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Summary:

The human interactome is instrumental in the systems-level study of the cell and the 

contextualization of disease-associated gene perturbations. However, reference organismal 

interactomes do not capture the cell-type-specific context in which proteins and modules 

preferentially act. Here we introduce SCINET, a computational framework that reconstructs an 

ensemble of cell-type-specific interactomes by integrating a global, context-independent reference 

interactome with a single-cell gene expression profile. SCINET addresses technical challenges of 

single-cell data by robustly imputing, transforming, and normalizing the initially noisy and sparse 

expression data. Inferred cell-level gene interaction probabilities and group-level interaction 

strengths define cell-type specific interactomes. We use SCINET to reconstruct and analyze 

interactomes of the major human brain and immune cell-types, revealing specificity and 

modularity of perturbations associated with neurodegenerative, neuropsychiatric, and autoimmune 

disorders. We report cell-type interactomes for brain and immune cell-types, together with the 

SCINET package.
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eTOC

Mohammadi et al. introduce a computational framework to infer the context-specificity of gene 

interactions based on single-cell transcriptomic data and a reference global interactome.

Introduction

Proteins participate in crosstalking pathways and overlapping functional modules that 

collectively mediate cell behavior. The complete set of molecular components and 

interactions form an “interactome,” which, although incompletely characterized, has 

provided a reference structure for the systems-level study of multiple organisms, and a core 

framework for network biology (Barabási & Oltvai, 2004). In the past decade, large efforts 

have reconstructed multiple organismal reference networks (Li et al., 2017; Rolland et al., 

2014). The study of the human interactome, in particular, has been instrumental in revealing 

the structural context, modularity, and potential mechanisms of action of disease associated 

perturbations (Loscalzo, 2017; Menche et al., 2015), which often tend to disrupt protein-

protein interactions (Salmi et al., 2015).

Reference organismal networks, however, do not provide information about the specific 

spatiotemporal context in which gene interactions might occur (Caldu-Primo et al., 2018), 

prohibiting the direct study of the context where the effect of their perturbation most likely 

manifests. One approach to incorporate context into a global interactome network is by 

considering the transcriptional dynamics of the network’s components, effectively 
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integrating a static snapshot of the space of all potential interactions with context-specific 

gene expression. This approach has been previously applied to construct tissue-specific 

networks, taking advantage of bulk gene expression measurements (Mohammadi & Grama, 

2016; Magger et al., 2012; Bossi & Lehner, 2009). With the recent development and 

increasing use of single-cell technologies, it is now possible to profile large-scale cell atlases 

of heterogeneous tissues and cell populations across multiple organisms (Tabula Muris 

Consortium et al., 2018; Regev et al., 2017; Rozenblatt-Rosen et al., 2017). The increasing 

availability of these data provides a unique opportunity to study the context-specificity of 

molecular interactions at single-cell resolution. A naive approach to infer cell-type-specific 

networks would be to adopt techniques developed for bulk expression data. In practice, 

however, single-cell datasets are extremely sparse, with many genes having zero expression 

values due to both biological and technical reasons (Angerer et al., 2017). Moreover, single-

cell profiles enable estimating of interaction strength distributions within cell groups, 

directly assessing inter-cellular interaction variability. However, the increase in resolution 

comes at a computational cost due to the increasing size of cell-level data. Therefore, the 

development of efficient and robust techniques is required to transition to a single-cell 

network biology.

Here we introduce SCINET (Single-Cell Imputation and NETwork construction), a 

computational framework that overcomes technical limitations in single-cell data analysis, 

enabling the reconstruction of single cell and cell-type specific interactomes by integrating a 

reference interactome with single-cell gene expression data (Figure 1A). SCINET includes 

multiple features that directly meet challenges associated with single-cell analysis. First, a 

regression-based imputation step circumvents the high level of noise and sparsity intrinsic to 

single-cell data by inferring missing values and balancing gene expression levels. Second, a 

rank-based inverse normal transformation accounts for the large difference in expression 

distribution among different genes, resulting in comparable expression scales. Third, a 

statistical framework with analytical closed-form solution enables efficient inference of gene 

interaction likelihoods. Finally, a subsampling scheme allows the computation of cell-type 

(group) level interaction strengths, despite cell-level data incompleteness. Altogether, 

SCINET simply takes as input a reference interactome network, a scRNA-seq count matrix, 

corresponding cell-type (group) annotations; and it returns a set of cell-type (group) specific 

weighted networks. Interactions within the resulting cell-type specific interactomes are 

represented by their estimated mean strength and standard deviation across the cells of each 

group.

In network analysis, it is intuitively considered that highly connected nodes (i.e., hubs) are 

major determinants of systems behavior (Kitsak et al., 2010). In fact, hub proteins of 

reference interactomes in model organisms have been associated with properties suggestive 

of functional influence and constraint, such as essentiality, conservation, and phenotypic 

effects upon perturbation (Barabási & Oltvai, 2004). Starting from a reference interactome, 

where “hubness” is defined based on the invariant number of total interactions for a node, 

SCINET infers cell-type specific networks; where dynamic interaction strengths capture 

cell-type specific transcription. The present framework can be used to study the relationship 

between cell-type specific hubness and the context-specific role of the corresponding genes; 
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as well as the patterns of preferential cell-type modularity of disease associated genes. We 

explore these general problems in two case studies: human brain and blood cells.

Using single-nucleus RNA-Seq (snRNA-Seq) data from 10,319 cells of the human 

prefrontal cortex (Lake et al., 2018), scRNA-seq data from 24,944 blood cells (van der Wijst 

et al., 2018), and an integrative reference interactome combining data from 21 gene 

interaction resources (Huang et al., 2018), we applied SCINET to infer networks specific to 

six major cell-types of the human prefrontal cortex and to six major immune cell-types. 

From brain data, we reconstruct astrocyte, excitatory neuron, inhibitory neuron, microglia, 

oligodendrocyte, and oligodendrocyte progenitor interactome networks. From blood data, 

we build CD4 T-cell, CD8 T-cell, natural killer (NK), monocyte, B-cell, and dendritic cell 

interactome networks. These networks enable the distinction of topologically-specific genes, 

whose overall interaction strength is highly cell-type-specific, vs. topologically-invariant 
genes, whose connectivity pattern is not predominantly influenced by the cell-type context. 

Finally, we use the set of cell-type specific networks to evaluate whether perturbations 

associated with immune or brain-related disorders show cell-type specific modularity by 

assessing the strength of the local connectivity of disease genes in each network. Overall, 

our method and approach provide a general framework to study the context-specificity of 

global interactome networks using single-cell transcriptional profiles. The SCINET 

framework is applicable to any organism, cell-type/tissue, and reference network; it is freely 

available at https://github.com/shmohammadi86/SCINET.

