significantly lower
(Figure 3c, Supplementary Table S3).

Metabolite Biomarkers to Differentiate Steroid

Sensitivity From Resistance

SSNS could be distinguished from SRNS post-treatment
(approach III, Figure 1, Figure 5a and b; principal
component analysis R2X[cum] 0.897; OPLS-DA R2Y
[cum] 0.53; Q2[cum] 0.214). Supplementary Tables S4
and S5 compare post-treatment SSNS and post-
treatment SRNS samples and provides the VIP statis-
tic, P value, and fold change for bins with their asso-
ciated metabolites that had either a VIP $ 1 with a
jack-knifed CI that did not include 0 or a P < 0.1.
Important bins for differentiation of the SSNS and
SRNS phenotypic groups post-treatment were nearly
identical to those important for differentiation of the
SSNS pre- and post-treatment samples. Comparison of
concentrations in the post-treatment samples found
adipate, creatine, creatinine, and pyruvate to be
significantly different between the SRNS and SSNS
groups (Figure 5c, Supplementary Table S4).

Detailed analyses for metabolomics methodology
validation are presented in the Supplementary Material
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(Supplementary Figures S3 and S4, and Supplementary
Tables S6–S8).
CONCLUSION

NS is a kidney disease that affects both children and
adults, although approximately 20% of children and
approximately 50% of adults present with or subse-
quently develop steroid resistance, with its greatly
increased risks for both treatment side effects and
disease progression. The current study tested the hy-
pothesis that paired plasma metabolomic sample ana-
lyses could identify candidate biomarkers able to either
predict steroid resistance before GC treatment or define
critical mechanistic molecular pathways/targets that
regulate steroid resistance (see Figure 1 and Table 2).
We used a metabolomic discovery approach starting
with 86 samples, and identified a small group of
candidate biomarkers predictive of steroid resistance,
such as glutamine and malonate, after controlling for
age. Paired-sample analyses also enabled us to identify
a larger group of candidate metabolite biomarkers
potentially able to define specific mechanistic molecular
pathways/targets of steroid resistance, including lipo-
proteins, adipate, pyruvate, creatine, glucose, tyrosine,
valine, and glutamine. A single endogenous metabolite,
sn-glycero-3-phosphocholine, was also identified as
perturbed by GC treatment in children with SRNS, but
not in those with SSNS. Together, these findings have
88
identified several specific candidate metabolite bio-
markers able to predict SRNS at disease onset, as well as
potential therapeutic target pathways that could enable
the future development of more targeted and effective
treatments for NS.

GCs are known to have significant metabolic effects,
including (i) increased mobilization of amino acids and
increased urinary nitrogen, with an overall increase in
conversion of protein to glycogen storage; (ii) stimu-
lation of gluconeogenesis and reduced insulin response,
leading to increased plasma glucose levels; and (iii)
increased lipoprotein concentrations, with redistribu-
tion of fat from the extremities to the trunk and face.26

The increase in glucose bins and [glucose] in post-
versus pretreatment SSNS in our study likely resulted
from this gluconeogenesis and reduction in insulin
sensitivity. Consistently, [alanine], [tyrosine], and
[valine] all were similarly increased with GC treatment.
[Alanine] also increased in the SRNS group, implying
that this pathway may be a generic GC-responsive
pathway, and not necessarily associated with GC effi-
cacy. In contrast, [Glycerophosphocholine] increased
after GC treatment in SRNS, but not in SSNS. Glycer-
ophosphocholine is a major renal osmolyte,27 so this
finding suggests that GC may significantly influence
osmotic stress, even in the absence of clinical efficacy.
GCs are also known to augment the biosynthesis of
phosphatidylcholine for lung surfactant,28 so the
metabolic fate of choline also may be affected by the
Kidney International Reports (2020) 5, 81–93



Table 2. Candidate metabolite biomarkers to predict, define, or differentiate steroid resistance in pediatric nephrotic syndrome

