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Abstract

Asthma is an airway epithelium disorder involving allergic lung
inflammation. IL-1 receptor–associated kinase M (IRAK-M) is a
negative regulator of Toll-like receptor (TLR) signaling on airway
epithelial cells and macrophages, and it is known to limit the
overproduction of cytokines during the inflammatory process.
However, the direct role of IRAK-M in asthma pathogenesis is
unclear. In the present study, we found a significant elevation of
IRAK-M expression in mouse lungs after ovalbumin (OVA)
exposure. Compared with wild-type mice, IRAK-M knockout (KO)
mice responded to OVA challenge with significantly worse
infiltration of airway inflammatory cells, greater airway
responsiveness, higher proinflammatory cytokine levels in lung
homogenates, and more prominent T-helper cell type 2 (Th2) and
Th17 deviation. OVA exposure also induced higher activities of
dendritic cells (DCs) and macrophages from IRAK-M KO mouse
lungs. Furthermore, adoptive transfer of either IRAK-M KO bone-
marrow–derived DCs or macrophages into wild-type mice
aggravated OVA-induced airway inflammation. In vitro
experiments showed that IRAK-M KO naive CD41 T cells were
more prone to differentiate into Th17 cells, but not regulatory
T cells. Consistently, activation of IkBz was significantly increased
in the absence of IRAK-M, facilitating Th17 polarization. These

findings suggest that IRAK-M plays a crucial role in the regulation
of allergic airway inflammation bymodifying the function of airway
epithelia, DCs, and macrophages, and the differentiation of naive
CD41 T cells. Modulation of IRAK-M may provide a novel target
for the control of asthma.
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Clinical Relevance

This work supports the idea that IL-1 receptor–associated
kinase M (IRAK-M) regulates allergic airway inflammation
in an asthmatic model using IRAK-M knockout mice.
IRAK-M deficiency exacerbates ovalbumin-induced airway
inflammation and subsequent airway hyperresponsiveness.
This is likely the result of an increase in proinflammatory
cytokine production by airway epithelia, enhanced activities of
dendritic cells and macrophages, and deviated differentiation
of naive CD41 T cells to Th2 and Th17 cells. These findings
will provide a basis for further studying IRAK-M as a
therapeutic target to control allergic airway inflammation.
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Asthma is characterized by chronic airway
inflammation. The type 2 immune response,
which is abundant in eosinophils and CD41

T-helper cell type 2 (Th2) cells, is implicated
in the pathogenesis of asthma. However,
asthmatic airway inflammation is also
known to be heterogeneous and regulated by
multiple molecular pathways (1).

Over the past decade, emerging
evidence has revealed that IL-1
receptor–associated kinases (IRAKs), in
particular IRAK-M (also known as IRAK-3),
play a role in the regulation of lung
inflammation. In healthy human lungs,
IRAK-M expression is localized in
monocytes, macrophages, airway epithelia,
and alveolar cells (2). Activation of IRAK-M
signaling is triggered by Toll-like
receptors (TLRs) or IL-1 family receptors
(IL-1Rs). Upon activation, IRAK-M acts as
a negative regulator of NK-kB, which
prevents the dissociation of IRAK-1 and -2
from myeloid differentiation factor 88
coupled with TLRs/IL-1Rs, and thus
inhibits the downstream inflammatory
cascade (3). Therefore, induction of
IRAK-M expression may limit the
pathological damages associated with
cytokine overproduction and innate
immune overactivation. For instance,
glucocorticoids were shown to inhibit
pulmonary inflammation caused by
bacterial infection by inducing IRAK-M
expression (4). On the other hand, mice
deficient in IRAK-M displayed enhanced
immune and inflammatory responses to
infectious insults (5, 6), partially due to
increased activation of NF-kB and
mitogen-activated protein kinase (MAPK)
(3, 7). IRAK-M deficiency was also shown
to promote type 1 diabetes in mice (8).
IRAK-M knockout (KO) mice showed
increased infiltration of inflammatory
cells and elevated expression of cytokines
in an experimental model of myocardial
infarction (9). In addition, endogenous
IRAK-M was reported to attenuate
adverse postinfarction remodeling by
inhibiting fibroblast-mediated matrix
deposition (9).

