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Abstract

This study compares two missing data procedures in the context of ordinal factor
analysis models: pairwise deletion (PD; the default setting in Mplus) and multiple
imputation (MI). We examine which procedure demonstrates parameter estimates
and model fit indices closer to those of complete data. The performance of PD and
MI are compared under a wide range of conditions, including number of response
categories, sample size, percent of missingness, and degree of model misfit. Results
indicate that both PD and MI yield parameter estimates similar to those from analysis
of complete data under conditions where the data are missing completely at random
(MCAR). When the data are missing at random (MAR), PD parameter estimates are
shown to be severely biased across parameter combinations in the study. When the
percentage of missingness is less than 50%, MI yields parameter estimates that are
similar to results from complete data. However, the fit indices (i.e., x2, RMSEA, and
WRMR) yield estimates that suggested a worse fit than results observed in complete
data. We recommend that applied researchers use MI when fitting ordinal factor
models with missing data. We further recommend interpreting model fit based on
the TLI and CFI incremental fit indices.
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Factor analysis models have been widely applied in educational and psychological

measurement (Jöreskog, 1969; McDonald, 1999; Raykov & Marcoulides, 2011).

Traditional factor models assume a liner relationship between the latent factor and

the continuously distributed observed variables. Most data in the field of psychology

and education are ordinal in nature, however (e.g., correct/wrong in educational

testing, Likert-type scales in psychological measurement, etc.). In principle, these

measures should be treated as discrete. Strictly speaking, fitting a common factor

analysis model to ordinal data introduces model misspecification, as the relation-

ship between a discrete outcome and a continuous factor cannot be linear

(Maydeu-Olivares, Cai, & Hernández, 2011). Under the structural equation model-

ing (SEM) framework, a better approach that takes into account the true nature of

the data is to fit an ordinal factor analysis model. This is especially applicable

when the data have fewer than five ordered categories (DiStefano & Morgan,

2014; Maydeu-Olivares, Fairchild, & Hall, 2017; Muthén & Kaplan, 1992;

Rhemtulla, Brosseau-Liard, & Savalei, 2012).

Missing data are very likely to occur in many psychological or educational testing

scenarios. For example, attitude surveys may be incomplete because respondents

refuse to answer certain questions for fear that their anonymity will not be protected.

Other respondents may not have a chance to answer all of the questions, due to time

constraints. Moreover, in large-scale educational assessments, such as the National

Assessment of Educational Progress, planned missing data designs such as matrix sam-

pling are often used, such that some questions are never intended to be asked to reduce

the burden on respondents (Graham, Taylor, Olchowski, & Cumsille, 2006; Kaplan,

1995). In Peng, Harwell, Liou, and Ehman’s (2006) survey among 11 major education

and psychological journals, 48% of the articles clearly involved missing data and

approximately 16% of articles did not clearly report missing data information.

Methodological research has shed light on available tools to handle incomplete

observations. Two major modern techniques for handling missing data—full infor-

mation maximum likelihood (FIML; Allison, 1987; Arbuckle, 1996; Finkbeiner,

1979) and multiple imputation (MI; Rubin, 1976, 1987) —have been developed.

Specifically, according to a typology for missing data mechanisms developed by

Rubin (1976), FIML and MI have been shown to outperform traditional methods;

they yield less biased and more efficient parameter estimates when the missing data

mechanism is either missing completely at random (MCAR; the probability that a

data value is missing does not depend on the observed or missing values) or missing

at random (MAR; the probability that a data value is missing may depend on other

observed variables, but not on the variable which is missing).1 A number of studies

have been conducted to evaluate the performance of FIML and MI and have com-

pared them with other missing data techniques in estimating various statistical mod-

els in psychological studies (e.g., multiple regression, Enders, 2001; SEM, Enders &

Bandalos, 2001; Allison, 2003; Olinsky, Chen, & Harlow, 2003).

When fitting ordinal factor analysis models, FIML is actually one of the most

commonly used estimation methods (i.e., under the framework of item response
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models; Baker & Kim, 2004). By using FIML, missing data can be conveniently

addressed in the same procedure used to estimate the model parameters. However,

FIML is not always the ideal method for estimating the ordinal factor analysis model,

as it must be performed by integrating over the latent traits (factors), making it com-

putationally burdensome. The computational demands associated with FIML

increase dramatically as the number of factors increase (Baker & Kim, 2004; Forero

& Maydeu-Olivares, 2009; Kamata, & Bauer, 2008), making it unfeasible when the

number of factors is large (e.g., � 5; Forero & Maydeu-Olivares, 2009). Moreover,

although goodness-of-fit indices for ordinal factor models under FIML have been

developed (Maydeu-Olivares & Joe, 2005), they have not been routinely implemen-

ted in SEM software.2

To overcome the issues of applying FIML for the estimation of ordinal factor

analysis models, the limited information approach based on polychoric correlations

has been proposed and widely applied in practice (i.e., diagonally weighted least

squares; Jöreskog & Sörbom, 1988; Muthén, du Toit, & Spisic, 1997). In these meth-

ods, parameters are estimated in several stages. First, thresholds and polychoric cor-

relations are modeled using only univariate and bivariate information. Then, the

factor analysis parameters are estimated from the first-stage estimates using one of

several least squares methods. When ordinal factor analysis models are estimated

with diagonally weighted least squares (i.e., the WLSMV estimator in Mplus), the

default method for handling missing data in prevailing software packages is pairwise

deletion (PD). The pairwise deletion approach attempts to mitigate the loss of data

by using all available cases in the data analysis procedure, yielding a different subset

of observations used to compute each element in the polychoric correlation matrix.

As noted by Asparouhov and Muthén (2010a), the pairwise deletion approach only

performs well when the data are MCAR; biased parameter estimates are observed

under MAR.

To resolve the deficiencies of handling missing data under the more general MAR

assumption, the MI method could be used. The MI approach involves three phases

(Enders, 2010). First, in the imputation phase, missing observations are imputed a

large number of times using stochastic regression to produce multiple ‘‘complete’’

data sets. Then the proposed models are estimated separately using each imputed data

set in the analysis phase. Finally, in the pooling phase, the multiple sets of outcomes

(i.e., parameter estimates) are combined into a single set of results. For fitting ordinal

factor analysis models with missing data, the MI method followed by the limited

information diagonally weighted least squares estimator is available in SEM software

packages and has been recommended as the procedure could produce unbiased para-

meter estimates under either MCAR or MAR (Asparouhov & Muthén, 2010a, 2010b,

2010c).

Within the context of ordinal data, several strategies have been proposed for

imputing missing values (see Jia, 2016, for a review). We consider the latent variable

approach, as implemented in Mplus (Asparouhov & Muthén, 2010b, 2010c).

Simulation studies have shown that this approach performs well when fitting
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regression models and ordinal factor analysis models, regardless of the number of

response categories, sample size, proportion of missing data, or asymmetry of item

distribution (Jia, 2016; Wu, Jia, & Enders, 2015). Findings from previous work in

ordinal factor analysis are limited, however, in that they only consider correctly

specified models. In practice, most models are to some degree incorrect or misspeci-

fied (Box, 1979; MacCallum, 2003; Shi, Maydeu-Olivares, & DiStefano, 2018).

Guidelines based exclusively on correct model specification are fallible in the sense

that those guidelines may not generalize to more realistic conditions where the model

is wrong to some degree (i.e., in the presence of model misspecification). Thus, eval-

uating the performance of MI and PD in the presence of model misspecification

remains an outstanding need. Related, previous work has only evaluated how differ-

ent missing data procedures impart an influence on bias in parameter estimation. No

existing research has examined how goodness-of-fit indices are impacted by the

choice of missing data procedures across different missing data mechanisms.

In an effort to fill these gaps, we conduct a Monte Carlo simulation to compare

the two most commonly used procedures in ordinal factor analysis: pairwise deletion,

which is the default estimator Mplus, and multiple imputation. We compare

goodness-of-fit indices across different percentages of missingness, as well as across

different missing data mechanisms. We additionally consider bias in parameter esti-

mation to validate findings from previous work. In so doing, we aim to provide holis-

tic recommendations to applied SEM researchers on how to handle missing data

when the outcomes are ordinal.

Monte Carlo Simulations

We conducted a simulation study to compare the performance of pairwise deletion

and multiple imputation for fitting ordinal factor analysis models with missing data.

We considered both correctly specified and misspecified model scenarios. The popu-

lation model for the correctly specified scenario was a one-factor confirmatory factor

analysis model with 12 observed variables (i.e., X1-X12), and the same one factor

model was fitted to the data. For misspecified conditions, a confirmatory factor anal-

ysis model with two correlated factors was used as the population model, and a one-

factor model was fitted to the data. Each factor was measured by six observed indica-

tors (i.e., f1 by X1 to X6, and f2 by X7 to X12). The population factor variances were

set to 1.0. We set the values for all factor loadings to 0.70 and all error variances to

0.51. For the two-factor models, the population correlation between the factors varied

according to the different levels of model misspecification.

Based on the population model, complete data with a multivariate normal distri-

bution were first generated. The continuous data were then discretized using a set of

thresholds to create ordinal categories. Incomplete data were obtained from the com-

plete data by introducing missing values for six items (i.e., X7-X12), according to

different mechanisms and percentages of missingness, as described below.
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The simulation conditions were obtained by manipulating five variables: number

of response categories, sample size, percentage of missingness, mechanism of miss-

ingness, and level of model misspecification.