Results

Methodological overview

The core SCINET framework (Figure 1) is based on the following methodological 

developments: (i) a decomposition method to interpolate values for missing observations in 

the scRNA-Seq profile, (ii) a parametric approach to project heterogeneous gene expression 

distributions into a compatible subspace (Figure 1B), (iii) a statistical framework to measure 

the likelihood of gene interactions within each cell, and (iv) a subsampling approach to 

aggregate interaction likelihoods of individual cells, reduce noise, and to estimate the 

underlying distribution and variability of interaction strengths within each cell-type 

population (Figure 1C).

The first component (i) is built upon our previously developed method ACTION 

(Mohammadi et al., 2018). Briefly, a single-cell expression matrix is iteratively decomposed 

into lower dimensional matrices at different levels of granularity defined by a number of 

low-rank factors (archetypes). This results in a small set of landmark transcriptional states 

(patterns) that optimally represent the variability in the dataset. We then use the set of 

discovered patterns to interpolate transcriptional profiles for individual cells (Figure 1B, i) 

(Methods). The second component (ii) was designed to overcome the fundamental 

differences in the expression distribution of genes, and their particular skewed distribution 

across single cells. The original values do not allow a direct comparison of the distributions 

of different genes. We approached the problem by using a rank-based inverse normal 

transformation to rescale the gene expression distributions, producing a common, normally 

distributed subspace. We refer to the resulting interpolated and normalized expression 
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profiles as gene activity scores (Figure 1B, ii). SCINET components (iii) and (iv) introduce a 

statistical framework that maps gene activity scores to the reference interactome. We assume 

that the feasibility of occurrence of an interaction within a cell is dictated by the interacting 

partner with the weakest activity. To formalize this notion, we use the minimum activity 

score of each pair of interacting genes as a statistic to assess the potential strength of the 

interaction in a given cell. We quantify such potential for each interaction pair and cell using 

the tail of an analytical null model measuring the likelihood of observing a certain 

interaction strength under independence (Methods). We then aggregate strength scores by 

combining the individual likelihood values within random subsamples of cells into a meta p-

value using Fisher’s method (Fisher, 2006). Finally, to account for the variability of the 

interaction strength scores across cells, component (iv) employs a subsampling scheme to 

estimate an interaction strength distribution for each interaction and cell-type (Figure 1B, 

iii–v).

Constructing interactomes for major cell-types of the human cortex

We use single-cell expression data of the human prefrontal cortex reported in (Lake et al., 

2018) to infer cell-type specific interactomes. After removing endothelial cells and pericytes 

(due to the small size and low reliability of cell annotation) and independently combining 

cells annotated as subtypes of excitatory or inhibitory neurons, we defined a set of cell-type 

annotations considering the 6 major cell-types of the brain: astrocytes, excitatory neurons, 

inhibitory neurons, microglia, oligodendrocytes, and oligodendrocyte progenitor cells (Opc). 

The dataset includes the expression values of 22,002 genes across 10,223 cells. Among these 

genes, 6,822 were expressed in less than ten cells and were removed from the study, 

resulting in a total of 15,180 retained genes. We selected as reference human interactome a 

recently curated gene network, the parsimonious composite network (PCNet) (Huang et al., 

2018). PCNet was constructed by integrating 21 network databases, retaining only 

interactions supported by at least two independent sources; it includes 2,724,724 (2.7M) 

interactions among 19,781 genes. PCNet is an up-to-date (as of 2018) source of supported 

gene interactions representative of multiple interaction modalities. Notably, this network has 

been evaluated with regard to its power to predict network relationships among disease 

associated genes. After intersecting PCNet and the filtered expression profile, we obtained a 

reference network of 1,882,141 (1.8M) interactions among 13,581 genes.

We applied SCINET to the matched scRNA-Seq count matrix and PCNet network to 

reconstruct 6 cell-type specific networks. These networks have between 4886 and 7331 

genes (35.4% and 54.6% of the original PCNet network), with the smallest number of 

retained genes observed in the oligodendrocyte network and the largest in the excitatory 

neuron network. For this reconstruction, we considered a bonferroni-adjusted p-value 

threshold of 0.01 to prune significant edges. After pruning, and retaining only the largest 

connected component of each network, we obtained a final set of networks including 

between 4,416 (OPC) and 6,435 (Ex neurons) genes connected by a subset of interactions 

corresponding to 13.2–30.5% of total interactions in the reference PCNet (Figure 2A). The 

obtained networks show topological properties similar to those of other complex biological 

networks, namely skewed degree distributions with a small number of highly connected 

genes (Figure S1A). The vast majority of gene interactions occur only in one cell-type 
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(private interactions), indicating that SCINET provides high specificity. One exception is 

interactions shared between Ex and In neurons (neuronal interactions), which account for 

~18% of the interactions observed across neurons (Figure S1B). Similarly, Ast and Opc 

networks share ~15% of the total interactions observed in these two glial cell-types. The two 

neuronal and two glial progenitor cells (Ast and Opc) respectively share functional 

properties, which are possibly captured by common interactions recovered by SCINET. 

Overall, SCINET recovers cell-type specific gene networks whose patterns of shared 

interactions capture similarities and differences among neuronal and glial populations 

(Figure S2C).

Given the high dropout rate of single-cell profiles, gene expression imputation is crucial 

prior to transformation in order to ensure proper ranking of cells. However, SCINET is 

robust to the choice of imputation method as it only uses the rank-order statistic to perform 

the transformation. We verified that pairwise relationships are consistent before and after the 

proposed transformations by contrasting raw, imputed, and transformed gene activity scores 

of interacting vs. non-interacting genes (Figure S2A). Furthermore, we corroborated the 

robustness of the inferred networks by comparing SCINET networks to networks 

constructed using an alternative imputation technique, MAGIC (van Dijk et al., 2018) -- i.e., 

substituting SCINET step 1. We observed high overlap among inferred interactions (Figure 

S2B). The final set of reconstructed brain cell-type interactomes is available as Data S1.

Topological-specificity highlights genes with preferential cell-type influence

We next studied the relationship between cell-type specific hubness and the context-specific 

role of the corresponding genes. We examined whether known canonical cell-type markers 

have a distinctive topological role in the networks. We found that total connectivity alone 

does not discriminate markers from non-marker genes. With the exception of Ex neurons, 

marker genes do not show a significantly higher number of interactions in their 

corresponding cell-type, relative to non-marker genes. On the other hand, in all cases, 

markers do show a significantly higher aggregate interaction strength (sum of SCINET 

inferred interaction strengths) relative to non-markers in the same cell-type (Figure 2B). This 

observation suggests that SCINET is able to infer context specific influence as measured by 

interaction strengths.