Moreover, IRAK-M has been found
to be related to asthmatic inflammation.
Expression of IRAK-M protein was
reported to be significantly higher in
airway epithelial cells from asthmatic
patients, driven by IL-13, a Th2 cytokine
that plays an important role in asthma
(10). An association between variants of
the IRAK-M gene and susceptibility to

early-onset persistent asthma was also
found in an Italian population (2). Despite
the extensive evidence that IRAK-M
contributes to lung pathologies induced by
infectious or noninfectious insults, the role
of this protein in asthmatic inflammation is
not well defined.

In this study, we used IRAK-M KO
mice to demonstrate that IRAK-M exerts
a regulatory effect on airway allergic
inflammation induced by ovalbumin (OVA)
by modulating the activities of epithelia,
dendritic cells (DCs), and macrophages, and
by deviating the differentiation of naive
CD41 T cells.

Materials and Methods

Mice
IRAK-M–deficient mice (a gift from Dr.
Nikolaos G. Frangogiannis, Albert Einstein
College of Medicine) were backcrossed . 10
generations to a C57B/6 genetic background
as described elsewhere (3). C57BL/6 wild-
type (WT) mice were purchased at the age of
6 weeks (Experimental Animal Center,
Beijing, China). All animals were maintained
in the mouse facility at Peking Union
Medical College Hospital, and 8- to
10-week-old mice were used for all experiments.

All protocols were approved by the
Peking Union Medical College Hospital
Ethics Committee.

OVA Sensitization and Challenge
The protocol used for OVA immunization
and challenge was based on a previous
publication (11). Mice were sensitized and
challenged with OVA, and killed 24 hours
after the last challenge (described in the
online supplement).

Airway Responsiveness
Airway responsiveness to inhaled
methacholine (MCh) was measured with the
use of a flexiVent system (SCIREQ,Montreal,
Canada) after the final aerosol challenge as
previously described (11). Baseline airway
resistance was measured after airway
delivery of nebulized vehicle, followed by
increasing concentrations of nebulized MCh.

Lung Histology and
Immunohistochemistry
Histological and immunohistochemical
staining of lung tissue sections was
performed as described in the online
supplement. Lung histopathological scoring

was performed according to previously
published methods (11, 12).

Bronchoalveolar Lavage Fluid
Bronchoalveolar lavage (BAL) fluid
collection was performed as previously
described (11).

Quantitative Real-Time PCR
Total lung RNA was extracted for gene-
expression analysis (described in the online
supplement).

Analysis of Cytokines and
Chemokines
LEGENDplex (BioLegend, San Diego, CA)
was used to detect the concentrations of
cytokines. The levels of IL-17A, IL-25,
IL-33, and thymic stromal lymphopoietin
(TSLP) in lung homogenates were
measured by ELISA (described in the
online supplement).

Flow-Cytometry Analysis
To obtain a single-cell suspension, lungs,
spleens, and mediastinal lymph nodes (LNs)
were digested with collagenase type 1A and
type IV bovine pancreatic DNase.

Flow cytometry was used to analyze the
expression of costimulatory molecules and
signal transduction on mononuclear cells
(described in the online supplement).

Analysis of Polarization of Naive
CD41 T Cells
Naive CD41 T cells were isolated from
spleens using a commercial kit (Miltenyi
Biotec, Bergisch-Gladbach, Germany). The
purity of naive CD41CD62L1CD442

T cells was verified by flow cytometry.
The protocols used for polarization and
differentiation of naive CD41 T cells are
described in the online supplement.

Bone marrow–derived DCs (BMDCs)
and macrophages (BMDMs) were purified,
cultured, and stimulated with OVA
(described in the online supplement). The
purity of the BMDCs and BMDMs was
confirmed by flow cytometry.

Naive CD41 T cells were cocultured
with OVA-treated BMDCs/BMDMs. Flow-
cytometric analysis was performed to detect
T cell polarization (described in the
online supplement).

