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Abstract

Alcohol dependence encompasses a serious medical and societal problem that constitutes a major 

public health concern. A serious consequence of dependence is the emergence of symptoms 

associated with the alcohol withdrawal syndrome when drinking is abruptly terminated or 

substantially reduced. Clinical features of alcohol withdrawal include signs of central nervous 

system hyperexcitability, heightened autonomic nervous system activation, and a constellation of 

symptoms contributing to psychologic discomfort and negative affect. The development of alcohol 

dependence is a complex and dynamic process that ultimately reflects a maladaptive 

neurophysiologic state. Perturbations in a wide range of neurochemical systems, including 

glutamate, γ-aminobutyric acid, monoamines, a host of neuropeptide systems, and various ion 

channels produced by the chronic presence of alcohol ultimately compromise the functional 

integrity of the brain. These neuroadaptations not only underlie the emergence and expression of 

many alcohol withdrawal symptoms, but also contribute to enhanced relapse vulnerability as well 

as perpetuation of uncontrolled excessive drinking. This chapter highlights the hallmark features 

of the alcohol withdrawal syndrome, and describes neuroadaptations in a wide array of 

neurotransmitter and neuromodulator systems (amino acid and monoamine neurotransmitter, 

neuropeptide systems, and various ion channels) as they relate to the expression of various signs 

and symptoms of alcohol withdrawal, as well as their relationship to the significant clinical 

problem of relapse and uncontrolled dangerous drinking.
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INTRODUCTION

Alcohol abuse and alcoholism are significant public health concerns that continue to exact 

enormous burdens on the healthcare industry as well as producing a broad range of societal 
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problems, including judicial (e.g., crime), economic (e.g., damage/loss of property, reduced 

productivity in the workplace) and, most tragically, collateral damage to personal/family 

relationships. While many individuals abuse alcohol without being dependent on the drug, 

continued excessive alcohol consumption can lead to the development of dependence.

A serious consequence of dependence is the emergence of symptoms associated with the 

alcohol withdrawal syndrome. When drinking is abruptly terminated or substantially 

reduced in the dependent individual, a characteristic withdrawal syndrome ensues. Clinical 

features of alcohol withdrawal include signs of central nervous system (CNS) 

hyperexcitability, heightened autonomic nervous system activation and, in its most severe 

form, hallucinosis and delirium tremens (Saitz, 1998; Becker, 2000). In addition to physical 

signs of withdrawal, a constellation of symptoms contributing to psychologic discomfort and 

negative affect constitutes a prominent component of the withdrawal syndrome (Becker, 

2008; Koob, 2013). While many of the signs and symptoms of withdrawal abate within 5–7 

days, some symptoms (primarily those related to mood and emotional disturbances) have 

been reported to linger on for a protracted period of time (Heilig et al., 2010). Moreover, it 

has been suggested that the negative affective or emotional components of withdrawal, while 

more subtle in nature, may constitute significant motivational factors that lead to resumption 

of alcohol-seeking behavior (relapse) (Becker, 2012, 2013; Koob, 2013). The high rate of 

recidivism in alcoholism underscores the relapsing nature of the disease. Thus, it is not 

uncommon for alcohol-dependent individuals to experience multiple episodes of withdrawal, 

with repeated attempts at abstinence tragically failing and individuals reverting back to 

excessive, unhealthy drinking habits.

The development of alcohol dependence is a complex and dynamic process that ultimately 

reflects a maladaptive neurophysiologic state. Perturbations in a wide range of 

neurochemical systems produced by the chronic presence of alcohol contribute to significant 

changes in neural activity (neuroadaptations) that ultimately compromise the functional 

integrity of the brain. Indeed, the development of alcohol dependence is thought to reflect an 

allostatic state fueled by progressive dysregulation of neurophysiologic systems beyond 

normal homeostatic limits (Koob and Le Moal, 2001). Many of these neuroadaptive changes 

associated with dependence are integral to brain reward and stress systems (e.g., Hansson et 

al., 2008; Koob and Le Moal, 2008). Indeed, manifestations of this allostatic state not only 

underlie the emergence and expression of many alcohol withdrawal symptoms, but also 

contribute to persistent vulnerability to relapse. Additionally, the potential for alcohol to 

alleviate discomfort associated with withdrawal-related stress/dysphoria may serve as a 

powerful motivational force that not only enhances relapse vulnerability, but also favors 

escalation of alcohol drinking to even higher levels. This chapter highlights the hallmark 

features of the alcohol withdrawal syndrome, and describes neuroadaptations in a wide array 

of neurotransmitter and neuromodulator systems as they relate to the expression of various 

signs and symptoms of alcohol withdrawal, as well as their relationship to the significant 

clinical problem of relapse and uncontrolled dangerous drinking.
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SIGNS AND SYMPTOMS OF THE ALCOHOL WITHDRAWAL SYNDROME

CNS Hyperexcitability

A hallmark feature of the alcohol withdrawal syndrome is general CNS hyperexcitability. 

This is thought to reflect compensatory neural activity, induced by the depressant effects of 

alcohol, that is unmasked when the drug is withdrawn from the brain (Finn and Crabbe, 

1997; Littleton, 1998; Becker, 2000). Both electrographic and behavioral measures of 

withdrawal-related seizure activity have been extensively documented in animals and 

humans (Victor, 1970; Deitrich et al., 1996; Porjesz and Begleiter, 1996; Becker, 2000). 

Electrographic measures include increased frequency of spontaneous as well as evoked 

perturbations in electroencephalogram (EEG) activity that include spike and sharp-wave 

epileptiform activity and more global synchronized high-voltage spindling activity. In 

animal studies, motor convulsions may occur spontaneously, but can be more readily elicited 

by exposure to sensory stimuli (e.g., audiogenic), handling manipulation, electroconvulsive 

stimulation, and various chemoconvulsant agents. Both electrographic and behavioral 

measures of withdrawal-related seizure activity in animals are highly sensitive to clinically 

effective anticonvulsants (Crabbe, 1992; Becker, 1996; Watson et al., 1997; Becker and 

Veatch, 2002; Veatch and Becker, 2005). In humans, sophisticated quantitative frequency 

analysis of EEG (power spectral analysis) has revealed more subtle and long-lasting 

functional CNS alterations resulting from chronic alcohol exposure and withdrawal (Sand et 

al., 2010). Detecting subtle (subclinical) indices of seizure-like activity may be particularly 

important in light of evidence indicating that repeated withdrawal experience (even 

relatively mild such episodes) may result in sensitization or a “kindling” effect of 

withdrawal (Ballenger and Post, 1978; Becker, 1996, 1998).

Kindling of alcohol withdrawal is thought to reflect a process whereby seizure activity (and 

other withdrawal symptoms) progressively worsens with repeated detoxification 

experiences. It has been postulated that such a process may underlie the commonly observed 

progression of withdrawal symptoms from relatively mild responses (e.g., irritability, 

tremors) characteristic of initial withdrawal episodes to more severe symptoms (e.g., 

seizures) associated with subsequent withdrawal episodes (Ballenger and Post, 1978). 

Indeed, a number of clinical studies involving retrospective analyses have reported a positive 

relationship between the likelihood of seizures occurring during a given withdrawal episode 

and a history of previous detoxifications (Brown et al., 1988; Lechtenberg and Worner, 

1991; Moak and Anton, 1996). An increased risk of seizures in alcoholics with a history of 

multiple detoxifications is of clinical significance since poorer prognosis and a higher 

mortality rate have been reported for patients presenting with alcohol withdrawal-related 

seizures in contrast to individuals with seizures of unknown etiology (Pieninkeroinen et al., 

1992). Further, a history of multiple previous detoxifications was reported to be associated 

with more severe and medically complicated withdrawal syndromes, as well as an increased 

likelihood of hospital readmission for alcohol-related problems (Booth and Blow, 1993). 

Preclinical studies have provided critical support and validation of these findings, 

demonstrating progressive intensification of withdrawal symptoms over repeated withdrawal 

experiences (Becker, 1998, 1999). From a treatment perspective, detecting withdrawal-

related CNS perturbations may be important, as early intervention may be significant in 
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quelling a kindling-like process and providing preventive care for alcoholics (Malcolm et al., 

2000, 2002; Veatch and Becker, 2005).