To directly quantify the influence of a gene in a given context, while decoupling the effect of 

its reference connectivity, we introduce a measure of gene topological-specificity (topS). 
topS decouples the two centrality measures (connectivity and strength) by measuring the 

deviation of the observed overall strength of the interactions of a gene in a given cell-type, 

relative to the expected strength under a random model that preserves the reference topology 

of the interactome but reshuffles cell-type specific interaction strengths (Methods). To verify 

that topS captures topological information additional to that captured by connectivity and 

strength, we performed additional simulated perturbation experiments (Albert et al., 2000; 

Caldu-Primo et al., 2018). In particular, we tested whether rational perturbation strategies 

(network attacks), where genes are incrementally removed from the network in an order 

determined by either their total connectivity (node degree), strength (sum of interaction 

weights), or topS, produce distinct global patterns of network vulnerability. Measuring the 
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effect on network size (number of connected genes) and network connectivity (number of 

edges) upon each type of network attack, we found that, indeed, topS consistently produces 

a distinct behavior: unlike degree and strength, network size seems to tolerate topS attacks, 

while the total network connectivity of the networks is more vulnerable to topS than to 

either strength or random attacks, yet not as extreme as to degree attacks (Figure S3). Next, 

we considered whether genes with high topS also display distinctive biological roles. We 

tested whether curated cell-type marker genes tend to rank high in topS for the 

corresponding cell-type and not for the others. We found that marker genes, indeed, exhibit a 

significantly higher topS in the corresponding cell-type (Figure 2C), indicating that the 

inferred local interaction strengths capture cell-type relevant biological roles that are not 

explained by reference connectivity alone. Consistent with the cell-type specific increase 

patterns in topS scores, we found that many of the top ten topS genes for each cell-type 

correspond to known canonical markers of consistent cell-types (Table S1).

Identification of non-specific genes with cell-type specific interactions

Marker genes by definition are transcriptionally specific -- i.e., are specifically expressed in 

the cell-type in question. It was previously shown that constitutive proteins may acquire 

context-specific effects by means of tissue-specific interactions (Bossi & Lehner, 2009). We 

reasoned that topS will capture such counterintuitive property, even when globally both 

transcriptional and topological specificity correlate (Figure S4A). We used topS scores to 

systematically identify genes with a preferentially influential role in a cell-type network that 

is not explained solely by their expression pattern. By comparing a gene’s measure of 

transcriptional specificity (tranS) with its topS, we identified groups of genes with high topS 
and low tranS (Figure S4B). These genes are expressed in multiple cell-types, but, through 

patterns of cell-type specific interactions, play differential centrality roles across the 

networks. Among the top 3 genes with the strongest deviation in topS relative to tranS per 

cell-type, we identify, for example, genes involved in generic functions such as protein 

folding (HSP90AB1) and energy homeostasis (CKB); as well as genes with more specific 

functions such as membrane transporters with activity in multiple glial cells (SLC1A2, 

SLC1A3). Transcriptional and topological specificity scores are available as Table S2.

Cell-type specific network context of disease associated genes

As an example of downstream analysis, we used cell-type interactomes to study the network 

context of disease associated genes and the patterns of gene interaction variability across 

cell-types. We employed two statistical tests: one based on the degree of overlap of direct 

gene interactions among disease genes (interactions overlap test), and the other based on the 

network localization patterns of disease genes (network localization test) (Figure 3A–C). 

The overlap of interactions was used to assess whether interactions among genes known to 

be associated with diseases of the same class tend to unexpectedly occur in a given cell-type 

(Figure 3B). The network localization of genes was used to test whether genes associated 

with a specific disease collectively tend to localize close to one another in the interactome of 

a given cell-type (Figure 3C). This latter analysis is motivated by previous studies showing 

that disease genes tend to form coherent neighborhoods in the human interactome (Menche 

et al. 2015). For these analyses, we collected and annotated gene-disease associations for 

brain-related disorders by matching the DisGeNET database (Piñero et al. 2017) with 
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annotations from the Monarch Disease Ontology (MONDO) (Bello et al., 2018) (Figure 

3A). Only genes reported as curated were considered (Figure S5A). We organized diseases 

in three separate classes: (i) neurodegenerative, (ii) neuropsychiatric, and (iii) neoplastic 

disorders. In total, we analyzed 5,069 protein coding genes that have been associated with at 

least one of 29 brain disorders: 5 neurodegenerative, 6 neoplastic, and 18 psychiatric. The 

genes analyzed are those present in both DisGeNET and PCNet. For additional, independent 

analyzes, genes genetically associated with disease risk through genome-wide association 

studies (GWAS) were extracted from either the NHGRI-EBI GWAS catalog or reference 

studies for Schizophrenia (SCZ) and autoimmune disorders (Methods). All disease 

associated genes used in the analyses are reported in (Table S3).

Disease-associated genes tend to be connected by cell-type specific interactions

We used the set of “disease genes” associated with brain disorders to perform interactions 

overlap tests (Figure 3B). We constructed disease subnetworks by extracting from the global 

interactome only the disease-associated genes and the direct interactions among them. The 

set of interactions corresponding to all diseases within a disease class was then aggregated to 

form disease class networks. This analysis resulted in 202,598, 203,324, and 263,950 

interactions directly connecting genes associated with neurodegenerative, neuropsychiatric, 

and neoplastic disorders, respectively. These disease class networks represent context-

agnostic interactions among disease-associated genes supported by PCNet. To assess 

whether gene interactions for different disease classes preferentially occur in specific cell-

types, we performed an interaction overlap test for each cell-type: we evaluated the 

overrepresentation of SCINET cell-type specific interactions within interactions linking 

genes of a disease group. Overall, our results suggest that disease genes tend to interact with 

cell-type specific preference, with preferential cell-types being targeted by the different 

disease classes. The first clear class distinction is that gene interactions associated with 

neurodegenerative and neoplastic disorders target glial cells, whereas neuropsychiatric 

disorder genes predominantly interact in neuronal cells (Figure 4A). In terms of specific 

cell-types, we found that neurodegenerative associated gene interactions are enriched among 

interactions in microglia and astrocyte specific networks. Neoplastic disorders are depleted 

among neuronal interactions and overrepresented in astrocyte and OPC interactions. 

Neuropsychiatric disorders are strongly enriched in excitatory neuron interactions.

For each dominant cell-type by disease class, we extracted the top 10 strongest interactions. 