Adoptive Transfer Experiments
Purified BMDCs and BMDMs (13 106)
were pulsed with OVA for 24 hours and
then administered by intratracheal
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injection to the OVA-sensitized mice 1 day
before OVA challenge. The mice were
killed 1 day after the last challenge for
further evaluation.

Statistical Analysis
Data are expressed as means 6 SEM.
Multiple comparisons were performed
using one-way ANOVA with Tukey’s post

hoc test. Comparisons between two groups
were done using Student’s t test (GraphPad
Prism version 6.0; GraphPad, San Diego,
CA). P , 0.05 was considered significant.
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Figure 1. Effect of IL-1 receptor–associated kinase M (IRAK-M) on ovalbumin (OVA)-induced airway inflammation and airway hyperresponsiveness (AHR).
(A) Schematic representation of the OVA exposure protocol. (B) Representative images of immunohistochemical staining of IRAK-M in PBS- or
OVA-treated wild-type (WT, upper panel) and IRAK-M knockout (KO, lower panel) mouse lungs. (C) IRAK-M mRNA levels in OVA- or PBS-treated
WT or IRAK-M KO mouse lungs. IRAK-M gene expression was normalized to glyceraldehyde-3-phosphate dehydrogenase; n = 10 in each group;
*P , 0.05. (D) Representative lung histological images and (E) semiquantitative histopathological scores from PBS- or OVA-treated WT and IRAK-M
KO mice. n = 10 mice in each group; *P , 0.05. (F) Airflow resistance to methacholine stimulation in PBS- or OVA-treated WT and IRAK-M KO mice.
n = 10–12 mice in each group; *P, 0.05 WT versus KO-OVA group. (G) Total number of inflammatory cells in bronchoalveolar (BAL) fluid of PBS- or OVA-
treated WT and IRAK-M KO mice, and flow cytometry analysis for BAL cells using specific antibodies against different groups of leukocytes. n = 10–30
mice in each group; *P , 0.05. (H) FACS analysis of lung T-helper cell type 1 (Th1), Th2, Th17, and Treg cells using specific antibodies in PBS- or
OVA-treated WT and IRAK-M KO mice. The percentages of Th1, Th2, Th17, and Treg cells are plotted. IRAK-M KO mice had a significantly higher
percentage of Th2 cells and lower percentage of Treg cells in the lung than WT mice. n = 10–20 mice in each group; *P, 0.05. FSC, forward scatter; i.p.,
intraperitoneal; ND, not determined; SSC, side scatter.
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Results

Role of IRAK-M in Airway
Inflammation and Airway
Responsiveness Induced by OVA
Exposure
Using an established murine asthmatic
model, we examined the change of
IRAK-M expression in mouse lungs
exposed to OVA (Figure 1A). In comparison
with the faint immunohistochemical

staining of IRAK-M in the airway and
alveolar epithelial cells in PBS-exposed
WT mice, OVA stimulation significantly
enhanced expression of IRAK-M protein
in WT lungs. In IRAK-M KO mice,
IRAK-M protein was undetectable by
immunohistochemical staining in the
airways exposed to either PBS or OVA
(Figure 1B). Consistently, expression of
IRAK-M mRNA was much higher in
OVA-treated WT mouse lungs as

compared with the PBS controls (P , 0.05;
Figure 1C).

To investigate the role of IRAK-M in
the pathogenesis of allergic asthma, we
further characterized airway inflammation
and subsequent contractile responses of
IRAK-M KO mice after OVA exposure. We
found that both WT and IRAK-M KO mice
responded to OVA stimulation with typical
allergic airway inflammation, as evidenced
by thickened airway epithelia and increased
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Figure 1. (Continued).
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inflammatory cells in the peribronchial
and perivascular areas (Figure 1D,
right panel). Moreover, infiltration of
inflammatory cells was more prominent
in IRAK-M KO mice, as reflected by
higher semiquantitative histopathological
scores for OVA-treated IRAK-M KO
mice compared with similarly treated
WT mice (3.86 0.7 versus 2.56 0.3;
P , 0.05; Figure 1E).