Enhanced sensory reactivity is also thought to reflect heightened CNS excitability during 

alcohol withdrawal. In humans, this is typically measured by assessing a startle response 

(eye blink) to an auditory stimulus. In contrast to the dampening effect of alcohol on 

acoustic startle amplitude in healthy controls (Grillon et al., 1994), exaggerated startle 

responses have been reported in detoxified alcohol-dependent subjects (Krystal et al., 1997; 

Schellekens et al., 2012). In several animal studies the startle response has been measured in 

response to auditory or tactile (air puff) stimuli following withdrawal from chronic alcohol 

exposure, but these studies have generally yielded mixed results, i.e., startle reactivity has 

been reported to be increased, decreased, or unchanged during alcohol withdrawal (Rassnick 

et al., 1992; Macey et al., 1996; Ponomarev and Crabbe, 1999; Vandergriff et al., 2000; 

Chester et al., 2005; Chester and Barrenha, 2007; Reilly et al., 2009). Deficits in prepulse 

inhibition of the startle response have been suggested to be related to increased risk for 

alcoholism (Grillon et al., 2000), and a study in rats indicated that this phenotype may be 

predictive of more severe withdrawal symptoms following subsequent chronic alcohol 

exposure (Kayir et al., 2010).

Autonomic Nervous System Hyperactivity

An array of physiologic symptoms commonly experienced during withdrawal reflect 

manifestations of heightened autonomic nervous system activity, more specifically, 

increased sympathetic activity (e.g., Hawley et al., 1994; King et al., 1994; Patkar et al., 

2003; Kahkonen, 2004; Rasmussen et al., 2006). These include tachycardia, increased blood 

pressure, diaphoresis (heavy sweating), body temperature dysregulation, and gastrointestinal 

disturbances (nausea, vomiting). Animal models have demonstrated many of these classic 

sympathomimetic withdrawal symptoms, including altered cardiovascular function (Kashkin 

et al., 2008; Shirafuji et al., 2010), central and behavioral thermal dysregulation (Crawshaw 

et al., 1994), and gastrointestinal-related symptoms, such as diarrhea and reduced food and 

water intake (Friedman, 1980; Kliethermes, 2005). Most of these symptoms resolve within 

the acute phase of withdrawal. Given evidence indicating elevated sympathetic activity 

associated with alcohol withdrawal, it is not surprising that drugs that reduce noradrenergic 

tone, such as adrenergic beta-blockers and alpha-2 agonists, have been shown to be useful as 

adjuncts for treatment of alcohol withdrawal symptoms related to sympathetic overdrive 

(Mayo-Smith, 1997; Riihioja et al., 1997; Muzyk et al., 2011).

Tremor is another frequent symptom of alcohol withdrawal, and it is thought to emerge as a 

manifestation of sympathetic hyperactivity (Koller et al., 1985; Charles et al., 1999). Animal 

studies have used subjective rating scores (Frye et al., 1983; Bone et al., 1989) as well as 

more quantitative measures (Macey et al., 1996) to demonstrate increased tremor during 

withdrawal. Interestingly, while mostly anecdotal, human alcoholics often report resumption 

of drinking linked to a desire to self-medicate the “shakes” (tremor) during early abstinence. 

In this vein, it is interesting that alcohol withdrawal has been reported to potentiate the 

tremorogenic effects of nicotine (Gothoni and Ikola, 1985). Thus, the high prevalence/
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comorbidity of alcohol and nicotine dependence may relate, at least in part, to alcohol’s 

ability to moderate tremor resulting from alcohol withdrawal as well as nicotine use.

Sleep Disturbances

A common complaint among alcoholics is disruption in sleep, which typically emerges 

during early periods of abstinence and often extends to the more protracted phase of 

abstinence (Brower et al., 2001; Landolt and Gillin, 2001; Cohn et al., 2003; Colrain et al., 

2009; Brower and Perron, 2010). Insomnia during abstinence is characterized by 

fragmentation of sleep architecture that manifests as increased sleep latency, reduced total 

sleep, compromised sleep efficiency, and a transient increase (rebound) in rapid-eye 

movement sleep. Animal studies employing techniques to measure EEG in freely moving 

rats (Ehlers and Slawecki, 2000; Kubota et al., 2002) and mice (Veatch, 2006; Wiggins et al., 

2013) undergoing alcohol withdrawal have demonstrated significant and long-lasting 

alterations in sleep architecture that are similar to those observed in human alcoholics during 

abstinence. Chronic alcohol exposure and withdrawal also have been shown to alter 

circadian clock function (which is critical for regulation of the wake–sleep cycle) in rats 

(Rosenwasser et al., 2005; Sharma et al., 2010) and mice (Seggio et al., 2009; Brager et al., 

2010; Logan et al., 2012). Likewise, disruptions in circadian clock function have been noted 

in human alcoholics during abstinence (Brower et al., 2001; Rosenwasser, 2001), and there 

is recent evidence for decreased expression of several circadian clock genes (Huang et al., 

2010a) as well as a polymorphism in one of the genes (Per3) that is associated with 

insomnia severity in alcohol-dependent subjects (Brower et al., 2012). Clinical studies have 

noted the self-reported link between disrupted sleep during abstinence and increased risk of 

relapse (Clark et al., 1998; Drummond et al., 1998; Feige et al., 2007; Malcolm et al., 2007; 

Steinig et al., 2011; Smith et al., 2013). It is noteworthy that a number of clinical studies 

have recently begun to evaluate treatment strategies for addressing this aspect of the 

abstinence syndrome, especially in the context of relapse prevention (Le Bon et al., 2003; 

Staner et al., 2006; Malcolm et al., 2007; Brower et al., 2008).

Measures of Psychologic Discomfort and Negative Affect

Anxiety—Increased anxiety represents a significant component of the alcohol withdrawal 

syndrome. In humans, anxiety emerges during the early abstinence phase and in many cases 

lingers for an extended period of time. Of significance, the psychologic discomfort 

associated with anxiety experienced during abstinence, even after most acute physical 

symptoms have subsided, has been suggested to play a prominent role in increasing risk for 

relapse as well as perpetuating continued use/abuse of alcohol (Roelofs, 1985; Becker, 1999; 

Koob and Le Moal, 2001; Schneider et al., 2001). Indeed, both preclinical and clinical 

studies suggest a link between anxiety and propensity to self-administer alcohol (Spanagel et 

al., 1995; Willinger et al., 2002; Barrenha and Chester, 2007), although this relationship is 

by no means simple in animals or human alcoholics (Schuckit and Hesselbrock, 1994; 

Henniger et al., 2002; Correia et al., 2009; Heilig et al., 2010).

A number of experimental procedures have been used to demonstrate increased behavioral 

anxiety in animal models of alcohol dependence and withdrawal (Becker, 2000; 

Kliethermes, 2005). Many of these models involve procedures that exploit the natural 
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tendency for rodents to avoid environments that may be considered dangerous or threatening 

and, thereby, elicit an internal state of “fear” or “anxiety” (e.g., bright open spaces). For 

example, behavioral measures of elevated anxiety during withdrawal have been 

demonstrated in animals, as indexed by reduced activity in the central portions of an open 

field arena or in open quadrants of a maze (e.g., elevated plus/zero mazes), reduced entries 

(increased avoidance) of a brightly illuminated portion of a two-compartment chamber 

(light–dark box test), and reduced social interaction behavior in a novel environment 

(Becker, 2000; Kliethermes, 2005). While these models have been effectively used to 

document alcohol withdrawal-related behavioral measures of anxiety, results have 

sometimes been variable (especially in studies using mice) due to a number of confounds, 

most notably, non-specific reductions in general activity (Kliethermes, 2005). Nevertheless, 

anxiety and other symptoms reflective of a state of psychologic discomfort (e.g., irritability, 

agitation) are firmly established as clinically significant components of the alcohol 

withdrawal syndrome. In fact, many treatments commonly used for managing detoxification 

(e.g., benzodiazepines) not only serve to reduce life-threatening aspects of the syndrome 

(e.g., grand mal seizures), but also target symptoms such as anxiety that contribute to 

negative affect and increased relapse vulnerability.

