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Abstract

Recently, quantitative researchers have shown increased interest in two-step factor
score regression (FSR) approaches to structural model estimation. A particularly pro-
mising approach proposed by Croon involves first extracting factor scores for each
latent factor in a larger model, then correcting the variance2covariance matrix of the
factor scores for bias before using this matrix as input data in a subsequent regression
analysis or path model. Although not immediately obvious, Croon’s bias correction
formulas are predicated upon the standard assumption of conditionally independent
uniquenesses (measurement residuals). To our knowledge, the method’s performance
has never been evaluated under conditions in which this assumption is violated. In the
present research, we rederive Croon’s formulas for the case of correlated uniqueness
and present the results of two Monte Carlo simulations comparing the method’s per-
formance with standard methods when the unique factors were correlated in the pop-
ulation model. In our simulations, our proposed Croon FSR approaches outperformed
methods that blindly assumed conditionally independent uniquenesses (e.g., uncor-
rected FSR, traditional Croon FSR, structural equation modeling [SEM] using standard
specification), performed comparably to a correctly specified SEM, and outperformed
SEMs that correctly specified the unique factor covariances but misspecified the struc-
tural model. We discuss the implications of our results for substantive researchers.
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Structural equation modeling (SEM) is a powerful, flexible modeling framework that

allows for the simultaneous estimation of (a) postulated latent constructs, via a mea-

surement model and (b) postulated causal relations among them, via a structural

regression model (cf. Bollen, 1989; Hayduk, 1987; Jöreskog & Sörbom, 1993; Kline,

2016). The ability to estimate measurement and structural parameters simultaneously

is as much a weakness as a strength, however, as misspecification in any part of an

SEM may result in bias that proliferates throughout the system of equations, render-

ing all parameter estimates questionable. For example, misspecification in the struc-

tural portion of a model, such as omitting a nonzero path or incorrectly assuming

conditionally independent disturbances, can cause parameter estimates in the mea-

surement model to shift, obscuring the nature and meaning of the latent constructs

being estimated (Devlieger & Rosseel, 2017; Hoshino & Bentler, 2013).

Alternatively, misspecification in any part of the model (measurement or structural)

risks injecting bias into key structural regression coefficients capturing the relations

between latent constructs. This outcome is particularly harmful, because structural

relationships are often of greatest interest to empirical researchers (cf. Devlieger,

Mayer, & Rosseel, 2016; Devlieger & Rosseel, 2017; Hancock & Mueller, 2011;

Hoshino & Bentler, 2013; Lu, Kwan, Thomas, & Cedzynski, 2011). Perhaps more

troubling, such misspecifications are not always easily detected using traditional

methods (Hancock & Mueller, 2011).

As a potential solution to this problem, a small but growing group of quantitative

researchers have begun to recommend switching from simultaneous to multistage

estimation procedures such as factor score regression (FSR; Croon, 2002; Devlieger

et al., 2016; Hoshino & Bentler, 2013; Lu et al., 2011; Skrondal & Laake, 2001) and

factor score path analysis1 (Devlieger & Rosseel, 2017). In brief, FSR involves two

steps: (a) first, estimate the measurement model for each latent factor in a structural

regression model separately, extracting factor scores for each; (b) use these factor

scores as input data in a subsequent ordinary least squares (OLS) regression or path

analysis.

Because factor scores are indeterminate and, therefore, not fully reliable (cf.

Grice, 2001; Steiger & Schönemann, 1978), extra care must be taken to avoid bias

when treating factor scores as data. Recently, quantitative researchers have suggested

two promising approaches to address possible bias when performing FSR. A first

approach is to strategically extract factor scores using estimation methods designed

to avoid injecting bias in the first place (e.g., using regression factor score estimation

for exogenous and Bartlett factor score estimation for endogenous latent variables in

the bias-avoiding approach of Skrondal & Laake, 2001). A second approach is to

first extract factor scores for all latent constructs using a single estimation method,

and then correct the variances and covariances of the factors for bias using analytic

formulas (Croon, 2002; cf. Hoshino & Bentler, 2013). Once these variances and cov-

ariance have been corrected, they may be used either as sufficient statistics for com-

puting regression coefficients (Croon, 2002; Devlieger et al., 2016; Lu et al., 2011)
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or as covariance-matrix input for a subsequent path analysis (Devlieger & Rosseel,

2017).

A series of recent simulation studies have shown that Croon’s (2002) bias-cor-

recting FSR approach outperforms the bias-avoiding approach of Skrondal and

Laake (2001) under a variety of circumstances (Devlieger et al., 2016; Lu et al.,

2011). For example, the bias-avoiding method suffers from attenuated standard errors

and its unbiasedness breaks down when coefficients are standardized (Devlieger et

al., 2016). Perhaps more crucially, because the bias-avoiding method hinges on using

different factor score extraction methods for predictors and outcomes in an analysis,

this method cannot easily be extended to the path analytic framework, in which a

construct’s role may shift from outcome to predictor in different parts of the model

(e.g., a mediating variable that is both predicted by X and predictive of Y; Devlieger

& Rosseel, 2017).