As shown in Figure 1F, WT and
IRAK-M KO mice showed similar airway
resistance to MCh provocation at baseline.
OVA treatment increased MCh responses in
both WT and IRAK-M KO mice. Notably,
the airway resistance was significantly
higher in IRAK-M KO mice as compared
with the WT mice upon exposure to the
same dose of MCh (P , 0.05).

OVA treatment increased the
inflammatory cell counts in BAL fluid from
bothWT and IRAK-M KOmice. Compared
with WT mice, IRAK-M KO mice exhibited
higher total inflammatory cell counts and
higher percentages of eosinophils, Th2 cells,

and B cells in BAL fluid after OVA
treatment. The percentage of macrophages
and neutrophils did not differ between
WT and KO mice (Figure 1G). In addition,
the total number of inflammatory cells
isolated from OVA-treated IRAK-M
KO mouse lungs was significantly higher
than that obtained from WT mouse lungs
(Figure E1A in the online supplement).

Airway inflammation in asthma is
characterized by imbalanced T cell subsets
in favor of the Th2 type (13). To determine
whether IRAK-M deficiency contributed to
this imbalance, we used flow cytometry to
analyze the composition of T cells isolated
from lungs of OVA-treated mice. OVA
treatment increased the percentages of Th2
and Th17 cells in both WT and IRAK-M
KO mice. Moreover, the increment in the
percentages of Th2 and Th17 cells in IRAK-M
KO mice was significantly greater than
that observed in WT mice (Figure 1H).
Similarly, higher percentages of Th2 and
Th17 cells were noted in the splenocytes
from OVA-treated IRAK-M KO mice

compared with similarly treated WT mice
(Figure E1B). Conversely, the percentage
of lung regulatory T (Treg) cells decreased
after OVA treatment in WT mice, and this
reduction was even greater in OVA-exposed
IRAK-M KO mice (Figure 1H). There
was no difference in the downregulation
of Tregs in splenocytes between the two
genotypes of OVA-exposed mice (Figure
E1B).

To further investigate the influence of
IRAK-M deficiency on the activation of
different subsets of lung T cells, we
measured the mRNA expression of specific
nuclear transcription factors for activation
of various T cell subsets, including T-bet for
Th1 cells, GATA3 for Th2 cells, RORC for
Th17 cells, and Foxp3 for Tregs. We found
that the mRNA expression of T-bet,
GATA3, and RORC was significantly higher
in OVA-treated IRAK-M KO lungs
compared with similarly treated WT lungs.
There was no significant difference in
mRNA expression of Foxp3 between the two
groups (Figure E1C).
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Effect of IRAK-M Deficiency on
Production of Cytokines
The airway epithelia serve as the first barrier
of defense against environmental insults

(14). Upon inhaled allergen challenge, the
airway epithelial cells are activated and
release innate immune cytokines such as
IL-25, IL-33, and TSLP, which can activate

Th2 cells (15). Because the levels of IL-17A,
IL-25, IL-33, and TSLP were not detectable
in BAL fluids, we measured the levels of
these epithelium-derived cytokines in
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subpopulations were detected by flow cytometry analysis and plotted. n = 10 in each group; *P , 0.05. (E) Flow cytometry analysis of intracellular transcription
factors, including p-IkBz, IkBz, phosphorylated c-JUN N-terminal protein kinase (p-JNK), and p-p38 mitogen-activated protein kinase (MAPK), in IRAK-M KO or
WT BMDCs after in vitro OVA stimulation. n = 10 in each group; *P , 0.05. MFI, mean fluorescent intensity.
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supernatants of lung homogenates by
ELISA. The concentrations of IL-17A, IL-33,
and TSLP were significantly higher in lung
homogenates from OVA-treated IRAK-M
KO mice compared with those obtained
from WT mice (Figure 2A). Consistently,
significantly higher mRNA expression of
these cytokines was seen in the lungs of
OVA-treated IRAK-M KO mice (Figure 2B).
No difference in IL-25 at the mRNA or
protein level was noted between IRAK-M
KO and WT mice (Figures 2A and 2B).
Additionally, OVA treatment induced
significantly higher mRNA expression of
TGF-b and IL-10 in IRAK-M KO mice
compared with WT mice (Figure E2). These
data suggested that the ubiquitous loss of
IRAK-M over-tuned the immune responses
to Th2/Th17 dominant inflammation by
inhaled allergen.