Heightened Stress Responsiveness—Increased stress reactivity is another feature of 

alcohol withdrawal that has been studied in humans and animal models. In many instances, 

heightened stress responsiveness persists long after physical signs and even many overt 

psychologic symptoms of withdrawal have dissipated. Although complaints about irritability 

and increased sensitivity to everyday stressors have long been recognized clinically in 

alcoholic patients, corresponding human data are just beginning to emerge. For example, an 

increased stress response (elevated heart rate and cortisol levels) was reported in abstinent 

alcoholics following exposure to a social stressor (Trier Social Stress test), with the effect 

modified by the degree of drinking history and duration of abstinence prior to testing 

(Starcke et al., 2013). Recent neuroimaging (functional magnetic resonance imaging) studies 

have demonstrated exaggerated brain responses to visual stimuli that evoked negative 

emotions, with results suggesting altered functional neural connectivity indicative of 

aberrant cortical modulation of emotional processing (George et al., 2008; Gilman and 

Hommer, 2008; O’Daly et al., 2012). There is also evidence indicating that alcohol-

dependent patients abstinent for 4–8 months exhibit altered brain activation in response to 

stress- or alcohol-relevant cues (as opposed to neutral cues), and this altered cortical 

activation was predictive of greater relapse susceptibility and severity (Seo et al., 2013). 

Collectively, these results add to a growing body of literature that indicates abstinent 

alcohol-dependent individuals display stress-induced emotional and physiologic 

dysregulation along with dysfunctional brain activity, which all contribute to increased 

alcohol craving and relapse vulnerability (Sinha, 2013).

Similarly, increased behavioral reactivity to stress following chronic alcohol exposure and 

withdrawal has also been demonstrated in animals. For example, enhanced response to 

stress- induced anxiety has been reported in alcohol-dependent rats using a number of 

testing protocols, with the effects often persisting over a long period of time (months) 

following withdrawal (Valdez et al., 2003; Breese et al., 2005; Rylkova et al., 2009; Huang 
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et al., 2010b; Gillett et al., 2013). Of clinical significance, a history of chronic alcohol 

exposure and withdrawal has been shown to enhance the ability of stress to trigger relapse-

like behavior in animal models (Le et al., 2000; Liu and Weiss, 2002a; Gehlert et al., 2007; 

Marinelli et al., 2007; Sommer et al., 2008). Clinical and experimental evidence indicates 

that increased sensitivity to stress during abstinence reflects, in large part, adaptations in 

neuroendocrine and brain stress systems induced by chronic alcohol exposure (see below). 

Taken together, enhanced stress reactivity in dependent subjects has both physiologic 

implications as well as cognitive/behavioral potential for influencing relapse vulnerability.

Anhedonia/dysphoria—Another common feature of the alcohol withdrawal syndrome 

relates to anhedonia, i.e., a reduced ability to derive pleasure from events/stimuli typically 

perceived as rewarding. Although anecdotal reports have long noted the significance of this 

dysphoric aspect of alcohol withdrawal, recent clinical studies have used a number of 

assessment instruments to better quantify the subjective anhedonic/dysphoric state that has 

been shown, in many cases, to endure for a protracted period of time during abstinence 

(Janiri et al., 2005; Martinotti et al., 2008; Pozzi et al., 2008; Hatzigiakoumis et al., 2011). 

Withdrawal-related anhedonia has typically been modeled in animal studies using an 

intracranial self-stimulation (ICSS) procedure. For example, during withdrawal from chronic 

alcohol exposure, rats have been shown to exhibit significant increases in ICSS threshold 

(i.e., the minimal amount of electrical stimulation delivered to reward pathways in the brain 

that is perceived as rewarding) (Schulteis et al., 1995; Chester et al., 2006; Rylkova et al., 

2009). It has been suggested that a dopamine hypofunctional state may underlie anhedonia/

dysphoria associated with protracted withdrawal (Heinz et al., 1995; Diana et al., 1996; 

Weiss et al., 1996; Bailey et al., 2001; Martinez et al., 2005), although other neuroadaptive 

changes (e.g., corticotropin-releasing factor (CRF), dynorphin/kappa opiate receptors) 

undoubtedly play a contributory role as well (Heilig and Koob, 2007; Shippenberg et al., 

2007). Recently, some clinical studies have targeted withdrawal-related anhedonia in efforts 

to treat alcohol-dependent subjects (Martinotti et al., 2010, 2011).

NEUROCHEMICAL ADAPTATIONS PRODUCED BY CHRONIC ALCOHOL 

AND WITHDRAWAL

Prolonged excessive alcohol consumption sets in motion a host of neuroadaptive changes 

initially triggered to compensate for, and mitigate effects of, continued presence of alcohol 

in the brain. With continued drinking, adaptations in other systems not initially affected by 

alcohol emerge that contribute to a state of CNS disequilibrium and dysfunction. When 

abstinence is attempted and alcohol is eliminated from the CNS, manifestations of these 

adaptations are unveiled, as evidenced by the expression of myriad signs and symptoms that 

constitute the alcohol withdrawal syndrome (Fig. 9.1). As previously noted, many of these 

adaptations also have significant motivational implications with regard to increased relapse 

vulnerability and excessive drinking, both characteristic of dependence. This section will 

provide an overview of adaptations in a wide array of neurochemical and neuromodulatory 

systems associated with alcohol dependence, with particular emphasis on their relationship 

to various signs and symptoms of the alcohol withdrawal syndrome, as well as their 
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postulated role in underlying enhanced relapse susceptibility and perpetuation of excessive, 

unhealthy alcohol consumption.

Adaptations In Amino Acid Neurotransmitter Systems

The amino acids glutamate and γ-aminobutyric acid (GABA) are the major excitatory and 

inhibitory neurotransmitters, respectively, in the CNS. While alcohol initially facilitates the 

inhibitory actions of GABA and inhibits excitatory effects mediated by glutamate 

transmission, chronic alcohol exposure results in compensatory changes in these amino acid 

transmitter systems that are opposite in nature and revealed upon withdrawal. Manifestations 

of this resultant imbalance in GABA-mediated inhibition and glutamate-mediated excitation 

in the CNS are known to underlie expression of various withdrawal symptoms, most notably 

CNS hyperexcitability (Becker, 1998; Littleton, 1998; Hillbom et al., 2003). Indeed, it is 

well established that neuroadaptations in glutamatergic and GABAergic signaling systems 

following chronic alcohol exposure play a prominent role in mediating a variety of 

dependence and withdrawal-related sequlae (Fadda and Rossetti, 1998; Lovinger and 

Roberto, 2013).

Glutamate—The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-

methyl-D-aspartate (NMDA) subtypes of glutamate receptors are among the most widely 

distributed and abundant receptors in the brain. AMPA receptors are heterotetramers 

comprising GluR1–4 subunits and mediate most fast synaptic neurotransmission. NMDA 

receptors are also heterotetramers and are composed of an obligatory GluN1 subunit co-

assembled with a least one type of regulatory GluN2A–D subunit. The majority of NMDA 

receptors in the adult brain are composed of GluN2A and GluN2B subunits. NMDA 

receptors mediate the slow component of excitatory postsynaptic potentials. Glutamate also 

operates at two metabotropic receptor subtypes: mGluR1-like (mGlur1 and mGluR5) and 

mGluR2-like (mGluR2, mGluR3, and mGluR4). Both ionotropic (AMPA and NMDA) and 

metabotropic (mGluRs) receptors have been implicated in a wide array of alcohol-associated 

phenotypes, including those related to dependence and withdrawal.

Compensatory changes produced by chronic alcohol exposure produce a hyperglutamatergic 

state in the brain that underlies increased susceptibility to chronic alcohol exposure/

withdrawal-induced neurotoxicity (Stepanyan et al., 2008; Prendergast and Mulholland, 

2012) and altered synaptic plasticity (Chandler et al., 2006; McCool et al., 2010; Holmes et 

al., 2012; Zorumski et al., 2014). Also resulting is behavioral expression of several 

withdrawal symptoms, particularly those associated with CNS hyperexcitability (e.g., 

seizures) (Hillbom et al., 2003; Gass and Olive, 2008).