In each case we found that such interactions cluster in only one or two connected modules 

(Figure 4B). These modules do not share genes across cell-types; however, the association of 

the same cell-type with multiple disease classes is mediated by different genes interacting in 

the same cell-type. We found Astrocytes as a cell-type strongly associated with both 

neurodegenerative and neoplastic disorders. Among the top astrocyte gene interactions, two 

interactions involving the gene CLU (CLU-GLUL and CLU-CST3) are associated with both 

disorder types. CLU is an example of a highly pleiotropic gene, which is associated with 

hundreds of diseases (according to DisGeNET associations). In the neurodegenerative 

context, CLU plays a chaperone role important for the prevention of amyloid aggregation 

and fibril formation. It also, however, plays a role in cell proliferation of relevance for 

neoplasia. This multiplicity of function might stem from differential use and perturbation of 
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gene interactions, which could be more extensively studied using SCINET. In this example, 

we observed that a subset of CLU strong gene interactions occurring in astrocytes 

distinguishes associations with neoplasia (CPE, GJA1, and FGFR3) from neurodegeneration 

(PON2, WWOX).

Network analysis reveals cell-type-specific modularity of brain-associated disorders

We next analyzed the modular connectivity of disease genes. We tested whether genes 

associated with individual brain diseases display non-trivial patterns of interaction across 

cell-type specific interactomes; this time considering all genes and interactions in each cell-

type network. We followed the rationale of network medicine, which seeks to understand the 

seemingly independent perturbations commonly associated with a disease in terms of their 

local and global patterns of connectivity in the interactome (Loscalzo, 2017). One way to 

operationalize such view is through the characterization of disease modules that emerge as 

dense and tightly compact neighborhoods that topologically localize disease genes within 

the network (Menche et al., 2015) -- i.e., by performing network localization tests (Figure 

3C).

Using the set of curated gene-disease associations, we used network localization tests to 

assess whether disease-associated genes tend to localize in neighborhoods, forming cohesive 

modules. To quantify compactness we used an empirical measure of module size (Loscalzo, 

2017), defined as the average of the distribution of network distances between pairs of 

disease genes. To account for the multiplicity of paths between genes, we computed 

diffusion-based distances (Methods). Finally, to statistically test whether the observed 

module size deviates from random expectation, we estimated a corresponding null 

distribution by repeatedly subsampling the same number of genes at random from the 

network, effectively allowing us to measure the deviation from expectation using a z-score 

(Figure 3C). Overall, we found that disease genes do localize in the cell-type specific 

interactomes, and that the degree of modularity of disease perturbations varies across 

diseases (Figure 4C). Across disease groups, neoplastic disorders show the strongest 

modularity, with glioblastoma genes being the most compacted. Neurodegenerative 

disorders showed the least modularity, with the exception of Alzheimer’s disease. 

Neuropsychiatric disorders, on the other hand, showed strong compactness, with SCZ and 

BPD having the strongest network localization.

We observed highly variable modularity across cell-type specific networks for each disorder, 

which again points to a pattern of preferential cell-type specificity for the different diseases 

(Figure 4C). Diseases within the same group show similar patterns of cell-type specificity 

that are distinct from those observed in the other groups. All neoplastic diseases tested show 

modular localization in the astrocyte and Opc networks. Psychiatric disease genes showed 

preferential modularity in neuronal networks, with the exception of disorders of stereotypic 

movement and speech, which show the strongest compactness on oligodendrocytes. Unlike 

the glial/neuronal polarized pattern observed for neoplastic and psychiatric diseases, 

neurodegenerative disorders showed a more heterogeneous convergence pattern, involving 

glial and neuronal cell-types in different diseases. For example, we found that genes 

associated with Parkinson’s disease converge in both Opc and neuron networks.
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To exclude the possibility of inadverted gene preselection based on cell-type specificity on 

the DisGeNET database, we performed the same enrichment analyses using only GWAS 

genes reported for Schizophrenia. We observed similar neuronal enrichment, with the 

strongest enrichment in Ex neurons. To test the specificity of the analysis, we included genes 

associated with height as a negative control and found no enrichment (Figure S5B).

Genes associated with autoimmune-disorders exhibit distinct modularity in immune cell-
specific interactomes

Following the same procedure as with brain, we reconstructed 6 blood cell-type specific 

networks. These networks have between 5,306 and 8,841 genes connected by a subset of 

interactions corresponding to 2.6–7.7% of total interactions in the reference PCNet, with the 

smallest network corresponding to Monocytes and the largest to Natural killer cells (Table 

1). Consistent with brain cell-type analyses, many of the top ten topS genes for each immune 

cell-type match known canonical markers (Table S1). We used these networks to analyze the 

modular connectivity of genes associated with autoimmune disorders across blood cell-

types. We considered 7 major disorders: Crohn’s disease, Inflammatory bowel disease, 

Multiple sclerosis, Rheumatoid arthritis, Systemic lupus erythematosus, Type 1 diabetes, and 

Vitiligo. For this analysis, we again used disease risk genes identified through unbiased 

GWAS. To assess the specificity provided by the cell-type dynamic patterns of interaction, 

we performed network localization tests in both the immune and the brain cell-type 

networks and included two additional complex traits not directly associated with immunity 

(i.e., height and intelligence).

We measured the overall network compactness of the genes associated with each disease, as 

well as its corresponding cell-type specificity (Figure 5). Specificity is quantified as the 

relative compactness observed in a given cell-type interactome relative to the compactness in 

others. We found that neither height nor intelligence are associated with genes forming 

modules within immune or brain-related networks (low global compactness). On the other 

hand, we found that all autoimmune disorders are individually associated with genes that do 

form compact modules within the immune cell-type interactomes, but not within the 

interactomes of brain cells. One exception was systemic lupus erythematosus (SLE), where 

associated genes also form a module in the microglia interactome. Microglia are the tissue-

resident macrophages of the brain and share pathways with other immune cell-types. This 

observation is also consistent with the previous finding that lupus antibodies cause cognitive 

impairment in SLE patients, mediated by activated microglia (Nestor et al., 2018). We 

observed a strong association between B-cells, which are responsible for auto-antibody 

production (Hampe, 2012), and the majority of autoimmune disorders. Both type-I diabetes 

and vitiligo, on the other hand, were found to form gene modularity in T cells, consistent 

with their reported T-cell mediation (Pugliese, 2017, Byrne et al., 2014). To aid more in-

depth analyses of the molecular networks involved in immune disorders, immune cell-type 

interactomes are available as Data S2.
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Discussion

We introduced SCINET, a computational framework that enables the reconstruction of cell-

type specific interactomes by leveraging single-cell transcriptomic data. By inferring and 

quantifying cell-type specific gene interaction strengths, SCINET provides a cellular context 

to interpret molecular pathways and functional modules. SCINET can be used to 

contextualize disease associated genes and their quantifiable influence in different cell-types 

or conditions, to study potential mediators of functional interactions between cell-types, or 

to assess the dynamics of interaction usage across developmental or pathological conditions.