Effect of IRAK-M Deficiency on
In Vitro Function of BMDCs
DCs are the most efficient antigen-
presenting cells (APCs) in the immune
system. Airway DCs capture the antigens
and bridge innate and adaptive immune
cells during the inflammatory process in
asthma (16, 17). As T cell polarization is
primarily driven by costimulatory molecules
on APCs, we examined the influence of
IRAK-M deficiency on the expression of
costimulatory molecules on DCs from
OVA-exposed mouse lungs. We found that
lung DCs from IRAK-M KO mice expressed
significantly higher levels of OX40L and
lower levels of CD273 as compared with
those from WT mice (P , 0.05, respectively;
Figure 3A). Similarly, BMDCs isolated from
IRAK-M KO mice expressed significantly
higher levels of OX40L than those obtained
from WT mice at baseline and after OVA
treatment in vitro (Figure 3B).

We then examined the influence of
IRAK-M deficiency on cytokine secretion by
BMDCs after a 24-hour incubation with
OVA. We found that IRAK-M KO BMDCs
secreted more IL-6, IFN-g, and TNF-a than
the WT BMDCs (Figure 3C). Moreover,
when cocultured with naive WT CD41

T cells, these OVA-treated IRAK-M
KO BMDCs induced more Th2 cell
differentiation than the OVA-treated WT
BMDCs (Figure 3D). After stimulation with
OVA, expression of p-IkBa, IkBz, p-JNK,
and p-p38 MAPK was higher in IRAK-M
KO than in WT BMDCs, as determined
by fluorescence-activated cell sorting
analysis (Figure 3E).
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Figure 5. Upregulation of BMDM activities by IRAK-M deficiency. (A) Flow cytometry analysis of expression of costimulatory molecules on macrophages
from BAL fluid of PBS- or OVA-treated WT and IRAK-M KO mice. n = 10–15 mice in each group; *P , 0.05. (B) Flow cytometry analysis of CD124
and CD206 expression by BMDMs from WT and IRAK-M KO mice after ex vivo stimulation with PBS or OVA. n = 10 in each group; *P, 0.05. (C) ELISA of
cytokine production by IRAK-M KO and WT BMDMs after in vitro PBS or OVA stimulation. n = 10 in each group; *P , 0.05. (D) In vitro differentiation
of naive CD41 T cells incubated with IRAK-M KO or WT BMDMs in the presence of the correspondent stimulatory factors. The T cell subpopulations were
detected by flow cytometry analysis. n = 10 in each group; *P, 0.05. (E) Flow cytometry analysis of intracellular transcription factors, including p-JNK and
p-p38 MAPK, in WT or IRAK-M KO BMDMs after OVA stimulation. n = 10 in each group; *P , 0.05. BALF, BAL fluid.
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Adoptive Transfer of OVA-Treated
IRAK-M KO BMDCs Enhances Airway
Inflammation
To investigate whether IRAK-M plays a
direct role in asthmatic airway inflammation
by regulating BMDC function, we
conducted adoptive-transfer experiments
as shown in Figure 4A. Compared with
the transfer of WT BMDCs, transfer of
IRAK-M KO BMDCs resulted in worse
OVA-induced airway inflammation, as
evidenced by more inflammatory cells
around the bronchi and vessels, higher
semiquantitative histopathological scores
(2.76 0.5 versus 1.86 0.2; P , 0.05),
and more inflammatory cells in BAL
fluid and lungs (Figures 4B–4D). The
percentage of lung Th2 cells was higher in
mice that received IRAK-M KO BMDCs
(Figure 4E). Taken together, these findings
indicated that IRAK-M KO BMDCs
aggravated asthmatic inflammation by
releasing more cytokines and promoting
Th2 differentiation.