Studies using a variety of preparations have demonstrated that increased NMDA receptor-

mediated excitatory transmission following chronic alcohol exposure are highly complex, 

involving changes in trafficking and phosphorylation of NMDA receptor subunits. For 

example, in vitro and in vivo studies have shown that chronic alcohol exposure results in 

compensatory trafficking of NMDA receptors containing GluN1 and GluN2B subunits to 

synaptic sites without alterations in expression of NMDA receptors in extrasynaptic domains 

(Mulholland and Chandler, 2007; Kroener et al., 2012). Further, evidence suggests that 
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increased expression of GluN1 subunits leading to activity-dependent enhanced targeting of 

NMDA receptors to the synapse involves alternative splicing of the carboxyl-terminal (C2’ 

cassette) of GluN1 subunits (Mu et al., 2003; Clapp et al., 2010). At the same time, there is 

evidence for internalization of GluN2A subunits via clathrin-dependent endocytosis 

(Suvarna et al., 2005), with the result being an increased proportion of NMDA receptors 

reflecting a GluN1/GluN2B conformation.

Chronic alcohol exposure also results in phosphorylation of the GluN2B subunits by the Src 

family tyrosine kinase Fyn (via dissociation from the scaffolding protein RACK1), resulting 

in increased NMDA receptor channel activity (Miyakawa et al., 1997; Yaka et al., 2003). 

Interestingly, downregulation of protein tyrosine phosphatase in the dorsomedial striatum 

prevented phosphorylation of GluN2B, reduced withdrawal-associated NMDA receptor 

activity, and excessive alcohol drinking in mice (Ben Hamida et al., 2013). These adaptive 

changes in NMDA expression and function are suggested to contribute to withdrawal-related 

CNS hyperexcitability and escalation of drinking and cognitive impairments associated with 

dependence (Wang et al., 2010; Kroener et al., 2012; Ben Hamida et al., 2013).

Similarly, chronic alcohol-induced enhancement of AMPA receptor expression and function 

has been reported in cortex (Haugbol et al., 2005), hippocampus (Bruckner et al., 1997), 

basolateral amygdala (Lack et al., 2007), and dorsomedial striatum (Wang et al., 2012). 

Selective pharmacologic blockade of AMPA receptors in the basolateral amygdala 

attenuated withdrawal-related anxiety-like behaviors in rats, suggesting a role for 

adaptations in AMPA receptors in expression of withdrawal symptoms (Lack et al., 2007).

Recent clinical studies have employed imaging technology involving magnetic resonance 

spectroscopy procedures to measure glutamate levels in brain. Some studies have reported 

reduced cortical glutamate levels associated with dependence and acute withdrawal (Mon et 

al., 2012; Ende et al., 2013), while other studies have shown elevated glutamate activity in 

anterior cingulate and striatum in alcohol-dependent subjects (Hermann et al., 2012; Bauer 

et al., 2013). Congruent with these latter findings, studies in rats utilizing a dependence 

model that involves chronic exposure to alcohol vapor have shown increased glutamate 

levels in prefrontal cortex (Hermann et al., 2012) and basal ganglia (Zahr et al., 2009; Gu et 

al., 2013). Likewise, mouse and rat studies employing microdialysis procedures have 

demonstrated chronic alcohol and acute withdrawal-induced elevation in extracellular 

glutamate levels in several brain regions, including hippocampus and dorsal and ventral 

subregions of the striatum (Rossetti and Carboni, 1995; Dahchour et al., 2000; Dahchour 

and De Witte, 2003; Kapasova and Szumlinski, 2008). Repeated cycles of chronic 

intermittent exposure to alcohol vapor were shown to increase basal levels of glutamate in 

the nucleus accumbens (NAc) at time points beyond acute withdrawal. Pharmacologic 

studies demonstrated that increased glutamate tone in this brain region plays an important 

role in promoting excessive drinking associated with dependence (Griffin et al., 2014).

Finally, a history of alcohol dependence in rats also has been shown to alter functional 

activity and sensitivity of mGluR2/3 and mGluR5 receptors to drugs that modulate alcohol-

seeking behavior and reinstatement of alcohol responding following presentation of cues 

previously associated with alcohol reinforcement (Sidhpura et al., 2010; Kufahl et al., 2011; 
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Meinhardt et al., 2013). These results have clinical implications because a number of drugs 

known to alter central glutamate activity have been investigated as potential treatments for 

reducing alcohol craving and consumption in human alcoholics. Unfortunately, mixed 

results have been generated from some of these studies with acamprosate (Umhau et al., 

2010; Mann et al., 2012; Mason and Lehert, 2012; Berger et al., 2013b; Yahn et al., 2013) 

and anticonvulsants such as topiramate, gabapentin, pregabalin, and levetiracetam (De 

Sousa, 2010; Johnson and Ait-Daoud, 2010; Guglielmo et al., 2012; Mason et al., 2014). 

Clearly, this is an area that warrants more exploration and examination.

GABA—GABA operates at two types of receptors: ionotropic GABAA receptors and 

metabotropic GABAB receptors. GABAA receptors are composed of at least 19 subunit 

variants (α1–6, β1–3, γ1–3, δ, ε, π, θ, and ρ1–3), and the assembly of these different 

subunits confers unique pharmacologic sensitivity and receptor function. In comparison, 

there are two subtypes of GABAB receptors that form functional heterodimers in brain. 

Chronic exposure to alcohol is well documented to induce neuroadaptive changes in pre- and 

postsynaptic GABAergic transmission and expression of receptor subunit transcript/peptide 

levels that are temporally, subunit, and brain region-dependent (Kumar et al., 2009; Lovinger 

and Roberto, 2013). For example, studies in hippocampal and cortical pyramidal neurons 

have shown that chronic alcohol exposure reduces the frequency, amplitude, and decay time 

of mini inhibitory postsynaptic currents, effects that all contribute to increased neural 

excitability during withdrawal (Fleming et al., 2009). Chronic alcohol also reduces α1 

subunits and increases α4 subunits of synaptic GABAA receptors, and this bidirectional 

effect on α1 and α4 subunit expression and trafficking can be modulated by protein kinase C 

phosphorylation (Kumar et al., 2002). Evidence also suggests that the enhanced 

internalization of the GABAA α1 subunit by chronic alcohol exposure is regulated by 

adaptor complex-2 and clathrin-mediated endocytosis. Additionally, chronic alcohol 

exposure decreases extrasynaptic GABAA-mediated tonic current recorded from neurons in 

the hippocampus and cortex (Liang et al., 2004; Fleming et al., 2011), and this corresponds 

with a decrease in extrasynaptic GABAA receptors containing the δ subunit in hippocampus 

(Cagetti et al., 2003). Collectively, these GABAA receptor adaptations play a prominent role 

in mediating expression of various withdrawal signs and symptoms, including general CNS 

hyperexcitability and affective components, including anxiety.

Positive allosteric modulators of GABAA receptors (i.e., benzodiazepines) have been the 

gold standard for treatment of alcohol detoxification in the United States, owing to their 

anticonvulsant and anxiolytic pharmacologic profile. However, concerns about their abuse 

and dependence liability, amnestic effects, and potential for untoward ethanol interactions 

have spurred attention and greater investigation of other anticonvulsant agents (e.g., 

gabapentin, topiramate) as alternatives (Johnson and Ait-Daoud, 2000; Litten et al., 2005; 

Malcolm et al., 2007; Myrick et al., 2009; Addolorato et al., 2012; Cooper and Vernon, 

2013).

Although the effects of chronic alcohol exposure on GABAB receptors have not been 

extensively studied, alcohol dependence also appears to regulate presynaptic GABAB 

receptor function. For example, alcohol-dependent rats showed decreased sensitivity to 

GABAB receptor agonists and antagonists on evoked inhibitory postsynaptic currents 
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recorded from central amygdala neurons (Roberto et al., 2008). Studies in animals and 

humans have suggested that direct GABAB receptor agonists, such as baclofen, are effective 

in reducing alcohol self-administration (Colombo et al., 2000; Addolorato et al., 2006, 

2012). In one study, rats with a history of dependence exhibited a leftward shift in the dose–

effect curve for baclofen to reduce alcohol consumption (greater sensitivity) compared to 

non-dependent rats (Walker and Koob, 2007).

Adaptations in Monoamine Systems

Dopamine—The role of dopamine in various facets of alcohol (and other drug) addiction 

has been extensively studied over several decades. Dopamine transmission is mediated via 

two groups of G-protein-linked receptors: D1-like (D1 and D5 receptors) and D2-like (D2, 

D3, and D4 receptors) that are classified on the basis of opposing transduction mechanisms 

that involve stimulating versus inhibiting adenylate cyclase activity, respectively. Dopamine, 

through its actions via mesolimbic and mesocortical pathways, has long been viewed as 

playing a central role in mediating alcohol reward (Gonzales et al., 2004; Spanagel, 2009). 