Number of Response Categories

Both binary (c = 2) or polytomous data (c = 5) were created by altering the values of

the threshold. When the data were binary (0/1), the thresholds were set to 0.5, which

implied that about 70% of the respondents were expected to endorse the binary items.

For data with five categories, the thresholds were chosen so that the expected area

under the curve was 7%, 24%, 38%, 24%, and 7% of the responses for ordered cate-

gories 0 through 4, respectively. The threshold values used were based on previous

simulation studies in ordinal factor analysis (Forero, Maydeu-Olivares, & Gallardo-

Pujol, 2009; Rhemtulla et al., 2012; Shi, DiStefano, McDaniel, & Jiang, 2018).

Sample Size

Sample sizes included 200, 500, or 1,000. The levels were chosen to represent rela-

tively small, medium, or large samples observed in social science research.

Percentage of Missingness

Three levels were considered for the percentage of missingness on each of the vari-

ables containing incomplete values (i.e., X7-X12): 15%, 25%, and 50%. The levels

were manipulated to represent relatively small, medium, or large proportions of miss-

ing data, in line with previous simulation studies on missing data (Larsen, 2011;

Newman, 2003; Prevosti & Chemisquy, 2010; Scheffer, 2002). The rate of missing-

ness was set to be equal across the variables.

Mechanism of Missingness

Both MCAR and MAR were evaluated. In terms of MCAR, the occurrences of miss-

ingness have no correlation with any variables within the data set. For each complete

data set, s% (s = 15, 25, or 50) of the X7 to X12 observations were randomly chosen

and were set to be missing. For cases of MAR, the missingness of the six incomplete

variables was determined by the percentile of the sum of the complete variables. If

the sum scores were larger than its sth percentile, missing data were created by delet-

ing the corresponding observations on X7 to X12. This approach used for generating

missing data is consistent with that of previous studies (e.g., Zhang & Wang, 2013).
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Level of Model Misspecification

The levels of model misspecification were manipulated by altering the sizes of the

correlations between the latent factors in the population model. Five different correla-

tions (1.0, 0.9, 0.8, 0.7, and 0.6) were included such that smaller correlations imply

larger amounts of model misspecification. A correlation of 1.0 represents situations

where the one factor model is correctly specified in the population. It is noted that we

considered various levels of model misspecification that might occur in real data

analysis. For example, when the population model is a two-factor model with an

interfactor correlation of .90, most researchers would consider a one-factor model to

be a close-fitting model. On the other hand, when the true model is a two-dimensional

model with an interfactor correlation of .60, a one-factor model will demonstrate a

poor fit to the data and thereby should be rejected.

In total, the number of conditions examined was 180 = 2 (number of response

categories) 3 3 (sample size levels) 3 3 (percentages of missingness) 3 2 (mechan-

isms of missingness) 3 5 (levels of model misspecification). For each simulated con-

dition, 500 replications of complete data sets were generated. Data generation and

analyses were conducted with Mplus 7.4 (Muthén & Muthén, 1998-2010). SAS 9.4

was used to create missing values (according to the aforementioned missing data

mechanisms) and to summarize the simulation results.

A unidimensional ordinal factor model was fit to each simulated data set using the

robust diagonally weighted least squares estimator, with missing values addressed by

PD and MI methods. For the MI conditions, the missing categorical observations

were imputed using the latent variable approach implemented in Mplus (Asparouhov

& Muthén, 2010a, 2010b). To achieve high efficiency and stabilize inference at the

analysis phrase, we set the number of imputations to 100 (Graham, Olchowski, &

Gilreath, 2007; Lu, 2017; Schafer & Olsen, 1998). In addition, the same ordinal fac-

tor analysis models were fitted using the same estimation method (i.e., WLSMV) to

complete data, so direct comparisons could be made between results from applying

the PD and MI methods with those that would be obtained from the complete data.

Specifically, we first focused on the average parameter estimates across replica-

tions for each parameter (i.e., the factor loadings and thresholds). In addition, we

examined the performance of PD and MI in terms of estimating commonly used

goodness-of-fit indices in ordinal factor analysis models, including the chi-square

test statistic (x2), the root mean square error of approximation (RMSEA; Browne &

Cudeck, 1993; Steiger, 1989, 1990), the comparative fit index (CFI; Bentler, 1990),

the Tucker–Lewis index (TLI; Tucker & Lewis, 1973), and the weighted root mean

square residual (WRMR; Yu, 2002; Yu & Muthén, 2002). The above goodness-of-fit

indices have been routinely reported by applied researchers when evaluating model

fit for ordinal factor analysis models (Garrido, Abad, & Ponsoda, 2016; Zhao, 2014).

It is noted that under MI, the procedures for combining model fit indices under

ordinal factor analysis have yet to be developed. When fitting ordinal factor analysis

models estimated with diagonally weighted least squares robust corrections (mean,

or mean and variance adjustments) are applied to the chi-square test statistics
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(Asparouhov & Muthén, 2010d; Muthén, 1993; Satorra & Bentler, 1994).3 The exist-

ing pooling procedures (e.g., Meng and Rubin, 1992) are not applicable to chi-square

test statistics with robust corrections from which most fit indices are derived.

Currently, Mplus simply summarizes the results across imputations, and the average

values of the fit indices are available to the users, which may be used as the naı̈ve

(average) estimate of the MI-based fit indices (Asparouhov & Muthén, 2010e).

To better measure the differences between the results from incomplete data analy-

sis and complete data analysis, we computed the absolute relative difference (RD) for

each outcome variables across all simulated conditions. The absolute RD is defined

as

Absolute RD =

�̂
uincomp � �̂

ucomp

�̂
ucomp

�����

�����,

where
�̂
uincomp represents the average values for the parameter estimates or the fit

indices estimates across replications from incomplete data analysis using either PD

or MI;
�̂
ucomp represents the corresponding average value from complete data analysis.

Therefore, the RD evaluates the estimation bias due to missing data on a percentage

scale in reference to the results from complete data analysis. The absolute RDs with

smaller values suggest a smaller discrepancy between missing data and complete

data analysis scenarios.

Results

The percentage of completed replications were more than 99% across all simulation

conditions, except when ordinal data with five response categories were MAR, espe-

cially when the sample size was small (e.g., N = 200) and the percentage of missing-

ness was large (i.e., 50%).4 When summarizing the results, we excluded conditions

with less than 50% of completed replications in this case.

Parameter Estimates

When fitting ordinal factor analysis models with binary data, one factor loading and

one threshold were estimated for each item. The total number of estimated parameters

was 24 (i.e., 2 model parameters 3 12 items). For data with five response categories,

one factor loading and four thresholds were estimated for each item. Therefore, in

total, 60 parameters (i.e., 5 model parameters 3 12 items) were estimated. For each

estimated parameter, we computed the average point estimate obtained from PD and

MI across replications and calculated the RD with reference to the result from the

complete data analysis. To better compare and demonstrate patterns for each simu-

lated condition, we summarized the results (RDs) for factor loading or threshold(s)

across items selected based on whether missing data were present. That is, among the

missing and complete blocks of items, we obtained the largest absolute RD for both
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factor loading and threshold. Tables 1 and 2 summarize the results for the simulation

conditions under MCAR and MAR mechanisms, respectively. Consistent with previ-

ous studies, we considered RDs less than 0.10 (10%) acceptable (Muthén, Kaplan, &

Hollis, 1987; L. K. Muthén & Muthén, 2002). Cases where absolute RD . 0.10 are

highlighted in bold.

As shown in Table 1, when the missing data mechanism was MCAR, the RDs

were acceptable for both PD and MI across all simulated conditions. The results sug-

gested that both PD and MI yielded average point estimates close to results from the

complete data analyses. Under MAR, however, Table 2 demonstrates that PD pro-

duced absolute RDs larger than 10% across all simulated conditions if missing obser-

vations were present. This held true even when the percentage of missing data was

small (i.e., 15%). For example, for binary data, the largest RD for factor loadings was

21.9% (correctly specified model, N = 200). The RDs for factor loadings were smaller

with polytomous data; under the same conditions, the largest RD (for data with five

categories) was 13.6%. In terms of the thresholds, similar patterns were observed for

both binary data and data with five response categories. For example, when N = 200

and the model was correctly specified, the largest RDs were 43.4% and 45.6% for

binary data and five-point ordinal data, respectively. The absolute RDs uniformly

increased, as the percentage of missingness increased. Taking r = .90 and N = 1,000

as an example, as the percentage of missingness increased from 15% to 50%, the larg-

est RDs for factor loadings of items with missing binary values increased from 21.5%

to 72.2%.

On the other hand, when MI was applied, the RDs for parameter estimates with

missing data were noticeably smaller than those obtained using PD. Generally speak-

ing, the RDs for MI were acceptable if the percentage of missingness was less than

50%, regardless of sample size and the number of response categories. It is also noted

that given a mixture of items with and without missing values, the parameter esti-

mates for items with complete data were not affected by the missing values on the

other items in the model, regardless of the mechanism and percentage of missing val-

ues. That is, as shown in both Tables 1 and 2, the RDs for parameters from the com-

plete block of items were small across all simulated conditions.