Effect of IRAK-M on In Vitro Function
of BMDMs
In addition to DCs, macrophages also affect
the differentiation of T cells by providing
costimulatory molecules and secreting

cytokines. Consistent with this, we found
that IRAK-M deficiency enhanced the
OVA-induced expression of costimulatory
molecules (i.e., CD80, CD86, CD124, and
OX40L) on macrophages from BAL fluid
(Figure 5A). After in vitro OVA incubation,
IRAK-M KO macrophages expressed
significantly higher levels of CD124 and
CD206 than the WT macrophages
(Figure 5B).

Upon ex vivo stimulation with OVA,
IRAK-M KO BMDMs released significantly
higher levels of TNF-a, IFN-g, and IL-6
than the WT BMDMs (Figure 5C). When
coincubated with naive CD41 T cells,
IRAK-M KO BMDMs induced more Th2
and Th17 differentiation than the WT
BMDMs (Figure 5D). Furthermore, OVA
stimulation induced much higher
expression of p–JNK and p-p38 MAPK in
IRAK-M KO BMDMs than in WT
BMDMs (Figure 5E).

Adoptive Transfer of OVA-Treated
IRAK-M KO BMDMs Enhances Airway
Inflammation
After conducting a similar protocol for
adoptive transfer of BMDCs (Figure 4A), we
found that mice that received IRAK-M
KO BMDMs showed worse airway

inflammatory responses to OVA treatment,
with more inflammatory cells in BAL fluids
and lungs, higher concentrations of
proinflammatory cytokines (i.e., TNF-a,
IL-4, and IL-10) in BAL fluids, and a higher
percentage of lung Th2 cells, compared
with the mice that received WT BMDMs
(Figures 6A–6D). These data suggested that
IRAK-M deficiency could enhance the
proinflammatory effect of BMDMs by
promoting cytokine production and the
differentiation of naive CD41 T cells to
Th2 cells.

Effect of IRAK-M Deficiency on Naive
CD41 T Cell Polarization
To assess whether IRAK-M has a
direct effect on the proliferation and
differentiation of naive CD41 T cells, we
compared the activities of spleen cells and
lung naive CD41 T cells in WT and
IRAK-M KO mice. We found that anti-
CD3/CD28 monoclonal antibodies induced
similar increases in the expression of
nuclear Ki-67, a marker for cell
proliferation, in both splenocytes and lung
naive CD41 T cells from the two genotypes
of mice (Figure E3), indicating that IRAK-M
deficiency had no direct effect on the
proliferation of naive CD41 T cells.
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However, the mRNA expression of IRAK-
M was higher in differentiated Th cells than
in naive CD41 T cells (Figure 7A),
suggesting an association of IRAK-M with
T cell differentiation.

After a 5-day incubation with the
indicated colony-stimulating factors, a
higher ratio of Th17 differentiation
was observed in IRAK-M KO than in
WT naive CD41 T cells. Conversely, a
higher ratio of Treg differentiation was

found in WT cells (Figure 7B). The
ratio of differentiation to Th1 or Th2
cells did not differ between the two
genotypes of mice. These data suggest
that a lack of IRAK-M enhanced the
differentiation of naive CD41 T cells to
Th17 cells, but not to Tregs,
after TCR activation.

IRAK-M has been reported to be a
negative regulator of NF-kB and IkB
coupling in the TLR and IL-1R signaling

pathway (3). IkBz is a nuclear IkB family
member and a transcription factor that is
required for Th17 development in mice
(18). We found that TCR stimulation
induced higher expression of ΙkBz in
IRAK-M KO Th17 cells than in WT Th17
cells (Figure 7C). Therefore, our data
suggest that IRAK-M enhances Th17
differentiation from naive CD41

T cells by activating the IkBz and
NF-kB pathway.

Discussion

Although a growing body of evidence
suggests that IRAK-M has a potential role
in infectious or noninfectious lung
pathophysiology, to our knowledge, this is
the first study to examine the role of IRAK-
M in the pathogenesis of asthmatic
airway inflammation. In this study, we
found a low expression of IRAK-M in
airway and alveolar epithelial cells of WT
mouse lungs with no allergen exposure.
Expression of IRAK-M protein was
significantly upregulated in the OVA mouse
model, consistent with a previous
observation of higher expression of IRAK-M
in airway epithelia from asthma patients
(10). Using the IRAK-M gene KO mouse
model, we demonstrated enhanced airway
inflammation and airway responsiveness in
response to OVA stimulation, likely
via an increase in production of
proinflammatory cytokines from airway
epithelia, enhanced activities of DCs
and macrophages, and deviated naive
T cell differentiation to Th2 and
Th17 cells.