Metabolite or bin

Predictive biomarkerI Mechanistic biomarkerII Differentiating biomarkerIII

SSNS Pre vs.
SRNS Pre

SSNS Pre vs.
SSNS Post

SRNS Pre vs.
SRNS Post

D SSNS vs.
D SRNS

SSNS Post vs.
SRNS Post

Creatinine X X

Glutamine X X

Malonate (age >3) X

Adipate X X X

Pyruvate X X X

Creatine X X

Lipoproteins (bins) X X

Glucose X

Tyrosine X

Valine X

sn-Glycero-3-phosphocholine X

SSNS, steroid-sensitive nephrotic syndrome; SRNS, steroid-resistant nephrotic syndrome.
I, II, IIIApproaches defined in Figure 1.
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response to GC. In addition, GCs modulate the activity
of the Naþ/Hþ exchanger in renal proximal tubular
cells,29 suggesting that GC could alternatively affect
osmotic stress through this mechanism.

Some of the metabolic GC responses observed in this
study have been described in studies of adult patients,
or with animal models.28,29 We observed a decrease in
[adipate], adipate bins, and lipoprotein bins with GC
treatment in SSNS samples, and in post-treatment SSNS
versus SRNS samples. Hyperlipidemia is a well char-
acterized finding in NS, in addition to albuminuria and
the associated decrease in oncotic pressure.30 The
observed changes in [adipate], adipate bins, and lipo-
protein bins in SSNS patients may be related to the
improvement in hyperlipidemia associated with GC-
induced remission. Serum creatinine is a standard
marker of renal function, and by both 1HNMR and
clinical assay, [Creatinine] was higher in SRNS vs. SSNS
samples, both pre- and post-treatment with GC. In
contrast, [Creatine] was higher after GC treatment in
SSNS versus SRNS samples. Creatine is nonenzymati-
cally converted to creatinine, thus changes in creatine
concentration may be anticipated with a change in
creatinine homeostasis.31

It is worth noting that 2 studies have recently
attempted to differentiate the major histological sub-
types of glomerular disease, focal segmental glomer-
ulosclerosis, minimal change disease, IgA nephropathy,
and membranous nephropathy, from each other and
from healthy controls in adults, based on urinary
metabolite profiles.1,15 In contrast to these, the current
study used unique paired plasma samples from chil-
dren that were obtained both pretreatment and post-
treatment with GC, when the clinical distinction was
made between SSNS versus SRNS. This approach
enabled us to identify specific metabolites with the
potential ability to differentiate SSNS from SRNS, both
at the time of disease onset (before GC treatment) as
Kidney International Reports (2020) 5, 81–93
well as after GC therapy. Although our study uniquely
characterized plasma in a pediatric cohort, lower py-
ruvate concentrations in SSNS versus SRNS post-
treatment samples reinforced recent findings that py-
ruvate can distinguish focal segmental glomerulo-
sclerosis from minimal change disease and membranous
nephropathy in the urine of adults.1,15 One of these
studies also speculated regarding potential effects on
renal proximal tubules in addition to the glomerulus in
pathologies such as focal segmental glomerulo-
sclerosis,15 although it is well-established that NS is a
glomerular disease with very few cases of accompa-
nying renal tubular dysfunction.32,33

Pyruvate-metabolizing enzymes, including pyruvate
carboxylase, are also regulated by GC.34,35 Pyruvate
also may be an important mediator or marker of kidney
injury, as has been reported in acute kidney injury36

and diabetic nephropathy models.37,38 There are
therefore reasonable mechanisms by which GC treat-
ment may regulate [pyruvate] and kidney function,
and conversely where a lack of response to GC may
prevent recovery of [pyruvate] and kidney function.

Glutamine is metabolized by the kidney for the
maintenance of pH homeostasis. During acidosis,
glutamine is catabolized to 2 molecules of ammonium
and a-ketoglutarate, which then enter the tricarboxylic
acid cycle and gluconeogenesis. Malonate is involved
in fatty acid biosynthesis39 and is protective in cases of
ischemia reperfusion,40 although its regulation by the
kidney is less well understood.