In the general context of network biology, we show how SCINET can measure a gene’s 

network influence score that is context-specific but not explained by either the gene’s 

reference connectivity or by expression specificity alone. Instead, differential patterns of 

interactions determine the context specific influence of promiscuously expressed genes. This 

feature, in turn, could aid the identification of genes with broad expression but condition 

specific interactions in future studies.

In the context of disease, our results suggest that the contextualization of disease associated 

genes within the topologies of cell-type specific networks uncovers nontrivial, systems-level 

interaction patterns that provide information on the phenotypic manifestation of the disease. 

Genes known to be associated with disease classes tend to present direct mutual interactions 

that preferentially occur in specific cell-types. For example, neurodegenerative disorders 

preferentially target interactions in astrocyte and microglia cells, while psychiatric disorders 

strongly target neuronal specific interactions. Thus, similar to other approaches based on 

genetic associations and gene expression (Skene et al., 2018), our network-based approach 

recovers the dominant role of inflammatory glial cells (microglia and astrocytes) in 

neurodegeneration, and the known role of neuronal cells in psychiatric disorders. On the 

other hand, the consideration of connectivity patterns involving genes which have not yet 

been associated with a specific disease enables the identification of cell-type specific 

modular perturbations.

In the case study of the brain, diseases within the same group show similar patterns of cell-

type specificity that are distinct from those observed in the other groups. This observation is 

consistent with the idea of an association between cell-type convergence patterns of disease 

perturbations and observed symptomatology, as disorders within the groups more often share 

patterns and comorbidity than diseases across groups. Moreover, individual diseases show 

variable modularity across cell-types, a property that we used to define cell-type perturbation 

profiles for the disorders. The computed profiles are highly similar across phenotypically-

related disorders, with strong preferential modularity in cell-types consistent with the 

biology of the disease. Disorders of stereotypic movement and speech showed the strongest 

compactness on oligodendrocytes, and observation consistent with the myelinating role of 

oligodendrocytes, as these disorders involve motor deficiency, which is severely affected in 

cases of pathophysiology affecting myelin. Indeed, white matter abnormality in the form of 

delayed or absent myelination has been associated with childhood apraxia of speech 

(Liégeois & Morgan, 2012). Contrasting neuron types, genes associated with mood and 

depression disorders seem to perturb more strongly the inhibitory neuron network. Different 
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lines of evidence associate deficits in inhibitory neurotransmission to major depressive 

disorder, such as the reduction of GABA A receptor-mediated cortical inhibition in both 

late-life and adult depressed subjects relative to controls (Levinson et al. 2010), (Lissemore 

et al., 2018).

Our approach also recovers an association of OPC and astrocytes with brain tumors, and 

suggests an important role of inflammation in neoplasia. These two cell-types have 

proliferative potential and have been discussed in the context of the cell of origin for 

malignant gliomas (Zong et al., 2015). However, evidence from the specific origin of the 

tumors in vivo has been proved challenging, given the overlap in gene signatures of 

astrocytes and neuron progenitor cells. Although we only considered transcriptional states 

from the adult human brain, SCINET robustly captures the sternness property of the 

interactomes of astrocytes and Opc and its association with brain carcinogenesis. Finally, 

neurodegenerative disorders showed a more heterogeneous convergence pattern, involving 

glial and neuronal cell-types in different diseases. This observation might point to the 

relevance of glial-neuronal interactions, and the conditionality of the protective or damaging 

effect of glial cell states (De Strooper & Karran, 2016). For example, consistent with 

deficiencies on remyelination having an effect on the proper firing of motor neurons, we 

found that Parkinson’s disease genes modularly converge in both Opc and neuron networks. 

The observations of network association among disease genes generalize to the case study of 

immune cells, where Immune disorders display a strong association with B-cells. These cells 

are known to play a key role in the pathogenesis of autoimmune disorders via production of 

autoantibodies and inflammatory cytokines, as well as regulating interactions with T-cells 

(Hampe, 2012).

SCINET is of general applicability and can be used to analyze any combination of cell 

conditions and reference (physical and/or functional) interactomes. For cell-type interactome 

inference, the framework assumes that reliable cell group annotations are available, therefore 

the resolution in which homogeneous groups of cells representing types can be identified is a 

potential limiting factor. Overall, our results indicate that the contextualization of contrasting 

disease/trait associated genes through the topologies of cell-type specific networks from 

different tissues provides meaningful and interpretable information, thus demonstrating the 

generality and specificity of SCINET. We envision SCINET as a simple to use 

computational tool to aid in the design and interpretation of cell-type resolution experiments 

and to uncover context-specific convergence of heterogeneous and seemingly independent 

genetic perturbations.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for data, associated code, or resources should be directed to 

and will be fulfilled by the first Lead Author, Shahin Mohammadi 

(mohammadi@broadinstitute.org). This study did not generate new unique reagents.
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METHOD DETAILS

Single-cell data preprocessing—Single nuclei RNA sequencing data from human 

frontal cortex (9 male, 4 female individuals) reported in (Lake et al. 2018) was downloaded 

from the Gene Expression Omnibus under SuperSeries accession code GSE97942. After 

quality control, this dataset contains a total of 10,319 single cells (4,164 and 6,155 cells 

from BA6 and BA10 regions, respectively). Six major cell-types of the brain were 

considered: astrocytes, excitatory/inhibitory neurons, microglia, oligodendrocytes, and 

oligodendrocyte progenitor cells (OPCs). All subtypes of excitatory and inhibitory neurons 

were independently combined to create cell-type annotation for these two classes. Single-

cell RNASeq data of human peripheral blood mononuclear cells (PBMC) reported in (van 

der Wijst et al. 2018) was downloaded from the European Genome-phenome Archive (EGA) 

under accession number EGAS00001002560. Raw data contained 28,855 cells from PBMCs 

of 47 donors. After basic preprocessing, 16,375 protein-coding genes and 24,944 cells 

representing 6 major blood cell-types (CD4 and CD8 T-cells, NK cells, monocytes, B cells, 

and dendritic cells) were retained.

Additional reference data sources—The Parsimonious Composite Network (PCNet) 

(Huang et al., 2018) was used as reference human interactome (NDEx, UUID: 

f93f402c-86d4-11e7-a10d-0ac135e8bacf). This network was constructed by combining 21 

heterogeneous network resources, including STRING, ConsensusPathDB, and GIANT, 

among others. PCNet retains edges that are supported by at least two independent sources of 

evidence, which leads to a high-sensitivity and high-specificity network that outperforms 

any individual network with respect to predicting disease-associated genes (Huang et al., 

2018). PCNet was used throughout the study, and we refer to it as the “global human 

interactome”.