It is increasingly recognized that
respiratory epithelial cells serve as important
modulators of innate or adaptive immune
responses by releasing chemokines and
cytokines (15, 19). In the present study,
we found that IRAK-M deficiency led
to an elevated secretion of several
epithelial cytokines, including TSLP,
IL-33, and IL-25, at both the mRNA and
protein levels. These cytokines have
been reported to mediate allergic airway
inflammation. For instance, overexpression
of TSLP in the lung epithelium was
shown to result in the spontaneous
development of an asthma-like disease
in a mouse model (20). In addition,
TSLP was proven to be a powerful
stimulus for Th2 polarization in lungs
(21, 22), and was found to be expressed

0

2000

1000

3000

4000

PBS→
W

T

BM
DM

(W
T)→

W
T

BM
DM

(K
O)→

W
TB

A
L 

to
ta

l c
el

ls
 X

10
^6

/L

*

0

20000

30000

10000

PBS→
W

T

BM
DM

(W
T)→

W
T

BM
DM

(K
O)→

W
T

Lu
ng

 to
ta

l c
el

ls
 X

10
^6 *

0

20

40

60

80

E
os

in
op

hi
ls

 %

PBS→
W

T

BM
DM

(W
T)→

W
T

BM
DM

(K
O)→

W
T

*

CB

0

PBS→
W

T

BM
DM

(W
T)→

W
T

BM
DM

(K
O)→

W
T

1

2

H
is

to
pa

th
ol

og
ic

al
 s

co
re

s

3

4

*

D

0

5

10

15

25

T
-b

et
/C

D
4+

% 20

PBS→
W

T

BM
DM

(W
T)→

W
T

BM
DM

(K
O)→

W
T

Th1
*

0

10

30

S
T

2/
C

D
4+

%

20

PBS→
W

T

BM
DM

(W
T)→

W
T

BM
DM

(K
O)→

W
T

Th2

0

10

30

R
O

R
C

/C
D

4+
%

20

PBS→
W

T

BM
DM

(W
T)→

W
T

BM
DM

(K
O)→

W
T

Th17

0

5

20

F
ox

p3
/C

D
4+

%

10

15

PBS→
W

T

BM
DM

(W
T)→

W
T

BM
DM

(K
O)→

W
T

Treg

A

PBS→WT BMDM(WT)→WT BMDM(KO)→WT
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group; *P , 0.05. (C) Total inflammatory cell counts in BAL fluid and lung, and the percentage of
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at higher levels in lung epithelia and
BAL fluid from asthmatic patients (23).
The receptor for TSLP on BMDCs was
also found to increase in response to

allergen exposure (24). Moreover, IL-25
and IL-33, important for asthma, were
the upstream regulators of type 2 cytokines
(25, 26).

In addition to its influence on epithelial
function, we found that IRAK-M deficiency
modified the activities of DCs. DCs are the
most proficient APCs of the lung and
play a critical role in the initiation and
maintenance of asthmatic airway
inflammation. Airway DCs continuously
capture and process inhaled allergens, and
thus regulate the Th2-mediated allergic
immune response (27). Initiation of airway
allergic inflammation was reported to be
promoted by antigen uptake and processing
by airway APCs, particularly airway
DC subsets that highly express the
costimulatory molecule CD40 and are
capable of inducing CD41 T cell activation
(28). Furthermore, lung DCs showed
enhanced antigen presentation and
increased antigen-specific CD41 T cell
proliferation in an asthma mouse model
induced by OVA (29). We observed that
airway APCs (including DCs and
macrophages) from IRAK-M KO mice
treated with OVA had a higher
expression of some costimulatory
molecules (OX40L, CD80, and CD86). We
also found that IRAK-M KO BMDCs or
BMDMs were able to induce T cell
differentiation into Th2 or Th17 subsets
in vitro. These data indicate that IRAK-M
may play a role in the Th2-mediated
inflammatory process by influencing the
activation status of airway APCs, mainly
DCs and macrophages.