Chronic alcohol exposure has been reported to produce persistent neuroadaptive changes in 

dopamine transmission within the meso-accumbens reward circuitry, including increased 

firing rate in ventral tegmental area (VTA) dopamine neurons (Brodie, 2002), increased 

basal extracellular levels of dopamine in the NAc (Smith and Weiss, 1999; Sahr et al., 2004; 

Thielen et al., 2004), and alterations in dopamine receptor function (Liu and Weiss, 2002b; 

Engleman et al., 2003). By contrast, withdrawal from chronic alcohol exposure has been 

reported to result in decreased VTA dopamine neuronal activity (Diana et al., 1996; Bailey et 

al., 2001), and reduced basal levels of dopamine in ventral and dorsal subregions of the 

striatum, possibly due to enhanced dopamine uptake (Weiss et al., 1996; Budygin et al., 

2007; Barak et al., 2011).

Many of these effects have been shown to persist beyond acute withdrawal, and this 

dopamine hypofunctional state has been suggested to underlie, in part, the negative affect 

and dysphoria associated with protracted abstinence, as well as the motivation to re-engage 

in alcohol-drinking behavior (Diana, 2011; Charlet et al., 2013). While there is some 

evidence that dopamine antagonists reduce alcohol craving and consumption, concern about 

their side-effects has hampered their general use in treating alcohol dependence (Swift, 

2010). The D2 dopamine receptor partial agonist aripiprazole has shown some efficacy in 

treating alcohol dependence (Anton et al., 2008a; Kranzler et al., 2008; Martinotti et al., 

2009). The mixed agonist/antagonist mechanism of this drug may enable restoration of 

dopamine function during acute withdrawal and then blunt dopamine stimulation produced 

by drinking (relapse) (Myrick et al., 2010).

Altered cortical dopamine activity has been suggested to contribute to severe alcohol 

withdrawal symptoms that typically constitute delirium tremens (e.g., extreme agitation, 

hallucinations, psychosis). Antipychotics (both typical and atypical) have been used to 

manage such severe withdrawal, but they are typically used as an adjunct treatment (often 

administered in combination with benzodiazepines or anticonvulsants) because alone, they 

offer no protection against seizures. There are also concerns about severe sedation and 

potential respiratory depression (Mayo-Smith, 1997; Mainerova et al., 2013).
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Norepinephrine—Norepinephrine is widely distributed throughout the brain, arising 

principally from neurons within the locus coeruleus, and noradrenergic activity has been 

shown to play a key role in regulating behaviors related to attention, arousal, and stress. The 

norepinephrine system also has been implicated in alcohol dependence, and alcohol 

withdrawal in particular. Chronic alcohol exposure results in increased peripheral and central 

noradrenergic activity, which underlies both somatic and affective manifestations of alcohol 

withdrawal. For example, drugs that temper noradrenergic activity either by stimulating 

presynaptic autoreceptors (alpha-2 adrenergic agonists: e.g., clonidine, dexmedetomidine) or 

blocking postsynaptic receptors (beta-adrenergic antagonists: e.g., propranolol) have been 

shown in preclinical and clinical studies to ameliorate various withdrawal symptoms related 

to heightened autonomic (sympathetic) nervous activity. Accordingly, this pharmacologic 

approach has proven to be useful as an adjunct in the management of alcohol detoxification 

(Muzyk et al., 2011).

Additionally, there is evidence that alcohol dependence-related adaptations in brain 

norepinephrine activity might play a role in influencing motivation to drink. For example, 

blocking postsynaptic alpha-1 adrenergic receptors with the antagonist prazosin reduced 

alcohol consumption in both dependent rats (Walker et al., 2008) and alcohol-dependent 

humans (Simpson et al., 2009). Likewise, treatment with beta-adrenoceptor antagonists (e.g., 

propranolol) also reduced drinking in dependent rats (Gilpin and Koob, 2010).

Serotonin—Serotonin predominantly arises from neurons within the raphe nuclei of the 

hindbrain, which send broad projections that innervate all levels of the brain. Serotonin 

exerts its known role in modulating various regulatory behaviors (e.g., feeding, sleep/

arousal, aggression), mood, and emotional aspects of motivational behavior via several 

metabotropic (5-HT1 and 5-HT2 subtypes) and ionotropic (5-HT3) receptor systems 

throughout the brain. While changes in serotonin activity are not thought to play a 

significant role in mediating somatic signs of alcohol withdrawal, its general role in 

regulating mood and affect suggests serotonin may contribute to withdrawal-related 

dysphoria, as well as motivational effects of alcohol. Indeed, chronic alcohol exposure 

reduces serotonin levels in several brain regions, and there is a large body of evidence 

indicating a negative relationship between serotonin levels in brain and propensity to self-

administer alcohol (Murphy et al., 2002; Casu et al., 2004; Petrakis, 2006). As is the case 

with dopamine, alcohol self-administration following withdrawal restored reduced 

extracellular levels of serotonin in the NAc produced by chronic alcohol exposure in rats 

(Weiss et al., 1996).

Given the role of serotonin in affective illness, it is not surprising that selective serotonin 

reuptake inhibitors (SSRIs) have been the focus of treatment for alcohol dependence and 

comorbid depression (Pettinati et al., 2010), anxiety (Book et al., 2008), and posttraumatic 

stress disorder (Petrakis et al., 2012). While there is some evidence indicating that SSRIs 

reduce drinking in animal studies (Maurel et al., 1999; Naranjo and Knoke, 2001), results 

are more mixed in clinical studies, possibly related to a unique polymorphism in the 

serotonin transporter (Kranzler et al., 2012), the presence and nature of comorbid illness 

(Johnson and Ait-Daoud, 2000), and other alcoholism-related endophenotypes (Pettinati et 

al., 2000). Interestingly, a drug that selectively inhibits serotonin reuptake (fluoxetine) and 
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one that blocks both serotonin and norepinephrine reuptake (milnacipran) were both found 

to be effective in reducing alcohol self-administration in dependent rats (Simon O’Brien et 

al., 2011), while a novel triple monoamine uptake inhibitor was reported to reduce alcohol 

intake in rats with a genetic predisposition for high alcohol preference (Yang et al., 2012). 

Finally, the 5-HT3 receptor antagonist ondansetron has been shown to reduce alcohol 

consumption in animals (Hodge et al., 2004) and human alcohol-dependent subjects 

(Johnson et al., 2000; Kranzler et al., 2003; Johnson, 2004), with recent evidence suggesting 

that polymorphisms in the 5-HT3 receptor and serotonin transporter moderate treatment 

efficacy (Johnson et al., 2013).

Adaptations in Neuropeptide Systems

Corticotropin-Releasing Factor—Chronic alcohol exposure engages a number of 

neuropeptide systems in the brain, with CRF most extensively studied in animal models of 

dependence (Heilig and Koob, 2007; Koob and Zorrilla, 2010; Lowery and Thiele, 2010). 

CRF is a 41-amino-acid neuropeptide that is widely distributed throughout the brain and, 

along with related peptides (urocortin; Ucn1, Ucn2, Ucn3), interacts with two G-protein-

coupled receptor subtypes (CRF1 and CRF2) to produce its physiologic and behavioral 

effects (Bale and Vale, 2004). While there is some evidence indicating a role for urocortin 

peptides (especially Ucn2 and Ucn3) and CRF2 receptors in alcohol dependence and 

withdrawal (e.g., Valdez et al., 2004; Funk and Koob, 2007; Ryabinin et al., 2012), most 

attention has focused on adaptations in CRF–CRF1 receptor activity within brain and 

neuroendocrine systems in relation to chronic alcohol exposure and withdrawal-related 

consequences.