Cell-type marker genes defined in (Lake et al., 2018) were used. Only genes with at least 1-

log-fold-ratio difference when cells of a given cell-type are compared against the rest of cells 

were considered. This resulted in marker genes for astrocytes (79), excitatory neurons (162), 

inhibitory neurons (304), microglia (45), oligodendrocytes (103), and OPCs (52).

Disease-associated genes were collected from the DisGeNET database (http://www.disgenet.

0rg/web/DisGeNET/menu/d0wnl0ads#gdasbefree; RRID:SCR_006178) (Pinero et al., 

2017), which aggregates data from GWAS catalogues, animal models, and the scientific 

literature; preserving the evidence type supporting each disease-gene association. All 

disorders were mapped to the Monarch Disease Ontology (MonDO) (https://

www.ebi.ac.uk/ols/ontologies/mondo) (Bello et al., 2018) and brain-associated disorders 

corresponding to (i) neurodegenerative, (ii) neuropsychiatric, and (iii) brain cancers were 

selected. To this end, first diseases that are associated with nervous system (annotated with 

“nervous system disorder (MONDO_0005071)” term) were selected. Then selected 

disorders were intersected with disorders annotated with “neurodegenerative disease” 

(MONDO:0005559), “psychiatric disorder” (MONDO:0002025), and “neoplastic disease or 

syndrome” (MONDO:0023370) terms. The final dataset contains 5 neurodegenerative 

disorders, 18 neuropsychiatric disorders, and 6 types of brain cancers. GWAS genes for 

Schizophrenia were independently obtained from the SZDB2 database (Wu et al., 2017) 
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(http://www.szdb.org), including genes identified by major GWAS consortiums PGC2 and 

CLOZUK + PGC.

Autoimmune disorders and their associated genes were extracted from the NHGRI-EBI 

GWAS catalog (https://www.ebi.ac.uk/gwas/) (MacArthur et al., 2017). A total of 7 traits 

were identified and considered in the study: Crohn’s disease (n=175 genes), Inflammatory 

bowel disease (n=235), Multiple sclerosis (n=199), Rheumatoid arthritis (n=138), Systemic 

lupus erythematosus (n=258), Type 1 diabetes (n=87), and Vitiligo (n=70). Two additional 

traits were extracted to be used as negative control: Height (n=404), Intelligence (n=257).

Compactness and of disease-associated genes—Random-walk methods are 

effective techniques to establish network-based relationships among disease-associated 

genes (Köhler et al., 2008). Here, a symmetric version of the random-walk with restart 

process is used to prioritize disease genes (Vanunu et al. 2010). More specifically, given a 

cell-type-specific network represented using its adjacency matrix, A, the following 

stochastic, symmetric transition matrix is defined:

Psym = D
− 1

2AD
− 1

2

where D
− 1

2  is a diagonal matrix with the strength of each node (column sums in A) as 

diagonal elements. Using this transition matrix, the stationary distribution of the random-

walk process is defined in closed form as:

S = (1 − α)(I − αP)−1egs

where egs is a stochastic vector of restart probabilities and α a parameter that adjusts the 

depth of the random-walk process ((1 − α) is the probability of starting a new random-walk 

from one of the seed nodes in egs). To compute the α parameter, an approach similar to the 

one proposed in Huang et al. (Huang et al., 2018) was used. Briefly, the optimal choice of α 
is set using the following linear model against the log10-adjusted number of interactions in 

the network (nE):

αopt = m × log10(nE) + b

where m = −0.03 andb = 0.75.

Finally, we define the restart probabilities encoded in vector egs based on the topological-

specificity of the corresponding proteins as follows:

egs(i) =

1

1 + e
− ztopo(i)

, vi ∈ 𝒟

0,  otherwise 
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where 𝒟 is the disease geneset of interest. The resulting vector was normalized by its sum to 

construct a stochastic vector to be incorporated in the random-walk.

Topological specificity analysis—A measurement is introduced to decouple the global, 

context-agnostic connectivity of a gene as provided by its number of interactions in the 

global interactome, from the cell-type-specific strength of interactions incident to the gene in 

cell-type-specific network. First, the hubness of each gene in a given cell-type-specific 

network is computed as the total strength of its local neighbors, represented by w(celltype)(i) 
for each protein i. Second, a random model is used to estimate the deviation of this observed 

hubness relative to random expectation. The random model consists of an ensemble of 

networks in which the underlying topology of the global interactome is preserved while the 

cell-type-specific edge weights are reshuffled uniformly at random. For each random 

network, the strength of interactions is recomputed, resulting in a distribution of gene 

neighborhood strengths for each gene. Using the mean and standard deviation of each 

distribution μR
(celltype) (i) and σR

(celltype)(i), respectively; the topological-specificity of each 

gene in a given network is defined as:

ztopo(i) =
w(celltype)(i) − μR

(celltype)(i)

σR
(celltype)(i)

QUANTIFICATION AND STATISTICAL ANALYSIS

Interpolation and smoothing of expression profiles via ACTION—Archetypal 

analysis for Cell-Type identificatION (ACTION) (Mohammadi et al., 2018) characterizes 

the transcriptional landscape of single cells using an optimal set of archetypal states. At the 

core of this method is an optimization framework to identify characteristic landmarks that 

can be used to optimally represent the rest of cells. Formally, given an expression matrix 

S ∈ ℝgenes×cells, ACTION identifies a set of archetypal cell states that optimally represent 

the rest of cells. Each of these archetypal states represents a convex (sparse) combination of 

cells in the data. In this regard, ACTION reduces the noise from dropouts by local averaging 

and smoothing of cells, while preserving the subtle state differences by enforcing a sparsity 

constraint on the number of cells that are being averaged. The original version of the 

ACTION method was based on a kernel-based formulation. To deal with the rapidly growing 

scale of the single-cell profiles, we implicitly reduce this kernel (of dimension cell × cell) to 

another subspace, Sr ∈ ℝD × cells, such that the dot-product of columns in the reduced 

subspace recapitulate the kernel matrix. To this end, we compute the SVD decomposition of 

the orthogonalized expression profile (based on the ACTION method) as S(ortho)
T = UrΣrVr

T. 

Then, we compute the reduced expression profile as Sr = ΣrUr
T, in which every row 

represents a metagene and each column represents a cell. Then the following optimization 

problem is solved to find a set of landmark cells using convex non-negative matrix 
factorization (convNMF):
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min
𝒦, H

Sr − Sr(: , 𝒦)

W(NMF)
H(NMF)

F

2

Subject to: ∑
j

h j
(NMF) = 1, 0 ≤ hi j

(NMF)

where h j
(NMF) is the jth column of the H(NMF) matrix. Using these initial landmark cells 

encoded in the matrix W(NMF), we then initialize a round of archetypal analysis (AA) to 

smooth and denoise them and compute the final archetypal states. Mathematically, we solve 

the following optimization problem:

min
𝒦, HNMF

Sr − SrC

W(AA)
H(AA)

F

2

Subject to: ∑
j

h j
(AA) = 1, ∑

j
c j = 1, 0 ≤ hi j

(AA), ci j

By initializing matrix W(AA) = W(NMF), this formulation enables the smoothing of the 

profile of archetypal cells based on a small number of “close-by” cells, as sparsity is 

enforced due to norm-1 constraint on the columns of C.