An inhibitory effect of IRAK-M on
the function of DCs in Helicobacter
pylori–induced inflammation was
previously reported (30). On the other
hand, a lack of IRAK-M was reported to
enhance the migration and longevity of
DCs, as well as the expression of major
histocompatibility complex II and
CD80 by DCs upon lipopolysaccharide
stimulation (31). Our data showed
that IRAK-M deficiency promoted
proinflammatory cytokine production
and the expression of costimulatory
molecules on the cellular surface of DCs
to drive Th2 cell differentiation under
OVA treatment. It has been reported that
IRAK-M is induced in DCs by TLR
ligation, and its absence leads to
excessive activation of the p38 MAPK
and NF-kB pathways (7). This is
consistent with our observation of
overexpression of p-IkBa, IkBz, p-JNK,
and p-p38 MAPK in stimulated IRAK-M
KO DCs. Furthermore, we demonstrated
that adoptive transfer of IRAK-M KO DCs
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enhanced Th2 inflammation upon OVA
stimulation. These findings suggest a
regulatory role of IRAK-M in Th2
inflammation via DCs.

Lung macrophages also perform a wide
range of immunoregulation activities by
expressing costimulatory molecules and
secreting cytokines (32). A lack of IRAK-M
was reported to suppress alternative
macrophage activation in bleomycin-
induced lung injury (33). In the present
study, we demonstrated that IRAK-M
deficiency upregulated proinflammatory
cytokine production and costimulatory
molecule expression by macrophages,
which resulted in enhanced differentiation
of Th2 and Th17. Adoptive transfer of
IRAK-M KO BMDMs exacerbated OVA-
induced airway inflammation. Interestingly,
despite the promotive effect of IRAK-M
KO BMDMs on the differentiation of
both Th2 and Th17 in vitro, we found
that only the differentiation of Th2, and
not Th17, was significantly increased
after OVA treatment in mice with
adoptive transfer of IRAK-M KO
BMDMs. This is likely due to the
regulation of Th17 priming by other
cell types or IRAK family
members in vivo, which minimizes the

influence of IRAK-M deficiency in
macrophages (34, 35).

In addition to the typical Th1/Th2
imbalance, a Th17/Treg imbalance has
been implicated in the pathogenesis of
asthmatic inflammation in recent years (36).
A predominant expression of Th17 is
now used as a biomarker for asthma
phenotyping, in particular for severe,
poorly controlled asthma (37–39). In the
present study, we found higher percentages
of Th17 and Th2 cells, and lower
percentages of Treg cells in the lungs of
OVA-treated IRAK-M KO mice. In
addition to the influence of DCs and
macrophages on T cell differentiation,
in vitro experiments indicated that IRAK-
M KO naive CD41 T cells were more prone
to polarize into Th17 cells, but not Tregs,
after OVA stimulation. The underlying
mechanism may relate to the upregulation
of IkBz, a potent molecule that induces
the differentiation of naive CD41 T cells
into Th17 cells in the setting of IRAK-M
deficiency. Our adoptive-transfer
experiments were not able to demonstrate
a significant effect of either IRAK-M KO
BMDCs or BMDMs on enhancing Th17
or Treg cell differentiation in vivo. This
suggests that Th17 priming and

maturation of Treg cells may be
regulated by other endogenous factors
(34, 35, 40). For instance, IRAK-2 and -4
have also been shown to promote the
differentiation of Th17 cells (34, 35),
and IRAK-1 has a regulatory role in
the differentiation of both Th17 and Treg
cells (40).

In conclusion, our data indicate that
IRAK-M plays a critical regulatory role in
allergic airway inflammation by modulating
the function of multiple cell types, ultimately
leading to Th2- and Th17-dominant
immune responses. Our data indicate that
modulation of IRAK-M function may
provide an alternative therapy to restore the
immune balance and relieve asthmatic
airway inflammation. n
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