Model Fit Indices

Across the simulated conditions, the average point estimates of the chi-square statis-

tic, RMSEA, WRMR, CFI, and TLI were calculated for both PD and MI and com-

pared with the results obtained from complete data analyses. The average estimates

of each fit index for PD, MI, and the complete data analyses are summarized in

Tables 3 to 7. In the tables, we have highlighted the results of PD and MI for cases

where the absolute RD . .10. It is also noted that as discussed earlier, when MI was

applied, the fit indices were pooled by averaging the estimates across imputations.

As shown in Table 3, under MCAR, PD generally produced chi-square test statis-

tics close to the complete data results if the fitted model was correctly specified.
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Table 1. Relative Differences in Parameter Estimates: Missing Completely at Random
(MCAR).

CAT = 2 CAT = 5

Factor loadings Thresholds Factor loadings Thresholds

Missing Complete Missing Complete Missing Complete Missing Complete

Rho N PM PD MI PD MI PD MI PD MI PD MI PD MI PD MI PD MI

1.0 200 15 0.4 0.7 0.3 0.2 0.3 1.1 0.0 0.1 0.3 0.3 0.1 0.1 0.9 0.9 0.0 0.0
25 0.5 1.7 0.2 0.3 0.8 1.1 0.0 0.1 0.3 0.7 0.1 0.1 0.9 2.3 0.0 0.0
50 1.8 3.7 0.4 0.8 1.7 2.8 0.0 0.1 0.8 1.9 0.2 0.4 1.8 3.7 0.1 0.1

500 15 0.2 0.6 0.1 0.1 0.3 0.6 0.0 0.3 0.2 0.3 0.0 0.0 0.5 1.0 0.0 0.0
25 0.4 1.0 0.1 0.1 1.0 0.8 0.0 0.3 0.2 0.3 0.1 0.1 0.6 1.3 0.0 0.0
50 0.5 1.5 0.3 0.3 0.9 1.4 0.0 0.3 0.3 0.7 0.2 0.3 1.0 2.7 0.0 0.0

1,000 15 0.2 0.5 0.1 0.1 0.3 0.4 0.0 0.2 0.1 0.1 0.0 0.0 0.2 0.5 0.0 0.0
25 0.3 0.6 0.1 0.2 0.3 0.5 0.0 0.2 0.1 0.4 0.1 0.1 0.4 0.6 0.0 0.0
50 0.4 1.5 0.2 0.2 0.4 1.2 0.0 0.2 0.2 0.6 0.1 0.2 1.0 1.9 0.0 0.0

0.9 200 15 0.1 0.3 0.0 0.1 0.3 0.4 0.0 0.3 0.2 0.3 0.5 0.2 0.6 0.8 0.0 0.0
25 0.2 0.5 0.0 0.1 0.2 0.5 0.0 0.3 0.3 0.7 0.6 0.3 1.1 1.9 0.0 0.0
50 0.3 1.1 0.2 0.1 0.4 1.0 0.0 0.3 0.8 2.0 1.3 0.4 2.0 4.7 0.2 0.2

500 15 0.3 1.2 0.4 0.2 0.3 1.2 0.0 0.1 0.2 0.3 0.4 0.1 0.5 1.0 0.0 0.0
25 0.4 1.8 0.8 0.3 0.5 1.0 0.0 0.1 0.2 0.3 0.6 0.1 0.5 1.1 0.0 0.0
50 0.9 3.9 1.5 0.8 1.5 3.3 0.0 0.1 0.6 0.7 1.3 0.3 0.8 2.4 0.0 0.0

1,000 15 0.4 0.3 0.4 0.2 0.6 0.5 0.0 0.3 0.2 0.2 0.3 0.1 0.3 0.5 0.0 0.0
25 0.4 0.9 0.7 0.3 0.7 0.5 0.0 0.3 0.2 0.4 0.6 0.1 0.5 0.8 0.0 0.0
50 1.0 2.4 1.3 0.4 1.0 1.0 0.0 0.3 0.5 0.8 1.2 0.1 0.7 1.7 0.0 0.0

0.8 200 15 0.2 0.4 0.4 0.1 0.2 0.3 0.0 0.2 0.4 0.4 0.7 0.1 1.1 1.2 0.0 0.0
25 0.4 0.5 0.7 0.2 0.3 0.4 0.0 0.2 0.7 0.7 1.2 0.2 1.1 1.4 0.0 0.0
50 0.4 1.4 1.3 0.2 0.5 1.5 0.0 0.2 0.6 1.4 2.5 0.3 1.6 5.4 0.2 0.2

500 15 0.2 0.2 0.4 0.1 0.1 0.3 0.0 0.3 0.2 0.2 0.7 0.1 0.5 1.2 0.0 0.0
25 0.3 0.5 0.7 0.1 0.4 0.5 0.0 0.3 0.5 0.1 1.2 0.1 0.6 1.2 0.0 0.0
50 0.6 0.8 1.4 0.1 0.5 0.8 0.0 0.3 1.0 0.9 2.5 0.2 1.0 2.5 0.0 0.0

1,000 15 0.3 1.0 0.8 0.3 0.8 1.4 0.0 0.1 0.3 0.1 0.7 0.1 0.3 0.5 0.0 0.0
25 0.7 1.8 1.5 0.7 1.0 2.3 0.0 0.1 0.6 0.3 1.2 0.1 0.4 1.1 0.0 0.0
50 0.9 4.5 2.8 1.4 1.3 2.9 0.0 0.1 1.2 0.4 2.5 0.2 0.7 1.3 0.0 0.0

0.7 200 15 0.4 0.7 0.8 0.3 0.5 0.8 0.0 0.3 0.5 0.2 1.1 0.1 0.6 1.4 0.0 0.0
25 0.7 1.1 1.2 0.2 0.7 0.7 0.0 0.3 0.8 1.0 1.9 0.3 0.8 2.3 0.0 0.0
50 0.5 2.3 2.6 0.6 0.9 1.1 0.0 0.3 1.3 1.9 3.5 0.4 1.4 4.1 0.1 0.1

500 15 0.4 0.4 0.8 0.1 0.2 0.3 0.0 0.2 0.5 0.3 1.1 0.1 0.5 0.8 0.0 0.0
25 0.7 0.6 1.3 0.2 0.4 0.4 0.0 0.2 0.8 0.3 1.8 0.1 1.0 1.0 0.0 0.0
50 1.2 1.5 2.6 0.3 0.7 1.1 0.0 0.2 1.4 1.0 3.8 0.3 0.9 2.8 0.0 0.0

1,000 15 0.3 0.3 0.7 0.1 0.1 0.4 0.0 0.3 0.5 0.1 1.1 0.0 0.4 0.5 0.0 0.0
25 0.4 0.5 1.2 0.1 0.3 0.4 0.0 0.3 0.8 0.4 1.8 0.1 0.3 0.9 0.0 0.0
50 1.1 0.9 2.6 0.2 0.6 0.9 0.0 0.3 1.7 0.7 3.8 0.1 0.7 1.3 0.0 0.0

0.6 200 15 0.3 1.4 1.2 0.4 0.7 1.5 0.0 0.1 0.7 0.4 1.6 0.1 0.6 1.5 0.0 0.0
25 0.9 2.3 1.9 0.6 0.7 1.5 0.0 0.1 1.2 1.4 2.6 0.3 0.9 2.6 0.0 0.0
50 1.1 5.8 3.9 1.9 1.0 3.6 0.0 0.1 2.4 1.1 5.3 0.3 2.2 5.8 0.2 0.2

(continued)
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However, for misspecifed models, PD could produce downwardly biased chi-square

test statistics under MCAR, especially when the percentage of missingness was high

and the magnitude of misspecification was large. For example, when r = .60, N =

1,000, and 50% of the binary observations were missing, the average PD-based chi-

square statistics was 240.43, which was far smaller than the chi-square test statistic

obtained from complete data for the same effect size condition (418.50; absolute RD

= 42.5%). Interestingly, under MAR, across all simulated conditions, the PD-based

chi-square statistics were noticeably larger than those from complete data analyses,

even the percentage of missingness was small (i.e., 15%).

On the other hand, the MI-based chi-square statistics were generally upwardly

biased, especially when a substantial proportion of data were missing under MAR,

and the level of model misspecification was low. For example, when the model was

correctly specified (i.e., r = 1.00), N = 1,000, number of categories = 2, and percent-

age of missingness was 50%, under MAR, the average chi-square statistics using MI

was 341.01, which was far bigger than the average chi-square test statistics obtained

from complete data (54.06, RD = 530%). The bias decreased as the number of

response categories increased. Keeping the same conditions with the above example

(i.e., correctly specified model, N = 1,000, and 50% of missingness), as the number

of categories increased to five, the absolute RD decreased to 155%.