The role of podocyte energy metabolism and its
role in different nephropathies has been an active
area of research in recent years.41–43 It is possible
that the glomerular dysfunction seen in NS induces
systemic metabolic perturbations, which may in
turn drive metabolic effects in podocytes that
could affect response to GC therapy and/or disease
progression.
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This study had several limitations and strengths.
Although most similar biomarker and metabolomics
studies have been carried out using urine, which is
noninvasive, our studies used paired plasma samples in
addition to pre- and post-treatment samples. However,
the identification of these markers in plasma is highly
clinically and biologically relevant, because NS is a
glomerular disease with systemic involvement, and
plasma metabolites directly reflect their concentrations
in the blood, following renal tubular reabsorption and/
or secretion. It will be of significant interest to further
study and validate our identified biomarkers in urine
samples from a larger and separate childhood NS cohort
in the future, and such studies are already under way.
Furthermore, SRNS typically presents in children at
older ages and thus higher weights than in children
with SSNS. Because this is a typical generalized dif-
ference between the 2 clinically defined groups, ac-
counting for these as confounders to the current
studies was not found to be essential or clinically
relevant. Predictive models were however adjusted
for age (except where noted as excluded), whereas
other analyses were not. In addition, we acknowl-
edge the possibility that some of the SRNS patients
may have had an underlying genetic cause of disease.
However, because the sample collections began more
than a decade ago, there were no provisions to screen
them for monogenetic causes at that time. Despite
this limitation, this study emphasizes differences
between children with SRNS and SSNS that are
clearly detectable at the time of clinical presentation,
regardless of any underlying genetic causes. How-
ever, future metabolomics studies that could differ-
entiate SRNS due to known genetic versus
nongenetic causes are currently being planned in a
broader patient cohort.

One of the major strengths of this study was the
evaluation of paired samples from most patients, both
before any GC treatment and following an average of
approximately 7 weeks of daily oral GC. This enabled
us to use multiple approaches (see Figure 1) to analyze
and interpret the dataset, in terms of predicting,
mechanistically defining, and differentiating bio-
markers in children with SSNS versus SRNS. Notably,
this exact same group of patient samples also has un-
dergone plasma proteomics analyses,44 and we are now
initiating studies to identify additional relevant mo-
lecular pathways and biomarkers of steroid resistance
in NS using approaches to integrate the proteomics and
metabolomics datasets.

Technically, NMR may not capture the richest possible
dataset for this analysis because of its comparatively
lower sensitivity. However, it offers a technical strength
due to its nondestructive nature, superior stability,
90
reproducibility, and chemical structure content of the
spectra compared with other metabolomics techniques,
and these factors were considered to be more important
for the current studies. Another strength of the metab-
olomics approach is its ability to capture the emergent
properties of a system (phenotype), because metabolism
integrates inputs from genetics, regulatory or compen-
satory responses to stimuli, environmental exposures,
and more.45 However, this pathway integration could
result in metabolomic analyses being somewhat less
specific than some other -omics methods regarding the
mechanism of changes or identifying specific therapeutic
targets.

In summary, the current studies identified several
specific metabolite differences between children with
SSNS versus SRNS at the time of disease onset, as well
as following GC therapy, by using paired plasma
samples obtained both before and after an average of
approximately 7 weeks of daily oral GC. Because
steroid resistance is a clinical feature also seen in
many other diseases, further validation of our study
results could greatly improve our ability to predict
the risk of clinical steroid resistance at disease onset
for patients presenting with any of the many diseases
for which steroids are a primary treatment, including
asthma, rheumatoid arthritis, autoimmune hepatitis,
and other inflammatory conditions. In addition, these
findings could improve our understanding of the
molecular pathways and mechanisms that regulate the
clinical response to GC, and thus help identify po-
tential future molecular targets to improve the treat-
ment of NS as well as other conditions treated with
steroids.
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