CRF emanating from the hypothalamus plays a key role in regulating the neuroendocrine 

function of the hypothalamic–pituitary–adrenocortical (HPA) axis. Specifically, CRF 

neurons residing in the paraventricular nucleus of the hypothalamus regulate HPA axis 

activity via control of glucocorticoid production and release, which is critical for 

orchestrating behavioral and physiologic responses to stress. A large preclinical and clinical 

literature has demonstrated profound disturbances in HPA axis function following chronic 

alcohol exposure (Rivier, 2000; Wand, 2000; Stephens and Wand, 2012). Elevated 

glucocorticoid levels resulting from dependence-related HPA axis activation not only 

underlie altered stress responsiveness in dependent subjects, but it also may contribute to 

amplified motivation to drink as well as other ramifications of the dependence state. Studies 

in mice and rats also have shown that withdrawal following chronic alcohol consumption 

produced elevated corticosterone levels in the prefrontal cortex and hippocampus that 

persisted long after plasma corticosterone levels returned to baseline levels (Little et al., 

2008). There are also significant changes in expression of receptors in brain that bind 

glucocorticoids (glucocorticoid but not mineralocorticoid receptors) during abstinence, and 

there is recent evidence that activity at these receptors may play a role in relapse and 

perpetuation of excessive alcohol consumption (Vendruscolo et al., 2012). These results are 

congruent with findings showing that elevated corticosteroids enhance the propensity to 

consume alcohol through an interaction with mesolimbic and mesocortical reward pathways 

(Fahlke et al., 1995, 1996; Piazza and Le Moal, 1997; Koenig and Olive, 2004; Uhart and 

Wand, 2009). Further, elevations in brain glucocorticoid concentrations following chronic 
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alcohol exposure and withdrawal may contribute to the cognitive deficits and neurotoxic 

damage that are commonly associated with alcohol dependence (Rose et al., 2010).

Beyond alterations in neuroendocrine (HPA axis) function, chronic alcohol exposure has 

been shown to alter CRF activity independently of the HPA axis (Heilig and Koob, 2007; 

Heilig et al., 2010; Koob and Zorrilla, 2010). Increased CRF activity in several brain 

structures following chronic alcohol exposure is thought to play a key role in the emergence 

of negative affective withdrawal symptoms (e.g., anxiety, dysphoria) that may be especially 

relevant in enhancing susceptibility to relapse and promoting return to excessive levels of 

drinking (Koob and Kreek, 2007; Heilig et al., 2010; Lowery and Thiele, 2010; Becker, 

2012). For example, studies in rats involving pharmacologic manipulation of CRF activity 

has implicated a role of CRF1 receptors in mediating increased anxiety associated with 

withdrawal from chronic alcohol exposure delivered in a liquid diet (Baldwin et al., 1991; 

Rassnick et al., 1993; Valdez et al., 2003; Breese et al., 2005; Huang et al., 2010b), by 

intragastric administration (Gehlert et al., 2007), and via vaporized alcohol in inhalation 

chambers (Sommer et al., 2008), although a role for CRF2 receptors cannot be ruled out 

(Valdez et al., 2004). Additionally, increased CRF activity in brain structures integral to 

reward and stress pathways has been shown to play an important role in mediating the ability 

of stress to trigger relapse-like behavior (Le et al., 2000; Liu and Weiss, 2002a; Gehlert et 

al., 2007; Marinelli et al., 2007; Sommer et al., 2008). A number of studies have shown that 

pharmacologic blockade or genetic deletion of CRF1 receptors impedes escalation of 

alcohol consumption in dependent animals (Chu et al., 2007; Funk et al., 2007; Gehlert et 

al., 2007; Gilpin et al., 2008b; Sommer et al., 2008; Roberto et al., 2010; Molander et al., 

2012). Finally, studies in humans (Chen et al., 2010; Schmid et al., 2010; Blomeyer et al., 

2011), non-human primates (Barr et al., 2008, 2009), and rats (Hansson et al., 2006; 

Ayanwuyi et al., 2013) have indicated a strong genetic influence on the role of CRF in 

mediating stress responsiveness as well as alcohol drinking and risk for dependence. Taken 

together, there is a large body of evidence that indicates that dependence-related alterations 

in brain CRF activity both within and outside the HPA axis play a significant role in 

mediating various symptoms of alcohol withdrawal as well as excessive drinking associated 

with dependence.

Neuropeptide Y—Neuropeptide Y (NPY) is a 36-amino acid peptide that is widely 

distributed in the CNS and operates at five distinct receptors (Y1–5). NPY is commonly 

viewed as an “antistress,” anxiolytic signaling molecule (Heilig et al., 1994; Valdez and 

Koob, 2004), and it has been implicated in various facets of alcohol dependence and 

withdrawal (Thorsell, 2007; Gilpin, 2012). For example, reduced NPY mRNA and protein 

levels in the central and medial (but not basolateral) subregions of the amygdala were shown 

to be associated with withdrawal-related anxiety behavior following chronic alcohol 

treatment in rats (Roy and Pandey, 2002; Zhang and Pandey, 2003; Zhang et al., 2010). 

Intraventricular administration of NPY following chronic exposure to alcohol vapor reduced 

alcohol self-administration (Thorsell et al., 2005a, b). Additionally, central administration of 

NPY during repeated withdrawal cycles from chronic alcohol vapor exposure blocked the 

progressive increase in alcohol consumption in rats (Gilpin et al., 2011). Similar results were 

obtained in another study with direct infusion of NPY into the central nucleus of the 
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amygdala following chronic alcohol treatment in a liquid diet (Gilpin et al., 2008a). While 

studies have demonstrated a role for Y1 (Sparrow et al., 2012), Y2 (Thorsell et al., 2002), 

and Y5 (Schroeder et al., 2005) receptors in modulating alcohol consumption, few studies 

have dissected the relative role of these NPY receptor subtypes in mediating alcohol 

withdrawal anxiety and drinking. Nevertheless, evidence to date suggests that adaptive 

changes in NPY function in dependence contributes to withdrawal-related anxiety and 

increased propensity to self-administer alcohol.

Opioid Polypeptides—Alcohol interactions with endogenous opioid systems in the brain 

are well established in the animal and human literature. The endogenous opioid polypeptides 

endorphin, enkephalin, and dynorphin are distributed throughout the brain and principally 

operate at mu (MOR), delta (DOR), and kappa (KOR) opiate receptors, respectively, to 

produce their behavioral and physiologic actions (Bodnar, 2012). Activity at mu and delta 

receptors mediates classic opioid effects (e.g., analgesia, euphoria, sedation) while drugs that 

mimic the endogenous ligand for kappa receptors exert an opposite pharmacologic profile 

(e.g., increased pain sensitivity, dysphoria). Given the role of endogenous opioids in reward 

processes and motivational behaviors, most attention has focused on pharmacologic agents 

that alter endogenous opioid activity as treatments for alcohol dependence. A host of studies 

have shown that opiate antagonists (primarily targeting mu receptors) reduce alcohol craving 

and consumption, ultimately leading to naltrexone being Food and Drug Administration-

approved as a medication for treatment of alcoholism (O’Malley et al., 1992; Volpicelli et 

al., 1992). Recent studies have shown that a polymorphism in mu opiate receptors confers 

differential sensitivity to the treatment efficacy of naltrexone (Ray and Hutchison, 2007; 

Anton et al., 2008b). Also, there is some evidence that antagonists with greater selectivity 

for delta receptors (e.g., nalmefene) may have promise as effective treatments (Mason et al., 

1999; Mann et al., 2013). While there is ample preclinical evidence indicating that 

antagonism of both MOR and DOR is effective in reducing alcohol consumption (e.g., 

Ciccocioppo et al., 2002), some studies have shown that sensitivity to DOR antagonism is 

greater in dependent compared to non-dependent animals (Walker and Koob, 2008; Nealey 

et al., 2011).

There is growing interest in chronic alcohol-induced changes in the dynorphin/KOR system, 

particularly as such changes bear on somatic as well as the emergence of dysphoria/anxiety 

components of alcohol withdrawal (Walker et al., 2012). For example, there is some 

evidence to indicate that dynorphin (prodynorphin mRNA) expression in brain relates to 

genetic propensity for withdrawal seizures following chronic alcohol treatment (Beadles-

Bohling et al., 2000). Additionally, KOR antagonists were shown to attenuate acute alcohol 

withdrawal (“hangover”) anxiety (Schank et al., 2012; Valdez and Harshberger, 2012); KOR 

activity has been implicated in negative affect/emotional states produced by chronic 

exposure to alcohol via a liquid diet (Gillett et al., 2013) or vapor inhalation (Berger et al., 

2013a; Kissler et al., 2013). Also, KOR antagonism has been demonstrated to reduce 

escalated alcohol consumption in dependent rats without altering responding/intake in non-

dependent rats (Walker and Koob, 2008; Nealey et al., 2011; Walker et al., 2012). 