The behaviors of RMSEA and WRMR are summarized in Tables 4 and 5, respec-

tively. Under MCAR, the PD-based RMSEA and WRMR were slightly downwardly

biased with reference to the results from complete data analyses. In addition, the

biases were considerable when the percentage of missingness was large (e.g., 50%)

and the level of model misspecification was more severe. For example, when r = .60

and N = 1,000, for binary data, the average point estimates for RMSEA and WRMR

with complete data were .08 and 2.02; if 50% of the observations were MCAR, the

Table 1. (continued)

CAT = 2 CAT = 5

Factor loadings Thresholds Factor loadings Thresholds

Missing Complete Missing Complete Missing Complete Missing Complete

Rho N PM PD MI PD MI PD MI PD MI PD MI PD MI PD MI PD MI

500 15 0.6 0.5 1.2 0.3 0.5 0.7 0.0 0.3 0.8 0.2 1.5 0.0 0.4 0.9 0.0 0.0
25 0.9 1.0 2.0 0.1 0.5 0.6 0.0 0.3 1.2 0.5 2.6 0.0 0.9 1.3 0.0 0.0
50 1.4 2.0 4.0 0.7 0.8 1.3 0.0 0.3 2.5 0.8 5.4 0.1 0.8 2.6 0.0 0.0

1,000 15 0.6 0.5 1.2 0.1 0.2 0.3 0.0 0.2 0.7 0.1 1.6 0.1 0.3 0.6 0.0 0.0
25 0.9 0.8 1.9 0.2 0.3 0.6 0.0 0.2 1.2 0.4 2.6 0.1 0.4 0.8 0.0 0.0
50 1.7 1.4 3.9 0.3 0.4 1.5 0.0 0.2 2.7 0.7 5.3 0.2 0.9 1.8 0.0 0.0

Note. Rho = interfactor correlation; N = sample size; PM = percentage of missingness; CAT = number of

categories; PD = pairwise deletion; MI = multiple imputation.
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Table 2. Relative Differences in Parameter Estimates: Missing Completely at Random (MAR).

CAT = 2 CAT = 5

Factor loadings Thresholds Factor loadings Thresholds

Missing Complete Missing Complete Missing Complete Missing Complete

Rho N PM PD MI PD MI PD MI PD MI PD MI PD MI PD MI PD MI

1.0 200 15 21.9 2.5 3.7 0.5 43.4 3.4 0.0 0.1 13.6 0.3 2.0 0.2 45.2 1.8 0.4 0.4

25 33.8 3.9 3.4 1.2 69.1 6.3 0.0 0.1 24.7 1.2 7.3 0.2 70.3 3.8 1.7 1.9

50 78.2 26.3 1.0 1.1 129.4 26.9 0.0 0.1 — — — — — — — —

500 15 21.7 3.6 3.5 0.5 42.4 4.8 0.0 0.3 13.6 0.8 2.0 0.1 44.8 1.6 0.0 0.0

25 34.2 5.5 3.0 1.1 68.0 8.5 0.0 0.3 21.1 0.7 2.7 0.1 71.2 2.7 0.1 0.1

50 75.6 3.0 0.8 3.3 128.1 18.1 0.0 0.3 — — — — — — — —

1,000 15 21.8 3.3 3.4 0.4 42.0 4.0 0.0 0.2 13.7 0.6 1.9 0.0 44.3 1.4 0.0 0.0

25 34.5 7.3 2.8 1.0 67.0 10.2 0.0 0.2 21.1 0.6 2.6 0.1 70.1 2.4 0.0 0.0

50 72.4 15.6 0.6 3.2 126.7 36.1 0.0 0.2 48.8 1.4 4.6 0.2 136.1 7.5 0.5 0.5

0.9 200 15 21.5 3.8 3.3 0.4 42.1 4.5 0.0 0.3 13.0 0.4 1.9 0.3 39.9 1.8 0.2 0.2

25 34.3 6.8 2.9 1.0 66.9 9.8 0.0 0.3 20.5 1.1 3.4 0.3 61.1 3.4 0.8 0.8

50 72.2 16.2 0.6 3.2 126.9 37.5 0.0 0.3 — — — — — — — —

500 15 19.4 2.7 2.7 0.7 37.9 3.8 0.0 0.1 12.6 0.8 1.3 0.1 39.1 1.2 0.0 0.0

25 29.5 3.7 2.2 1.4 59.8 6.4 0.0 0.1 19.6 0.8 1.7 0.2 61.5 2.3 0.0 0.0

50 74.6 24.8 1.8 1.1 111.0 19.1 0.0 0.1 49.8 2.1 6.9 0.6 116.8 11.2 0.8 0.9

1,000 15 19.3 3.8 2.6 0.6 37.0 5.1 0.0 0.3 12.7 0.6 1.3 0.1 38.9 1.2 0.0 0.0

25 30.3 5.7 1.8 1.3 58.8 8.9 0.0 0.3 19.7 0.8 1.6 0.1 60.5 2.6 0.0 0.0

50 71.6 3.0 2.1 4.3 110.4 21.0 0.0 0.3 47.0 1.7 0.4 0.3 116.6 7.9 0.1 0.1

0.8 200 15 19.6 3.3 2.4 0.5 36.9 4.0 0.0 0.2 11.3 0.5 0.8 0.3 34.5 1.6 0.1 0.1

25 30.7 7.6 1.6 1.1 58.0 10.7 0.0 0.2 18.0 0.9 1.5 0.3 52.8 2.5 0.6 0.5

50 69.1 15.8 2.0 4.0 109.0 36.5 0.0 0.2 — — — — — — — —

500 15 19.2 3.9 2.4 0.5 36.8 4.7 0.0 0.3 11.3 1.0 0.7 0.1 33.9 1.5 0.0 0.0

25 30.5 6.9 1.6 1.1 58.0 10.0 0.0 0.3 17.9 1.1 0.7 0.2 52.9 1.9 0.0 0.0

50 69.1 16.4 2.1 3.9 109.0 37.4 0.0 0.3 46.4 2.3 0.6 0.6 100.4 10.2 0.5 0.6

1,000 15 16.8 2.8 2.0 0.9 32.6 4.1 0.0 0.1 11.5 0.6 0.6 0.1 33.7 1.0 0.0 0.0

25 25.5 3.3 1.1 1.7 51.4 6.2 0.0 0.1 18.0 0.9 0.6 0.1 52.1 2.6 0.0 0.0

50 71.1 26.0 3.8 0.4 94.8 15.4 0.0 0.1 46.0 1.7 2.1 0.4 99.6 7.6 0.0 0.0

0.7 200 15 17.0 3.7 1.7 0.7 32.2 5.0 0.0 0.3 10.3 0.5 0.6 0.3 29.5 1.5 0.1 0.1

25 26.7 5.3 0.6 1.5 50.8 8.6 0.0 0.3 16.3 1.3 0.6 0.3 45.1 3.1 0.3 0.3

50 68.0 5.5 4.2 5.5 94.4 22.0 0.0 0.3 45.4 3.8 6.5 1.0 82.1 13.3 1.9 2.0

500 15 17.3 3.1 1.5 0.6 32.0 3.9 0.0 0.2 10.0 1.1 0.2 0.1 29.0 1.7 0.0 0.0

25 27.0 7.3 0.3 1.2 50.1 10.2 0.0 0.2 16.1 1.2 0.4 0.2 44.8 1.7 0.0 0.0

50 65.5 15.3 4.3 4.8 93.3 36.4 0.0 0.2 44.8 1.9 3.4 0.7 84.7 9.3 0.2 0.3

1000 15 16.9 3.8 1.5 0.5 32.0 4.6 0.0 0.3 10.1 0.6 0.2 0.1 28.7 0.9 0.0 0.0

25 26.8 6.7 0.3 1.2 50.1 9.7 0.0 0.3 16.2 1.0 0.5 0.1 44.1 2.4 0.0 0.0

50 65.5 16.0 4.4 4.4 93.4 36.6 0.0 0.3 45.4 1.7 4.2 0.4 83.9 6.9 0.0 0.0

0.6 200 15 14.4 2.4 1.1 0.9 27.9 4.0 0.0 0.1 8.5 0.6 0.8 0.4 25.0 1.6 0.1 0.1

25 21.8 3.0 0.1 2.0 43.8 6.0 0.0 0.1 14.3 1.8 0.7 0.2 38.1 3.1 0.2 0.2

50 67.1 24.6 5.6 2.1 80.4 11.0 0.0 0.1 41.0 5.1 1.4 1.1 67.7 10.2 1.2 1.2

500 15 14.8 3.5 0.8 0.7 27.5 5.0 0.0 0.3 8.6 1.1 0.9 0.1 24.3 1.5 0.0 0.0

25 23.1 4.8 0.7 1.6 43.1 8.0 0.0 0.3 14.3 1.4 1.5 0.2 37.4 1.7 0.0 0.0

50 63.8 8.1 6.3 6.1 79.5 22.7 0.0 0.3 44.0 1.6 5.9 0.7 70.5 8.9 0.2 0.2

1,000 15 21.9 2.5 3.7 0.5 43.4 3.4 0.0 0.1 8.7 0.6 1.0 0.1 24.1 0.8 0.0 0.0

25 33.8 3.9 3.4 1.2 69.1 6.3 0.0 0.1 14.3 0.9 1.6 0.2 36.8 2.1 0.0 0.0

50 78.2 26.3 1.0 1.1 129.4 26.9 0.0 0.1 44.8 1.7 6.3 0.4 69.8 6.5 0.0 0.0

Note. Rho = interfactor correlation; N = sample size; PM = percentage of missingness; CAT = number of

categories; PD = pairwise deletion; MI = multiple imputation. Conditions with less than 50% of

completed replications were excluded from the table.
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Table 3. The Behavior of the Chi-Square Test Statistics Under Missing Data.