Another modification to the original formulation is that in ACTION the total number of 

archetypes (k = 𝒦 ) was fixed. However, different cell-types/states are best captured at 

different levels of resolutions, and thus different values of k could be optimal for identifying 

different transcriptional patterns. To address this issue, increasing values of k are allowed by 

running ACTION at multiple resolutions and then the set of all archetypes across resolutions 

are combined. The resulting set of archetypes is referred to as the multi-level archetypal set 
(W(ML)). Subsequently, the matrix H(ML) is recomputed by regressing over the W(ML) 

matrix. Given the resulting multi-level archetypal profiles, which are of dimension metagene 

× aggregate archetypes, a reverse projection onto the state space of genes is computed using 

matrix Vr. Then, for each cell, the matrix H(ML) is used to interpolate its corresponding 

expression profile using the archetypes profile. Putting it all together, the described 

algorithms is implemented in matrix operations as follows:

S = VrW(ML)H(ML)

in which H(ML) is computed using the multi-level archetypal set, W(ML). This approach is 

fundamentally different from common gene imputation methods in that signature genes, 

which distinguish cell-types, and will have high-values in the interpolated profiles, even 
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when their absolute expression value is small. Furthermore, for larger datasets, given the 

flexibility of matrix computations, it is possible to interpolate values for only a subset of 

genes and/or cells of interest -- i.e., by extracting and using in the operation only the 

corresponding rows/columns.

Transformation of gene expression profiles—The feasibility of an interaction in a 

given context is assessed by comparing and combining the expression value of each pair of 

interacting genes. However, different genes have different expression distributions. 

Moreover, the baseline expression, corresponding to the mean of these distributions, is not 

comparable, since some genes might be functional at much lower doses than others. To 

address this issue and to put expression measurements on the same scale, the rank-based 
inverse Normal transformation technique was used. Given the interpolated expression profile 

S with m genes and n cells, two independent factors are computed, one for the expression of 

each gene across cells (row factor) and one for the mean expression of all genes in a given 

subpopulation of cells (column factor). In the former, given a gene i, its expression profile is 

sorted across all cells and a rank rij is assigned to each interpolated expression profile s i j, 

which is then normalized by the total number of cells, pi j =
ri j

n + 1 . The row-factor matrix, 

F(r), is then computed by projecting the normalized ranks onto the standard Normal 

distribution: f i j
(r) = − 2erfcinv 2pi j , where erfcinv is the inverse of the complementary 

error function, erfc, defined as:

erfc(x) = 2
π∫

x

∞
e−t2dt

Similarly, a column factor for all genes is defined. Given a subset of cells, 𝒞, representing 

the cell-type of interest, columns of interpolated expression profile are averaged within the 

subspace of 𝒞: μ𝒞 = ∑ j ∈ 𝒞s i j ∈ ℝm. Then, a column factor vector f i
(c) is defined by 

transforming μ𝒞 in a fashion similar to the row factor. Finally, using the two components, a 

transformed, interpolated expression profile matrix, T, is defined in which ti j =
f i j
(r) + f i

(c)

2 .

Assessing co-expression dependencies between pairs of interacting proteins
—Our working assumption is that an interaction can only happen if both endpoints of the 

interaction are expressed at a high enough level. Such notion can be formalized by requiring 

the minimum expression of two interacting proteins to be “large enough”. Given that the 

expression value of each gene is transformed to follow a standard normal distribution, under 

the null assumption of independence between the expression value of two genes, the right 

tail of the min operator can be computed using

P(x ≤ X) = (1 − φ(x))2
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where x = min(tij, ti′j), in which tij and ti′j are the transformed expression values of gene 

products corresponding to vertices i and i′ incident on an interaction i − i′ in cell j, and φ is 

the cumulative density function (CDF) of the standard normal distribution.

This definition allows the computation of a p-value for each interaction in a given cell. To 

account for noise and different sample-size across cell-types a technique similar to ensemble 

learning was adopted by selecting k cells at random, computing their individual interaction 

p-values, and combining these p-values into an aggregate meta p-value using the Fisher’s 

combination method. Specifically, denote by pii′
(k) the p-value of interaction i − i′ occurring 

in the kth sampled cell, then an aggregated p-value statistic is computed by:

X2k
2 = − 2∑

k
ln pii′

(k)

When the null hypothesis of each individual test is true and the tests are independent, X2k
2

follows a χ2 distribution with 2k degrees of freedom, which can be used to compute the 

meta p-value associated with all tests. This subsampling scheme balances the total number 

of cells in the given population.

Finally, we note that by repeated application of the resampling method, an empirical 

distribution over each gene interaction that describes its dynamic characteristics across cells 

can be estimated. The first moment (mean) of this distribution is used for analyses reported 

in the paper.

DATA AND CODE AVAILABILITY

The SCINET implementation is freely available from: https://github.com/shmohammadi86/

SCINET. Brain cell-type specific interactomes are available in Data S1. Immune cell-type 

specific interactomes are available in Data S2. Top-ranked topologically-specific proteins are 

available in Table S1. Transcriptional and topological specificity scores are available in 

Table S2. Disease-associated gene sets are available in Table S3. All R scripts for generating 

these is available from https://github.com/shmohammadi86/SCINET/tree/master/demo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SCINET reconstructs cell-type interactomes from scRNA-Seq and network 

data.

• Single-cell resolution networks allow for analysis of gene interaction 

dynamics.

• Disease-associated perturbations exhibit cell-type-specific modularity.

Mohammadi et al. Page 21

Cell Syst. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Overview of SCINET.
A, SCINET integrates a reference interactome network with a cell-annotated single-cell 

transcriptomic dataset to reconstruct cell-group specific interactomes. In this study we 

applied SCINET to produce cell-type interactomes for the major cell-types of the adult 

human frontal cortex. B, SCINET preprocesses single-cell expression by first using a matrix 

decomposition method to interpolate values for missing observations. Subsequently, the 

distribution of expression values is transformed into a common and comparable distribution 

using rank-based inverse normal transformation. Preprocessing results in across-gene 

comparable gene activity scores. C, SCINET infers interaction strength distributions for 

each interaction and cell-type(group) using an efficient statistical framework introduced 

here. A sample of n cells of a certain type is randomly chosen from the cell-type population. 