Interestingly, a polymorphism in the gene encoding KOR (OPRK1) was shown to be 

associated with human alcohol dependence (Edenberg et al., 2008). Collectively, these 
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studies indicate that increased dynorphin/KOR activity resulting from chronic alcohol 

exposure significantly contributes to dysphoric and negative emotional aspects of 

withdrawal, and blockade of KOR effectively suppresses alcohol self-administration that 

would otherwise be elevated as a function of dependence.

Nociceptin—Nociceptin (orphanin FQ) is a 17-amino-acid peptide that is structurally 

similar to dynorphin, but it possesses unique pharmacologic actions through binding with 

high affinity to opioid receptor-like 1 (ORL-1), also known as NOP (Reinscheid et al., 1995; 

Lambert, 2008). Devoid of mu, delta, and kappa receptor activity, nociceptin exerts 

antianxiety and antistress effects at NOP receptors. Recent studies have suggested that this 

peptide may be involved in the expression of various alcohol withdrawal symptoms, as well 

as alcohol self-administration behavior. For example, the gene that encodes the NOP 

receptor (Oprl1) was shown to be robustly upregulated in prefrontal cortex following chronic 

alcohol exposure in a mouse model of dependence (Melendez et al., 2012). Further, central 

administration of nociceptin reduced expression of somatic signs of withdrawal as well as 

increased anxiety following chronic alcohol treatment (Economidou et al., 2011; Aujla et al., 

2013). While several studies have shown that nociceptin (and NOP agonists) decreases 

alcohol consumption, particularly in rats with a genetic predisposition for high alcohol 

intake (Ciccocioppo et al., 2004; Economidou et al., 2008), dependent rats have been shown 

to exhibit greater sensitivity to this effect in comparison with non-dependent animals 

(Martin-Fardon et al., 2010). The potential for drugs that target NOP receptors for treatment 

of alcohol dependence awaits further investigation.

Other Neuropeptides—Other neuropeptides recently implicated in alcohol dependence 

include orexin/hypocretin (Bayerlein et al., 2011; von der Goltz et al., 2011; Kim et al., 

2012), substance P/neurokinin1 receptors (George et al., 2008; Thorsell et al., 2010; Schank 

et al., 2011), and neuropeptide S (Ruggeri et al., 2010; Enquist et al., 2012). While all these 

neuropeptide system have been implicated in motivational effects of alcohol, their role in 

mediating withdrawal symptoms as well as excessive alcohol consumption associated with 

dependence remains to be determined.

Adaptations in Ion Channels

CNS neurons express a wide range of calcium- or voltage-gated potassium (K+) and calcium 

(Ca2+) ion channels. These ion channels play a critical role in modulating many aspects of 

neuronal physiology (i.e., intrinsic excitability, dendritic integration, tonic firing frequency, 

spike frequency adaptation, and action potential repolarization). The distribution and density 

of K+ and Ca2+ ion channels can vary by cell type and subcellular localization within the 

dendritic field. For example, some channels are enriched in dendritic spines of pyramidal 

neurons in the hippocampus and cortex, while others are highly expressed on interneurons or 

distal apical dendrites of CA1 pyramidal neurons. Findings from recent studies have 

demonstrated that chronic alcohol exposure can produce adaptive changes in the expression 

and function of these dendritic ion channels. Below, we describe evidence that 

neuroadaptations in voltage-gated Ca2+ channels (VGCCs), small-conductance (SK) and 

large-conductance (BK) K+ channels, and voltage-gated K+ (Kv) channels critically regulate 
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hyperexcitability, local inhibitory neurocircuitry, and seizure activity associated with 

withdrawal from chronic alcohol exposure.

Voltage-gated Ca2+ channels—Activation of VGCCs at depolarized membrane 

potentials allows Ca2+ entry into neurons through the channel pore where it can then 

influence Ca2+-activated K+ channels, gene expression, neuronal excitability and firing 

patterns, and neurotransmitter release. VGCCs can be classified as low- or high-threshold 

voltage-activated or by their sensitivity to selective toxins. Chronic alcohol exposure has 

been shown to increase high-voltage activated L-type VGCCs in brain (Littleton, 1998; 

Walter and Messing, 1999; Katsura et al., 2005). Blocking L-type channels significantly 

reduces the severity of seizure activity during withdrawal and prevented c-Fos induction in 

the cortex, hippocampus, and striatum (Bouchenafa and Littleton, 1998). Prolonged alcohol 

exposure also increases high-voltage activated N- and P-type VGCCs in the frontal cortex, 

hippocampus, and inferior colliculus (McMahon et al., 2000). More recently, chronic 

intermittent alcohol exposure or prolonged consumption of an alcohol liquid diet produced 

increases in low-threshold, transient T-type VGCCs in thalamic neurons (Nordskog et al., 

2006; Graef et al., 2011). Like the hippocampus, the thalamus contributes to the generation 

of brain rhythms (e.g., theta oscillations, sleep spindles) (Buzsaki, 2002; Steriade, 2006). 

Thalamic neurons in the midline reuniens nucleus have strong recurrent connections with the 

frontal cortex and hippocampus and drive corticothalamic-hippocampal network activity 

(Bertram et al., 2008). Increased T-type channel function during alcohol withdrawal is 

associated with enhanced burst firing of thalamic neurons and disruptions in EEG theta 

power (Graef et al., 2011). Further, alcohol withdrawal-related disruption in theta power was 

prevented in mice by treatment with ethosuximide, a T-type channel blocker (Graef et al., 

2011). Collectively, these data suggest that the neuroadaptations in VGCCs produced by 

alcohol dependence contribute to CNS hyperexcitability during withdrawal.

Small-Conductance Ca2+-Activated K+ Channels—SK channels regulate membrane 

excitability by shaping excitatory postsynaptic potentials (EPSP) and controlling intrinsic 

activity, dendritic integration, and pacemaker firing (Bond et al., 2005; Fakler and Adelman, 

2008). SK channels are solely activated by transient elevations of intracellular Ca2+ and 

form functional heteromeric complexes with calmodulin, that acts as a high-affinity Ca2+ 

sensor (Lee et al., 2003; Maylie et al., 2004; Allen et al., 2007). In pyramidal neurons of the 

hippocampus, amygdala and prefrontal cortex, SK2 channels are enriched in the 

postsynaptic density of dendritic spines, where they form a Ca2+-mediated negative-

feedback loop with synaptic NMDA receptors (Faber et al., 2005; Ngo-Anh et al., 2005; 

Bloodgood and Sabatini, 2007; Lin et al., 2008; Faber, 2010; Mulholland et al., 2011). 

Activation of this feedback loop is thought to act as a postsynaptic shunt to decrease spine 

Ca2+ transients and synaptic depolarization. Consistent with this idea are studies showing 

that blocking SK channels in pyramidal neurons increases EPSP amplitude and facilitates 

NMDA receptor-dependent synaptic plasticity (Faber et al., 2005, 2008; Lin et al., 2008; 

Faber, 2010). SK channels also can modulate the ability of NMDA receptors to induce burst 

firing in midbrain dopamine neurons (Johnson and Seutin, 1997; Seutin et al., 1993).
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Recent evidence has demonstrated that chronic alcohol exposure reduced SK-mediated 

currents recorded from cultured CA1 pyramidal neurons (Mulholland et al., 2011). Chronic 

alcohol exposure also decreased expression of SK2 channels while at the same time 

increasing expression of NMDA receptor GluN1 and GluN2B subunits in hippocampus. 

This bidirectional regulation of SK2 channels and NMDA receptors leads to a disruption of 

the Ca2+-mediated negative-feedback loop and enhanced hyperexcitability during acute 

alcohol withdrawal (Mulholland et al., 2011). Positive modulation of SK channels attenuated 

acute withdrawal-related epileptiform burst firing and behavioral signs of seizure activity 

(Mulholland et al., 2011; Mulholland, 2012). Thus, these data demonstrate that 

downregulation of SK2 channels contributes to alcohol-associated plasticity of hippocampal 

glutamatergic synapses, and that reduced expression of SK2 channels in dendritic spines 

plays a role in the alcohol withdrawal syndrome.