CAT = 2 CAT = 5

MCAR MAR

C

MCAR MAR

Rho N PM C PD MI PD MI PD MI PD MI

1.0 200 15 55.05 55.37 67.35 68.88 68.28 55.07 55.18 68.39 68.91 66.61

25 55.05 55.38 76.86 74.94 90.35 55.07 55.53 80.45 88.24 78.94

50 55.05 55.23 113.40 77.99 213.54 55.07 55.51 127.45 — —

500 15 54.41 54.38 67.94 92.61 69.60 54.84 55.04 69.57 89.96 67.74

25 54.41 54.18 79.56 107.57 96.95 54.84 54.83 81.66 135.59 80.87

50 54.41 54.61 128.65 107.64 307.50 54.84 55.41 135.31 — —

1,000 15 54.06 53.73 67.78 133.66 70.55 54.44 54.32 69.30 127.30 68.00

25 54.06 54.25 80.76 163.66 100.33 54.44 54.85 82.90 219.33 81.89

50 54.06 53.84 132.10 145.20 341.01 54.44 55.01 136.53 404.51 139.43

0.9 200 15 60.23 59.57 72.32 84.82 73.86 71.72 68.98 84.01 105.82 82.86

25 60.23 58.81 81.85 90.82 95.82 71.72 67.78 96.83 132.83 97.24

50 60.23 58.19 120.62 92.91 219.36 71.72 63.54 140.68 — —

500 15 68.38 66.55 82.52 135.24 79.99 99.28 92.71 112.43 188.28 112.74

25 68.38 64.84 92.91 150.63 103.20 99.28 87.45 123.03 252.41 124.86

50 68.38 60.82 141.80 141.36 306.04 99.28 76.78 173.26 357.96 173.12

1,000 15 83.35 79.47 97.59 222.88 92.06 147.82 134.70 161.60 331.14 161.11

25 83.35 76.69 110.40 253.86 112.56 147.82 124.06 172.42 459.53 171.19

50 83.35 69.24 160.83 218.06 327.78 147.82 102.36 224.56 651.37 218.56

0.8 200 15 73.86 70.99 85.63 103.65 87.23 114.09 106.21 125.93 156.33 124.68

25 73.86 69.37 95.58 108.81 109.56 114.09 99.05 137.27 185.20 141.18

50 73.86 63.96 132.98 108.71 231.42 114.09 83.33 177.27 — —

500 15 105.66 98.27 119.64 186.08 112.91 213.38 188.65 223.26 321.02 227.13

25 105.66 94.81 131.39 198.01 131.54 213.38 175.40 235.98 389.10 238.50

50 105.66 79.88 178.87 179.84 325.27 213.38 133.24 279.67 484.30 273.50

1,000 15 162.32 147.63 176.64 328.88 161.22 384.34 339.00 397.51 603.57 396.47

25 162.32 136.41 188.33 353.31 171.14 384.34 303.03 404.66 739.25 400.67

50 162.32 110.07 238.11 299.82 351.32 384.34 220.82 450.06 901.62 433.80

0.7 200 15 94.70 88.32 106.48 124.86 107.90 173.54 155.82 183.15 213.85 183.10

25 94.70 85.58 116.63 127.92 130.91 173.54 144.08 195.37 241.31 201.84

50 94.70 74.58 155.69 124.98 243.57 173.54 114.89 230.98 291.69 245.11

500 15 161.98 146.91 176.48 241.96 164.78 367.81 322.12 376.55 467.29 381.71

25 161.98 136.69 185.39 249.02 180.26 367.81 292.55 387.28 530.76 392.98

50 161.98 108.53 233.87 221.09 361.74 367.81 208.59 421.72 605.15 416.66

1,000 15 277.85 246.25 290.90 442.82 267.77 697.44 604.56 707.24 897.64 708.30

25 277.85 225.70 304.56 456.01 269.12 697.44 538.08 715.56 1023.89 708.16

50 277.85 170.89 352.62 384.39 412.88 697.44 375.91 755.13 1145.17 730.40

0.6 200 15 120.72 111.09 132.87 147.12 133.69 242.10 214.15 250.97 272.86 250.15

25 120.72 104.95 143.01 147.06 157.14 242.10 196.21 263.09 296.20 271.53

50 120.72 87.85 180.72 140.74 256.83 242.10 148.89 293.68 335.85 313.91

500 15 230.94 205.33 243.80 300.40 231.07 540.42 469.23 549.17 614.19 553.47

25 230.94 189.00 252.92 299.36 244.43 540.42 419.29 553.56 667.91 565.83

50 230.94 143.94 300.88 261.48 406.80 540.42 294.86 588.39 716.40 581.47

1,000 15 418.50 368.70 431.39 562.21 403.10 1042.96 897.08 1048.33 1191.35 1052.61

25 418.50 332.53 443.40 559.26 397.99 1042.96 802.83 1062.52 1298.68 1049.10

50 418.50 240.43 484.38 468.18 508.70 1042.96 551.09 1093.32 1371.51 1062.77

Note. Rho = interfactor correlation; N = sample size; PM = percentage of missingness; C = complete data

results; PD = pairwise deletion results; MI = multiple imputation results; CAT = number of categories;

MCAR = missing completely at random; MAR = missing at random. Conditions with less than 50% of

completed replications were excluded from the table.
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Table 4. The Behavior of RMSEA Under Missing Data.

CAT = 2 CAT = 5

MCAR MAR

C

MCAR MAR

Rho N PM C PD MI PD MI PD MI PD MI

1.0 200 15 0.01 0.01 0.03 0.03 0.03 0.01 0.01 0.03 0.03 0.03
25 0.01 0.01 0.04 0.04 0.06 0.01 0.01 0.05 0.06 0.05
50 0.01 0.01 0.07 0.04 0.12 0.01 0.01 0.08 — —

500 15 0.01 0.01 0.02 0.04 0.02 0.01 0.01 0.02 0.04 0.02
25 0.01 0.01 0.03 0.04 0.04 0.01 0.01 0.03 0.05 0.03
50 0.01 0.01 0.05 0.04 0.09 0.01 0.01 0.05 — —

1,000 15 0.01 0.01 0.01 0.04 0.02 0.01 0.01 0.02 0.04 0.01
25 0.01 0.01 0.02 0.05 0.03 0.01 0.01 0.02 0.06 0.02
50 0.01 0.01 0.04 0.04 0.07 0.01 0.01 0.04 0.08 0.04

0.9 200 15 0.02 0.02 0.04 0.05 0.04 0.04 0.03 0.05 0.07 0.05
25 0.02 0.02 0.05 0.06 0.06 0.04 0.03 0.06 0.08 0.06
50 0.02 0.02 0.08 0.06 0.12 0.04 0.03 0.09 — —

500 15 0.02 0.02 0.03 0.05 0.03 0.04 0.04 0.05 0.07 0.05
25 0.02 0.02 0.04 0.06 0.04 0.04 0.03 0.05 0.09 0.05
50 0.02 0.01 0.06 0.06 0.09 0.04 0.03 0.07 0.11 0.07

1,000 15 0.02 0.02 0.03 0.06 0.03 0.04 0.04 0.04 0.07 0.04
25 0.02 0.02 0.03 0.06 0.03 0.04 0.04 0.05 0.09 0.05
50 0.02 0.02 0.04 0.06 0.07 0.04 0.03 0.06 0.11 0.05

0.8 200 15 0.04 0.04 0.05 0.07 0.05 0.07 0.07 0.08 0.10 0.08
25 0.04 0.03 0.06 0.07 0.07 0.07 0.06 0.09 0.11 0.09
50 0.04 0.03 0.08 0.07 0.12 0.07 0.05 0.11 — —

500 15 0.04 0.04 0.05 0.07 0.05 0.08 0.07 0.08 0.10 0.08
25 0.04 0.04 0.05 0.07 0.05 0.08 0.07 0.08 0.11 0.08
50 0.04 0.03 0.07 0.07 0.10 0.08 0.05 0.09 0.13 0.09

1,000 15 0.04 0.04 0.05 0.07 0.04 0.08 0.07 0.08 0.10 0.08
25 0.04 0.04 0.05 0.07 0.05 0.08 0.07 0.08 0.11 0.08
50 0.04 0.03 0.06 0.07 0.07 0.08 0.06 0.09 0.13 0.08

0.7 200 15 0.06 0.05 0.07 0.08 0.07 0.10 0.10 0.11 0.12 0.11
25 0.06 0.05 0.07 0.08 0.08 0.10 0.09 0.11 0.13 0.11
50 0.06 0.04 0.10 0.08 0.13 0.10 0.07 0.13 0.15 0.13

500 15 0.06 0.06 0.07 0.08 0.06 0.11 0.10 0.11 0.12 0.11
25 0.06 0.05 0.07 0.09 0.07 0.11 0.09 0.11 0.13 0.11
50 0.06 0.04 0.08 0.08 0.10 0.11 0.08 0.12 0.14 0.11

1,000 15 0.06 0.06 0.07 0.09 0.06 0.11 0.10 0.11 0.13 0.11
25 0.06 0.06 0.07 0.09 0.06 0.11 0.09 0.11 0.13 0.11
50 0.06 0.05 0.07 0.08 0.08 0.11 0.08 0.11 0.14 0.11

0.6 200 15 0.08 0.07 0.08 0.09 0.08 0.13 0.12 0.13 0.14 0.13
25 0.08 0.07 0.09 0.09 0.09 0.13 0.11 0.14 0.15 0.14
50 0.08 0.05 0.11 0.09 0.13 0.13 0.09 0.15 0.16 0.15

500 15 0.08 0.07 0.08 0.10 0.08 0.13 0.12 0.13 0.14 0.14
25 0.08 0.07 0.09 0.10 0.08 0.13 0.12 0.14 0.15 0.14
50 0.08 0.06 0.09 0.09 0.11 0.13 0.09 0.14 0.16 0.14

(continued)
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Table 4. (continued)

CAT = 2 CAT = 5

MCAR MAR

C

MCAR MAR

Rho N PM C PD MI PD MI PD MI PD MI

1,000 15 0.08 0.08 0.08 0.10 0.08 0.14 0.13 0.14 0.15 0.14
25 0.08 0.07 0.08 0.10 0.08 0.14 0.12 0.14 0.15 0.14
50 0.08 0.06 0.09 0.09 0.09 0.14 0.10 0.14 0.16 0.14

Note. Rho = interfactor correlation; N = sample size; PM = percentage of missingness; C = complete data

results; PD = pairwise deletion results; MI = multiple imputation results; CAT = number of categories;

RMSEA = root mean square error of approximation; MCAR = missing completely at random; MAR =

missing at random. Conditions with less than 50% of completed replications were excluded from the

table.