For each cell, the minimum activity score of each pair of interacting genes is used to 

quantify the strength of a potential interaction based on the tail of an analytical null model 

measuring the likelihood of observing such value under independence. The scores computed 

for the n samples cells are then aggregated into one aggregate score (meta p-value). The 

sampling procedure is repeated a large number of times. Finally, the mean and variance of 

the distribution of aggregate scores is recorded for each gene interaction and cell-type 

(group).
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Figure 2. Patterns of specificity of identified interactions.
A, summary of inferred cell-type specific networks, v, vertices/nodes; e, edges B, patterns of 

connectivity and interaction strength computed within cell-type specific networks for 

canonical markers of each cell-type. Statistical test: two-sided Wilcoxon rank sum test. C, 
distribution of topological-specificity scores computed for each cell-type specific network 

for canonical transcriptional markers of a particular cell-type. Statistical test: Kruskal–Wallis 

one-way analysis of variance. Convention for symbols indicating statistical significance: ns: 

p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001. See also Figure 

S1.
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Figure 3. Network analysis of disease associated genes,
a, disease associated genes are retrieved from DisGeNET database or independently from 

particular GWAS studies, and brain-related disorders are classified in 3 disease classes: 

psychiatric, neoplastic, and neurodegenerative. b, An interaction overlap test is performed to 

test whether interactions reported in PCNet and connecting genes from the same disease 

class are overrepresented within the interactions predicted by SCINET to occur in a given 

cell-type, c, For each individual disease, a network localization test is performed to quantify 

the degree to which disease genes form compact modules within a given cell-type specific 

interactome network. See also Figure S5.
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Figure 4. Brain-associated disorders converge to cell-type specific modular perturbations,
a, over-representation scores for gene interactions between disease-associated genes within 

cell-type specific interactions are shown for neurodegenerative, psychiatric, and neoplastic 

disorder groups. Cell-type (Ast, In, Oli, Ex, Mic, OPC) and cell-type group (neuronal, glial) 

over-representation analysis are considered. Neuronal (blue) or glial (pink) over-

representation is highlighted with a rectangle. Roman numbers link cell-type and disease 

interaction sets with corresponding networks in b. b, top 10 strongest interactions for to 

associated interaction sets considering in a are shows as networks, c, network modularity 

scores for genes associated with individual diseases across cell-types are shown. Modularity 

is estimated by a compactness score that measures the deviation of module size (average 

measure of inter-gene network distance) relative to random expectation. Relative (z-scaled) 

modularity across cell-types is shown in blue-red scale. Maximal compactness for a disease 

is shown in blue scale. See also Figure S5.
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Figure 5. Modular connectivity of genes associated with autoimmune disorders.
Network modularity scores for genes associated with 7 autoimmune disorders by GWAS. 

Relative (z-scaled) modularity across cell-types is shown in blue-red scale. Maximal 

compactness for a disease is shown in blue scale.
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Table 1.
Immune cell-type interactome statistics.

Genes(n): number of genes; Interactions(n): number of interactions; PCNet(%): percentage of total PCNET 

global interactions. NK: Natural killer cells; DC: Dendritic cells.

Cell-type Genes(n) Interactions(n) PCNet(%)

B 6,835 675,938 6.201894

CD8 7,766 828,882 7.605192

CD4 5,447 285,011 2.615045

DC 6,301 503,002 4.615165

Monocyte 5,306 351,284 3.223115

NK 8,234 840,776 7.714323

Cell Syst. Author manuscript; available in PMC 2020 December 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mohammadi et al. Page 28

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Brain cell-type specific interactomes This paper Supplementary Data S1

Immune cell-type specific interactomes This paper Supplementary Data S2

Top-ranked topologically-specific proteins This paper Supplementary Table S1

Transcriptional and topological specificity scores This paper Supplementary Table S2

Disease-associated gene sets This paper Supplementary Table S3

snRNAseq of human prefrontal cortex (Lake et al., 2018) GSE97942

scRNASeq of human peripheral blood mononuclear 
cells

(van der Wijst et al., 2018) EGAS00001002560

Parsimonious Composite Network (PCNet) (Huang et al., 2018) NDEx with the UUID: f93f402c-86d4-11e7-
a10d-0ac135e8bacf

DisGeNET (Piñero et al., 2017) http://www.disgenet.org/web/DisGeNET/menu/
downloads#gdasbefree; RRID:SCR_006178

Monarch Disease Ontology (MonDO) (Bello et al., 2018) https://www.ebi.ac.uk/ols/ontologies/mondo

SZDB2 (Wu et al., 2017) http://www.szdb.org

Software and Algorithms

R version 3.5 The R project https://www.r-project.org/

SCINET This paper https://github.com/shmohammadi86/SCINET

R Scripts for generating Interactomes, Scores, Gene 
Sets, and Protein rankings.

This paper https://github.com/shmohammadi86/SCINET/tree/
master/demo

MAGIC (van Dijk et al., 2018) https://github.com/KrishnaswamyLab/MAGIC

Other

GWAS Catalog (MacArthur, J. et al., 2017) https://www.ebi.ac.uk/swas/

Cell Syst. Author manuscript; available in PMC 2020 December 18.

http://www.disgenet.org/web/DisGeNET/menu/downloads#gdasbefree
http://www.disgenet.org/web/DisGeNET/menu/downloads#gdasbefree
https://www.ebi.ac.uk/ols/ontologies/mondo
http://www.szdb.org
https://www.r-project.org/
https://github.com/shmohammadi86/SCINET
https://github.com/shmohammadi86/SCINET/tree/master/demo
https://github.com/shmohammadi86/SCINET/tree/master/demo
https://github.com/KrishnaswamyLab/MAGIC
https://www.ebi.ac.uk/swas/

	Summary:
	Graphical Abstract
	eTOC
	Introduction
	Results
	Methodological overview
	Constructing interactomes for major cell-types of the human cortex
	Topological-specificity highlights genes with preferential cell-type influence
	Identification of non-specific genes with cell-type specific interactions
	Cell-type specific network context of disease associated genes
	Disease-associated genes tend to be connected by cell-type specific interactions
	Network analysis reveals cell-type-specific modularity of brain-associated disorders
	Genes associated with autoimmune-disorders exhibit distinct modularity in immune cell-specific interactomes

	Discussion
	STAR METHODS
	LEAD CONTACT AND MATERIALS AVAILABILITY
	METHOD DETAILS
	Single-cell data preprocessing
	Additional reference data sources
	Compactness and of disease-associated genes
	Topological specificity analysis

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Interpolation and smoothing of expression profiles via ACTION
	Transformation of gene expression profiles
	Assessing co-expression dependencies between pairs of interacting proteins

	DATA AND CODE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table T2