In addition to alcohol-induced adaptations in hippocampal SK channels, recent studies have 

shown that acute and chronic alcohol exposure alters firing properties of VTA dopamine and 

NAc core medium spiny neurons through adaptations in SK channel function and expression 

(Brodie et al., 1999; Hopf et al., 2007, 2010). For example, SK-mediated currents were 

significantly reduced in rats 7 days following withdrawal from a chronic ethanol treatment 

regimen (Hopf et al., 2007). In another study, rats self-administering alcohol over a 5-week 

period exhibited increased intrinsic excitability of neurons in the NAc core (Hopf et al., 

2010). Taken together, these data suggest that withdrawal from chronic alcohol exposure is 

associated with reduced SK channel function in the VTA and NAc core, and these 

adaptations are important for regulating intrinsic excitability and NMDA receptor-dependent 

burst firing during alcohol withdrawal.

Large-Conductance Voltage- and Ca2+-Activated K+ Channels—A number of 

studies have implicated an important role for somatodendritic BK channels in ethanol 

tolerance, adaptive plasticity, and withdrawal-associated seizures. BK channels are a product 

of the KCNMA1 (Slo1) gene and its orthologs (e.g., dSlo in Drosophila), and are 

ubiquitously expressed in the CNS. BK channels are comprised of α and β auxiliary 

subunits in a 1:1 stoichiometry, and these channels can be activated by increases in 

intracellular Ca2+ or transmembrane positive voltage shifts (Latorre and Brauchi, 2006). BK 

channels serve to shape dendritic Ca2+ spikes and modulate the release of growth hormones, 

neuropeptides (vasopressin and oxytocin), and various neurotransmitters (Storm, 1990; 

Dopico et al., 1996; Jakab et al., 1997). Of relevance to alcohol, BK channels are known to 

influence neurotransmitter release, nociception, intrinsic excitability of NAc medium spiny 

neurons, motor incoordination, and alcohol withdrawal-induced seizures (Brodie et al., 

2007; Treistman and Martin, 2009; Ghezzi et al., 2012).

Unlike other members of the voltage-gated, TM6 family of K+ channels, BK channels are 

very sensitive to low (10–50 mM) alcohol concentrations in a number of structures 

(Treistman and Martin, 2009). Alcohol activation of BK channels has been reported in a 

wide variety of neuronal and non-neuronal preparations and model systems (i.e., oocytes, 

HEK 293 cells, Caenorhabditis elegans, Drosophila). Exposure of neuronal terminals to 

alcohol for 24 hours declusters and internalizes surface BK channels and renders them less 

sensitive to the potentiating effects of alcohol on channel function (Pietrzykowski et al., 
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2004). While the β4 subunit has been shown to play a critical role in mediating tolerance to 

alcohol-induced modulation of BK channel function (Martin et al., 2008), CaMKII 

phosphorylation of Thr107 of the alpha subunit of BK channels increased channel activity 

and mediated the switch from alcohol-induced activation of the channel-to-channel 

inhibition (Treistman and Martin, 2009). In Drosophila, alcohol exposure reduced seizure 

threshold at 1 and 7 days into withdrawal, but not in flies where slo expression was 

genetically eliminated (Ghezzi et al., 2012). Further, heat shock induction of slo mimicked 

the lowering effect of alcohol on seizure threshold, suggesting a role for slo induction in the 

susceptibility to withdrawal seizures. Thus, altered function of Ca2+-activated K+ channels 

represents a developing area that is of particular importance in understanding alcohol-

associated molecular and behavioral tolerance, adaptive plasticity, and withdrawal severity.

A-Type K+ Channels—Voltage-dependent potassium (Kv) channels composed of Kv1 

and Kv4 subunits underlie the transient A-type K+ current (IA) in hippocampal, cortical, and 

NAc medium spiny neurons, where they influence a wide range of functions, including the 

shaping and propagation characteristics of action potentials, and complex cognitive 

processes (Hoffman et al., 1997; Chen et al., 2006; Lockridge and Yuan, 2011). Emerging 

evidence also suggests a role for Kv4 channels in ethanol dependence and withdrawal. For 

example, chronic intermittent alcohol exposure significantly increased IA in NAc medium 

spiny neurons (Marty and Spigelman, 2012) and decreased IA in hippocampal CA1 

interneurons (Li et al., 2013). Chronic alcohol exposure and withdrawal also significantly 

reduce surface expression and function of Kv4.2 channels in CA1 pyramidal neurons 

(Mulholland et al., 2010). The chronic intermittent alcohol exposure-associated bidirectional 

changes between IA in NAc medium spiny neuronss and hippocampus suggests divergent 

cell-specific regulation of Kv4 channel subunits or posttranslational modifications (Tkatch et 

al., 2000). Together, these data indicate divergent cell-specific regulation of Kv4 channel 

subunits, and suggest that neuroadaptations in Kv4 channels may be an important factor 

underlying altered synaptic plasticity, poor cognitive performance, and aberrant excitability 

associated with prolonged alcohol exposure and withdrawal.

CONCLUSIONS

Alcoholism is a chronic relapsing disease and, thus, it is not uncommon for many dependent 

individuals to attempt abstinence on numerous occasions, only to find themselves 

progressing to unhealthy excessive drinking once a “slip” (relapse) occurs. When dependent 

individuals completely stop or significantly reduce their alcohol drinking, a characteristic 

withdrawal syndrome ensues. The alcohol withdrawal syndrome includes signs of CNS 

hyperexcitability (i.e., seizure activity, sometimes culminating in behavioral convulsions and 

sensory hyperreactivity), physiologic manifestations of heightened autonomic nervous 

system activity (e.g., tachycardia, hypertension, diaphoresis, body temperature 

dysregulation, and gastrointestinal disturbances), motor problems (e.g., tremor) and, in its 

most severe form, hallucinosis and delirium tremens. In addition to these physiologic signs 

of withdrawal, a constellation of symptoms contributing to psychologic discomfort and 

negative affect constitutes a prominent component of the withdrawal syndrome. Withdrawal 

symptoms that fall within the domain of psychologic discomfort and negative affect (mood) 
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include sleep disturbances, anxiety and irritability, increased stress reactivity, and a general 

state of anhedonia/dysphoria. While most physiologic symptoms of withdrawal typically 

abate within a few days, many of the psychologic symptoms of withdrawal linger for 

protracted periods of time, and these latter symptoms are thought to play an important role 

in underlying increased susceptibility to relapse.

The development of alcohol dependence is a complex and dynamic process that involves 

profound perturbations in neuroendocrine systems (i.e., HPA axis activity) as well as 

neuroadaptations in a host of neurochemical systems, including classic neurotransmitter 

systems (e.g., glutamate, GABA, monoamines), neuropeptides (e.g., CRF, NPY, endogenous 

opioids), and numerous ion channels (e.g., VGCCs, SK channels, BK channels). The 

maladaptive nature of these changes induced by chronic alcohol exposure is revealed when 

alcohol is eliminated from the brain during withdrawal. Manifestations of these 

neuroadaptations are seen in the expression of various symptoms related to physiologic and 

psychologic components of the alcohol withdrawal syndrome. Further, many of these 

adaptive changes set in motion as a result of chronic alcohol exposure and withdrawal 

experience occur within brain reward and stress systems. The progressive dysregulation of 

brain reward and stress systems beyond normal homeostatic limits is thought to fuel a state 

of allostasis that not only underlies expression of withdrawal symptoms, but also drives 

enhanced relapse vulnerability perpetuation of excessive harmful levels of drinking. The 

challenge ahead is to better understand the pathophysiologic mechanisms of alcohol 

dependence so that more effective and targeted therapeutics can be developed that not only 

effectively treat symptoms of withdrawal, but also reduce risk of relapse and temper 

motivation to engage in unhealthy drinking.
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Fig. 9.1. 
GABA, γ-aminobutyric acid; HPA, hypothalamic–pituitary–adrenocortical; CRF, 

corticotropin-releasing factor; NPY, neuropeptide Y; CNS, central nervous system; KOR, 

kappa opiate receptor; VG, voltage-gated; Ca, calcium; SK, small conductance; BK, large 

conductance.
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