Table 5. The Behavior of WRMR Under Missing Data.

CAT = 2 CAT = 5

C

MCAR MAR

C

MCAR MAR

Rho N PM PD MI PD MI PD MI PD MI

1.0 200 15 0.66 0.66 0.74 0.85 0.74 0.50 0.51 0.57 0.62 0.56
25 0.66 0.67 0.8 0.94 0.87 0.50 0.51 0.63 0.74 0.62
50 0.66 0.68 1.02 1.05 1.53 0.50 0.53 0.82 — —

500 15 0.65 0.65 0.73 0.98 0.74 0.49 0.50 0.56 0.70 0.55
25 0.65 0.66 0.8 1.13 0.87 0.49 0.50 0.61 0.90 0.61
50 0.65 0.67 1.04 1.24 1.66 0.49 0.52 0.80 — —

1,000 15 0.65 0.65 0.73 1.17 0.74 0.49 0.49 0.55 0.83 0.55
25 0.65 0.66 0.8 1.38 0.87 0.49 0.50 0.61 1.14 0.60
50 0.65 0.66 1.03 1.42 1.64 0.49 0.51 0.79 1.74 0.79

0.9 200 15 0.70 0.7 0.78 0.96 0.79 0.59 0.59 0.65 0.80 0.64
25 0.70 0.7 0.84 1.06 0.91 0.59 0.59 0.71 0.94 0.70
50 0.70 0.71 1.07 1.17 1.55 0.59 0.58 0.88 — —

500 15 0.75 0.74 0.83 1.2 0.8 0.69 0.67 0.73 1.05 0.74
25 0.75 0.73 0.88 1.35 0.91 0.69 0.66 0.77 1.27 0.78
50 0.75 0.72 1.1 1.44 1.66 0.69 0.63 0.93 1.69 0.92

1,000 15 0.82 0.81 0.89 1.53 0.86 0.83 0.81 0.87 1.37 0.87
25 0.82 0.8 0.95 1.74 0.94 0.83 0.78 0.90 1.69 0.90
50 0.82 0.77 1.15 1.76 1.62 0.83 0.73 1.04 2.25 1.01

0.8 200 15 0.80 0.79 0.88 1.08 0.88 0.79 0.77 0.83 1.01 0.83
25 0.80 0.79 0.94 1.17 1 0.79 0.75 0.88 1.15 0.89
50 0.80 0.77 1.14 1.28 1.6 0.79 0.70 1.02 — —

500 15 0.96 0.93 1.02 1.43 0.98 1.06 1.01 1.08 1.42 1.10
25 0.96 0.92 1.07 1.56 1.05 1.06 0.98 1.12 1.62 1.12
50 0.96 0.85 1.27 1.63 1.73 1.06 0.88 1.23 2.01 1.20

(continued)
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average PD-based RMSEA and WRMR were .06 and 1.59, respectively. In contrast,

when the missing data mechanism was MAR, regardless of the number of response

categories, the PD-based RMSEA and WRMR were positively biased relative to the

complete data results. Under the same condition described above (i.e., r = .60, N =

1,000 and binary data), if 50% of the observations were missing at random (MAR),

the average PD-based RMSEA and WRMR were .09 and 2.62, respectively, which

were bigger than the counterparts obtained using complete data.

The MI-based RMSEA and WRMR were upwardly biased, regardless of the miss-

ing data mechanism, suggesting that the model fit was worse than it should be if the

researchers had access to complete data. Similar patterns were observed for both bin-

ary data and polytomous data with five categories. It was also noted that the RDs for

MI were generally larger than those obtained using PD, especially when the level of

model misspecification was minor, the sample size was small, and a large proportion

of data were missing under MAR. For example, when N = 200 and 50% of the binary

Table 5. (continued)

CAT = 2 CAT = 5

C

MCAR MAR

C

MCAR MAR

Rho N PM PD MI PD MI PD MI PD MI

1,000 15 1.18 1.14 1.23 1.89 1.16 1.41 1.34 1.43 1.92 1.43
25 1.18 1.1 1.27 2.07 1.18 1.41 1.28 1.45 2.21 1.44
50 1.18 1 1.44 2.08 1.7 1.41 1.13 1.53 2.70 1.49

0.7 200 15 0.94 0.91 1.01 1.21 1.01 1.02 0.98 1.06 1.23 1.05
25 0.94 0.91 1.06 1.28 1.12 1.02 0.95 1.10 1.35 1.12
50 0.94 0.85 1.27 1.39 1.65 1.02 0.87 1.22 1.62 1.24

500 15 1.23 1.18 1.28 1.65 1.22 1.47 1.39 1.48 1.78 1.50
25 1.23 1.14 1.32 1.76 1.27 1.47 1.34 1.51 1.96 1.52
50 1.23 1.03 1.5 1.82 1.85 1.47 1.16 1.58 2.29 1.56

1,000 15 1.60 1.52 1.63 2.22 1.55 2.00 1.89 2.02 2.44 2.02
25 1.60 1.46 1.67 2.36 1.53 2.00 1.81 2.03 2.69 2.02
50 1.60 1.3 1.81 2.37 1.87 2.00 1.56 2.09 3.11 2.04

0.6 200 15 1.10 1.06 1.17 1.33 1.16 1.28 1.21 1.30 1.44 1.30
25 1.10 1.04 1.22 1.39 1.27 1.28 1.17 1.34 1.54 1.36
50 1.10 0.96 1.4 1.47 1.7 1.28 1.05 1.44 1.77 1.47

500 15 1.51 1.44 1.55 1.87 1.49 1.88 1.78 1.90 2.12 1.91
25 1.51 1.39 1.58 1.95 1.53 1.88 1.70 1.90 2.27 1.93
50 1.51 1.23 1.75 1.98 1.99 1.88 1.46 1.97 2.53 1.94

1,000 15 2.02 1.92 2.05 2.53 1.96 2.59 2.44 2.60 2.93 2.61
25 2.02 1.83 2.08 2.63 1.92 2.59 2.33 2.62 3.13 2.60
50 2.02 1.59 2.18 2.62 2.13 2.59 1.99 2.67 3.47 2.60

Note. Rho = interfactor correlation; N = sample size; PM = percentage of missingness; C = complete data

results; PD = pairwise deletion results; MI = multiple imputation results; CAT = number of categories;

WRMR = weighted root mean square residual; MCAR = missing completely at random; MAR = missing

at random. Conditions with less than 50% of completed replications were excluded from the table.
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observations were missing under MAR, the average MI-based RMSEA and WRMR

for correctly specified models were .12 and 1.53, respectively. According to the com-

monly used cutoffs (i.e., RMSEA \ .06, Hu & Bentler, 1998, 1999; WRMR \ 1.00,

DiStefano, Liu, Jiang, & Shi, 2018), researchers would mistakenly conclude that the

correctly specified model fits the data poorly.

Tables 6 and 7 demonstrate results for the CFI and TLI, respectively. As shown in

the tables, similar patterns were observed for both binary data and polytomous data

with five categories. Specifically, under MCAR, the PD-based CFI and TLI were

close to the complete data results. Under MAR, the CFI and TLI using PD could be

noticeably underestimated, however, especially when percentage of missingness was

high, or the level of model misspecification became more severe. For example, when

r = .60 and N = 200, the average point estimates for CFI and TLI using complete

data were 0.90 and 0.88; given that 50% of the binary data were missing under

MAR, the average CFI and TLI dropped to 0.75 and 0.70 when PD was employed.

Alternatively, when MI was used, the average CFI and TLI were generally close to

the complete data results, regardless of the missing data mechanism considered in

the current study. That is, the RDs were acceptable for MI-based CFI and TLI across

all simulated conditions, except for a few conditions where the sample size was small

(i.e., N = 200) and the percentage of missingness reached 50%.

Discussion and Conclusions

This study compared pairwise deletion and multiple imputation in the context of

ordinal factor analysis models with missing data. We investigated which procedure

tends to show parameter estimates and model fit indices closer to those from analy-

ses of complete data. Results show that when the data are MCAR, both PD and MI

yield parameter estimates similar to those from analysis of complete data, regardless

of the number of response categories, sample size, percentage of missingness, and

level of model misspecification. However, when the data are MAR, the PD para-

meter estimates could be severely different from those obtained from the complete

data analysis, especially as the percentage of missingness increases. The MI proce-

dure yielded parameter estimates that were similar to the results using complete data,

unless the percentage of missingness reached 50%. The findings regarding the para-

meter estimates using PD are consistent with the conclusions drawn by Asparouhov

and Muthén (2010a, 2010c) for correctly specified models. As noted in the technical

report, the diagonally weighted least squares (DWLS) estimation with listwise dele-

tion is a special case of the DWLS estimation with PD. Therefore, it is not surprising

to observe biased parameter estimates under MAR.

Our study additionally looked at the behaviors of fit indices under ordinal factor

analysis models with missing data. When using PD, the fit indices were generally

very similar to results from complete data analyses under conditions of MCAR,

unless the percentage of missingness was large (i.e., 50%) and/or the model misspe-

cification was severe. Under MAR, the goodness-of-fit indices were also biased, in
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Table 6. The Behavior of CFI Under Missing Data.

CAT = 2 CAT = 5

C

MCAR MAR

C

MCAR MAR

Rho N PM PD MI PD MI PD MI PD MI

1.0 200 15 1.00 1.00 0.99 0.97 0.99 1.00 1.00 0.99 0.99 0.99
25 1.00 1.00 0.98 0.95 0.97 1.00 1.00 0.99 0.97 0.99
50 1.00 0.99 0.95 0.91 0.89 1.00 1.00 0.97 — —

500 15 1.00 1.00 0.99 0.97 0.99 1.00 1.00 1.00 0.99 1.00
25 1.00 1.00 0.99 0.95 0.99 1.00 1.00 0.99 0.98 0.99
50 1.00 1.00 0.97 0.93 0.94 1.00 1.00 0.98 — —

1,000 15 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.99 1.00
25 1.00 1.00 0.99 0.95 0.99 1.00 1.00 1.00 0.97 1.00
50 1.00 1.00 0.98 0.95 0.97 1.00 1.00 0.99 0.93 0.99

0.9 200 15 0.99 0.99 0.98 0.94 0.98 0.99 0.99 0.98 0.96 0.98
25 0.99 0.99 0.97 0.92 0.96 0.99 0.99 0.98 0.94 0.98
50 0.99 0.99 0.93 0.87 0.88 0.99 0.99 0.96 — —

500 15 0.99 0.99 0.99 0.94 0.99 0.99 0.99 0.99 0.96 0.99
25 0.99 0.99 0.98 0.92 0.98 0.99 0.99 0.99 0.94 0.98
50 0.99 0.99 0.96 0.89 0.93 0.99 0.99 0.97 0.87 0.98

1,000 15 0.99 0.99 0.99 0.94 0.99 0.99 0.99 0.99 0.96 0.99
25 0.99 0.99 0.99 0.92 0.99 0.99 0.99 0.99 0.93 0.99
50 0.99 0.99 0.98 0.91 0.96 0.99 0.99 0.98 0.88 0.98

0.8 200 15 0.97 0.98 0.96 0.91 0.96 0.96 0.97 0.96 0.92 0.96
25 0.97 0.98 0.95 0.88 0.93 0.96 0.97 0.95 0.89 0.95
50 0.97 0.98 0.91 0.82 0.86 0.96 0.98 0.93 — —

500 15 0.97 0.98 0.97 0.90 0.97 0.96 0.96 0.96 0.92 0.96
25 0.97 0.98 0.96 0.88 0.97 0.96 0.97 0.96 0.89 0.95
50 0.97 0.98 0.94 0.85 0.91 0.96 0.97 0.95 0.82 0.95

1,000 15 0.97 0.97 0.97 0.90 0.97 0.96 0.96 0.96 0.92 0.96
25 0.97 0.98 0.97 0.87 0.97 0.96 0.96 0.96 0.88 0.96
50 0.97 0.98 0.96 0.86 0.95 0.96 0.97 0.95 0.82 0.95

0.7 200 15 0.94 0.95 0.93 0.87 0.93 0.92 0.93 0.92 0.87 0.92
25 0.94 0.95 0.92 0.84 0.90 0.92 0.93 0.91 0.84 0.90
50 0.94 0.96 0.88 0.79 0.84 0.92 0.95 0.89 0.76 0.88

500 15 0.94 0.94 0.93 0.86 0.94 0.92 0.92 0.91 0.87 0.91
25 0.94 0.95 0.93 0.83 0.94 0.92 0.93 0.91 0.83 0.91
50 0.94 0.96 0.91 0.81 0.89 0.92 0.94 0.90 0.77 0.91

1,000 15 0.94 0.94 0.93 0.86 0.94 0.91 0.92 0.91 0.86 0.91
25 0.94 0.94 0.93 0.83 0.95 0.91 0.92 0.91 0.83 0.91
50 0.94 0.95 0.92 0.82 0.93 0.91 0.94 0.91 0.77 0.91

0.6 200 15 0.90 0.90 0.88 0.82 0.88 0.87 0.88 0.86 0.82 0.86
25 0.90 0.91 0.87 0.80 0.85 0.87 0.89 0.86 0.79 0.85
50 0.90 0.93 0.84 0.75 0.83 0.87 0.91 0.84 0.71 0.82

500 15 0.89 0.90 0.89 0.82 0.90 0.86 0.87 0.86 0.82 0.85
25 0.89 0.90 0.88 0.79 0.89 0.86 0.88 0.86 0.78 0.85
50 0.89 0.92 0.86 0.78 0.86 0.86 0.90 0.85 0.72 0.85

(continued)
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Table 6. (continued)

CAT = 2 CAT = 5

C

MCAR MAR

C

MCAR MAR

Rho N PM PD MI PD MI PD MI PD MI

1,000 15 0.89 0.90 0.89 0.81 0.90 0.86 0.87 0.85 0.81 0.85
25 0.89 0.90 0.88 0.79 0.91 0.86 0.87 0.85 0.78 0.86
50 0.89 0.92 0.87 0.79 0.90 0.86 0.90 0.85 0.73 0.86

Note. Rho = interfactor correlation; N = sample size; PM = percentage of missingness; C = complete data

results; PD = pairwise deletion results; MI = multiple imputation results; CAT = number of categories;

CFI = comparative fit index; MCAR = missing completely at random; MAR = missing at random.

Conditions with less than 50% of completed replications were excluded from the table.

Table 7. The Behavior of TLI under Missing Data.

CAT = 2 CAT = 5

C

MCAR MAR

C

MCAR MAR

Rho N PM PD MI PD MI PD MI PD MI

1.0 200 15 1.00 1.00 0.98 0.97 0.98 1.00 1.00 0.99 0.99 0.99
25 1.00 1.00 0.97 0.94 0.96 1.00 1.00 0.99 0.97 0.99
50 1.00 1.00 0.94 0.89 0.86 1.00 1.00 0.96 — —

500 15 1.00 1.00 0.99 0.97 0.99 1.00 1.00 1.00 0.99 1.00
25 1.00 1.00 0.99 0.94 0.98 1.00 1.00 0.99 0.97 0.99
50 1.00 1.00 0.97 0.92 0.92 1.00 1.00 0.98 — —

1,000 15 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.99 1.00
25 1.00 1.00 0.99 0.94 0.99 1.00 1.00 1.00 0.97 1.00
50 1.00 1.00 0.98 0.93 0.96 1.00 1.00 0.99 0.91 0.99

0.9 200 15 0.99 0.99 0.98 0.93 0.97 0.99 0.99 0.98 0.96 0.98
25 0.99 0.99 0.96 0.90 0.95 0.99 0.99 0.97 0.94 0.97
50 0.99 0.99 0.92 0.84 0.85 0.99 0.99 0.95 — —

500 15 0.99 0.99 0.98 0.93 0.99 0.99 0.99 0.98 0.95 0.98
25 0.99 0.99 0.98 0.90 0.98 0.99 0.99 0.98 0.92 0.98
50 0.99 0.99 0.95 0.87 0.91 0.99 0.99 0.97 0.87 0.97

1,000 15 0.99 0.99 0.99 0.93 0.99 0.99 0.99 0.99 0.95 0.99
25 0.99 0.99 0.98 0.90 0.99 0.99 0.99 0.98 0.92 0.98
50 0.99 0.99 0.97 0.88 0.96 0.99 0.99 0.98 0.85 0.98

0.8 200 15 0.97 0.97 0.95 0.89 0.95 0.96 0.96 0.95 0.91 0.95
25 0.97 0.97 0.94 0.85 0.92 0.96 0.96 0.94 0.89 0.94
50 0.97 0.98 0.89 0.79 0.83 0.96 0.97 0.92 — —

500 15 0.97 0.97 0.96 0.88 0.97 0.95 0.96 0.95 0.90 0.95
25 0.97 0.97 0.95 0.85 0.96 0.95 0.96 0.95 0.86 0.94
50 0.97 0.98 0.93 0.82 0.89 0.95 0.97 0.93 0.78 0.94

(continued)
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line with the bias observed in parameter estimates. More specifically, the PD-based

chi-square test statistic, RMSEA and WRMR were larger as compared with complete

data, whereas the PD-based CFI and TLI were smaller. All the above five goodness-

of-fit indices suggest that the model fit worse than the goodness of fit that would

have been obtained using compete data.

When using the MI procedure, the chi-square test statistic was upwardly inflated.

It is worth noting that the MI-based fit indices are computed using the naı̈ve average

approach across imputations. When fitting factor analysis models with incomplete

multivariate normal (continuous) data, Asparouhov and Muthén (2010e) also found

that the MI-based chi-square test statistics pooled using the naı̈ve average tended to

be overestimated, such that worse fit was indicated. As a result, RMSEA and

WRMR, which were computed based on the chi-square test statistic, were also

expected to be overestimated, suggesting a worse fit than the counterparts that would

Table 7. (continued)

CAT = 2 CAT = 5

C

MCAR MAR

C

MCAR MAR

Rho N PM PD MI PD MI PD MI PD MI

1,000 15 0.97 0.97 0.96 0.88 0.97 0.95 0.95 0.95 0.90 0.95
25 0.97 0.97 0.96 0.85 0.97 0.95 0.96 0.95 0.86 0.95
50 0.97 0.97 0.95 0.83 0.94 0.95 0.96 0.94 0.78 0.94

0.7 200 15 0.93 0.94 0.91 0.84 0.91 0.91 0.91 0.90 0.85 0.90
25 0.93 0.94 0.90 0.80 0.88 0.91 0.92 0.89 0.80 0.88
50 0.93 0.95 0.85 0.74 0.81 0.91 0.93 0.87 0.76 0.85

500 15 0.93 0.93 0.92 0.83 0.93 0.90 0.91 0.90 0.84 0.89
25 0.93 0.93 0.91 0.80 0.92 0.90 0.91 0.89 0.80 0.89
50 0.93 0.95 0.89 0.77 0.86 0.90 0.93 0.88 0.72 0.88

1,000 15 0.92 0.93 0.92 0.83 0.93 0.89 0.90 0.89 0.83 0.89
25 0.92 0.93 0.92 0.80 0.94 0.89 0.91 0.89 0.79 0.89
50 0.92 0.94 0.90 0.78 0.92 0.89 0.93 0.89 0.72 0.89

0.6 200 15 0.88 0.88 0.86 0.78 0.86 0.84 0.85 0.83 0.78 0.83
25 0.88 0.89 0.84 0.76 0.82 0.84 0.86 0.82 0.74 0.81
50 0.88 0.91 0.80 0.70 0.79 0.84 0.89 0.80 0.71 0.79

500 15 0.87 0.88 0.86 0.78 0.88 0.83 0.84 0.83 0.77 0.82
25 0.87 0.88 0.86 0.75 0.87 0.83 0.85 0.83 0.73 0.82
50 0.87 0.90 0.83 0.73 0.82 0.83 0.88 0.82 0.66 0.82

1,000 15 0.87 0.87 0.86 0.77 0.88 0.82 0.84 0.82 0.77 0.82
25 0.87 0.88 0.86 0.75 0.89 0.82 0.85 0.82 0.73 0.82
50 0.87 0.90 0.85 0.74 0.88 0.82 0.88 0.82 0.67 0.83

Note. Rho = interfactor correlation; N = sample size; PM = percentage of missingness; C = complete data

results; PD = pairwise deletion results; MI = multiple imputation results; CAT = number of categories;

TLI = Tucker–Lewis index; MCAR = missing completely at random; MAR = missing at random.

Conditions with less than 50% of completed replications were excluded from the table.
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have been obtained using complete data. In contrast, the MI-based CFI and TLI are

close to the complete data results across all simulated conditions, except for a few

conditions where the percentage of missingness reached 50%.

Why do the MI-based CFI and TLI behave similarly to the complete data results?

It is noted that CFI and TLI are incremental fit indices, where two chi-square test sta-

tistics (one from the proposed model and another from the null model) are involved

in the computation. As a result, the inflations on the naı̈ve averaged chi-square test

statistics due to missing data could be canceled out to some degree. For example,

when the model was correctly specified, sample size was 100, and 50% of the binary

data were missing at random, the MI-based chi-square test statistic (i.e., x2 = 341.01,

degrees of freedom [df] = 54) was overestimated, as compared with the chi-square

test statistic computed using complete data (i.e., x2 = 54.06, df = 54). For the same

simulation condition, the MI-based chi-square test statistic for the baseline model

(i.e., x2 = 9749.817, df = 66) was also larger than the baseline chi-square test statistic

computed using complete data (i.e., x2 = 5120.457, df = 66). As a consequence, the

MI-based CFI and TLI, which are computed using both chi-square test statistics (for

the fitted model and the baseline model),5 are not too different from the complete

data results. Additional studies are needed to further investigate this issue. Future

methodological studies should also explore and develop alternative strategies to com-

bine the robust corrected chi-square test statistics (and fit indices) across imputations.

In summary, when fitting ordinal factor analysis models with missing data, the

performance of PD and MI depends on the missing data mechanism and percentage

of missingness. In light of study findings, we offer the following recommendations

to researchers fitting and evaluating ordinal factor analysis models with incomplete

data. First, if it is arguable that the data are missing completely at random (e.g.,

planned missing data design), pairwise deletion can be used for fitting ordinal factor

analysis models. In addition, the PD-based robust chi-square test statistics, RMSEA

and WRMR are similar to those obtained with complete data when the percentage of

missing data is less than 50%. When the percentage of missing data is large (i.e.,

� 50%), researchers should rely on the CFI and TLI to evaluate goodness of fit.

Second, under more general assumptions where the data are MAR, researchers

should not use pairwise deletion. To be clear, the default estimator used for ordinal

factor models in Mplus will be problematic in this case. The MI procedure should be

used as it produces parameter estimates closer to complete data results, given the per-

centage of missingness is less than 50%. In terms of evaluating model fit, using the

naı̈ve average approach, the MI-based robust chi-square test statistics, RMSEA and

WRMR are not trustworthy. The incremental fit indices (CFI and TLI) are recom-

mended for assessing goodness of fit.

In the presence of missing data, the recommendations we made on the choice of

goodness-of-fit indices were based on whether the estimates are similar to those that

would be obtained from complete data. In practice, evaluating the goodness of model

fit can be a challenging task. Previous methodological studies have shown that

besides the level of model misspecification, the sample values of the fit indices also
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depend on other characteristics of the model and the data, such as the size of the

model, sample size, and quantity of measurement (e.g., Hu & Bentler, 1998;

Maydeu-Olivares, Shi, & Rosseel, 2018; McNeish, An, & Hancock, 2018; Saris,

Satorra, & van der Veld, 2009; Shi, Lee, & Maydeu-Olivares, 2019; Shi, Lee, &

Terry, 2018). Future studies on missing data should investigate the interaction effects

of missing data and other model characteristics on goodness-of-fit indices. In addi-

tion, findings in the current study are based on binary and polytomous data with five

response categories. The performance of missing data techniques under conditions

with categorical data with various numbers of response categories and various items

distributions (e.g., asymmetry) should be examined in future work. Finally, the

Bayes estimator may be considered as another alternative for fitting ordinal factor

analysis models with missing data (Asparouhov & Muthén, 2010c). It would be

interesting to examine the performance of Bayesian parameter estimates and

goodness-of-fit indices (e.g., the posterior predictive p values; Gelman, Meng, &

Stern,1996; Meng, 1994) under various missing data conditions.
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Notes

1. See Little and Rubin (2002) for a detailed explanation of the missing data mechanisms.

2. In Mplus, when fitting ordinal factor analysis models with FIML, the Pearson’s chi-square

test statistics and the likelihood ratio test statistics are computed to assess how well the fre-

quency of each possible response pattern is reproduced by the model. They can only be

used when the number of possible patterns is small. In most applications of the ordinal fac-

tor analysis model, the number of possible patterns is large, and therefore, the goodness of

fit of the model cannot be assessed. See Maydeu-Olivares and Joe (2005) for a detailed

explanation.
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3. As Muthén (1993) noted, estimation techniques for ordinal factor analysis can be written in

a general form of a fit function F = r� r0ð Þ0W r� r0ð Þ0, where r is a vector of the undupli-

cated elements of the polychoric correlation matrix, r0 is the corresponding vector of cor-

relations implied by the model, and W is a weight matrix. Under diagonally weighted least

squares (DWLS) estimator, cNF does not follow a chi-square distribution. Therefore, robust

corrections for mean, or mean and variance are typically applied to obtain a goodness-of-

fit test.

4. Under MAR, as sample size decreased, number of response categories increased, and per-

centage of missingness increased, for the items with missing data, it is more likely to not

observe a certain response category (from the data). In such cases, the proposed ordinal

factor analysis model (with five response categories) cannot be estimated.

5. Let x2
0 and df0 denote the chi-square statistic and degree of freedom for the baseline model,

and x2
k and dfk represent the chi-square statistic and degree of freedom for the target model,

respectively. The sample CFI is computed as

dCFI =
max (x2

0 � df0, 0)�max (x2
k � dfk , 0)

max (x2
0 � df0, 0)

and the sample TLI is given as

dTLI =
(x2

0=df0)� (x2
k=dfk)

(x2
0=df0)� 1

:

For the example provided, the sample CFI/TLI for complete data was 1.00/1.00 and the

MI-based sample CFI/TLI (with missing data) was 0.97/0.96.
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