For these reasons, in the present article we focus our attention on Croon’s (2002)

FSR approach, using his analytic method to derive formulas that accommodate corre-

lated uniquenesses.2 In the next section, we briefly review the standard Croon formu-

las, derived under the assumption of conditionally independent unique factors. Then,

we use Croon’s bias-correcting strategy to rederive these formulas under scenarios

where unique factors may be correlated. Finally, we briefly compare the rederived

Croon formulas with another cutting edge FSR approach proposed by Hoshino and

Bentler (2013).

Review of Croon’s FSR Formulas

As a basis for introducing Croon’s (2002) bias-correction formulas, assume a

researcher is interested in fitting a structural regression model in which an exogenous

latent factor, j, predicts an endogenous latent factor, h, with four indicators each.

Such a scenario is depicted in Figure 1A. Note that in this panel, all unique factors

are conditionally independent after the indicators’ prediction by the latent factor.

One strategy for fitting this structural regression model would be to use simultaneous

SEM estimation. FSR takes a different approach. At an initial step, each measure-

ment model is fit separately, as depicted in Figure 1B and factor scores are extracted

for each. That is, the measurement model for j and the measurement model for h are

fit in separate runs, and factor scores are extracted for each individual factor model,

using either the regression (Thurstone, 1935) or Bartlett estimator (Bartlett, 1937).

The final goal is to conduct the structural regression using the factor scores, Fj and

Fh, as depicted in Figure 1C.

As stated above, due to factor indeterminacy, simply conducting an FSR using the

raw factor scores would result in a biased structural regression coefficient, g (Croon,

2002; Devlieger et al., 2016; Hoshino & Bentler, 2013; Lu et al., 2011). To mitigate

this bias, Croon (2002) derived bias-correction formulas for the factor scores’ var-

iances and covariance (for reviews and derivations, see Croon, 2002; Devlieger et al.,

2016; Lu et al., 2011).
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Let px and py denote the number of indicators in the X and Y measurement mod-

els, respectively (such that in Figure 1A, px = py = 4), and let hX and hM be unidi-

mensional, as in Figure 1A. By Croon’s formulas, a bias-corrected3 estimate of the

latent factor variance is given by

var jð Þ=
var Fjð Þ � AjΘdA0j

AjLxL0xA0j
: ð1Þ

where Aj is a 13px factor scoring matrix of regression coefficients used to predict

factor scores from the observed indicators, Lx is a px31 factor loading matrix

obtained from an individual factor model as in the left-hand side of Figure 1B, Θd is

a px3px variance–covariance matrix of the unique factor scores d, and var Fjð Þ is the

observed variance of the extracted factor scores. By assumption in Croon’s original

formulas, the unique factors are uncorrelated and Θd is a diagonal matrix with

unique factor variances on the diagonal and zeros elsewhere. We note that although

this formula is written in terms of the exogenous factor, j, the same formula applies

to the variance of the endogenous factor, h, if j and h are interchanged and if the

exogenous matrix Θd is replaced by the endogenous matrix Θe, of the endogenous

uniqunesses, e.

Similarly, a bias-corrected estimate of the covariance between j and h is obtained

by the formula:

Figure 1. (A)-(C) visually depict factor score regression (FSR) estimation under conditional
independence. (D)-(F) depict FSR under nonzero across-factor correlated uniquenesses. (G)-
(I) depict FSR under nonzero within-factor correlated uniquenesses.
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cov jhð Þ=
cov Fj, Fh

� �
AjLxL0yA0h

, ð2Þ

where A, L, and F are defined as above, with subscripts indicating which factor these

quantities refer to. Once these corrected estimates are obtained, they can either be

used to construct the structural regression coefficient using standard OLS formulas,

as

g =
cov jhð Þ
var jð Þ =

cov Fj, Fh

� �
AjLxL0yA0h

var Fjð Þ � AjΘdA0j
AjLxL0xA0j

 !�1

: ð3Þ

Or they can be used to construct a variance–covariance matrix that may be used as

summary data input in a subsequent path analysis:

Sjh =
var jð Þ cov jhð Þ

cov jhð Þ var hð Þ

� �
, ð4Þ

where var jð Þ, var hð Þ, and cov jhð Þ, are defined using Equations (1) and (2).

The Issue of Correlated Uniquenesses

In simulation studies, Croon’s method outperformed its competitors under a variety

of conditions and sample sizes (Devlieger et al., 2016; Devlieger & Rosseel, 2017;

Lu et al., 2011). Importantly, FSR appears more robust than simultaneous SEM to

structural model misspecifications (Devlieger & Rosseel, 2017). However, the popu-

lation models in these studies have always assumed conditionally independent unique

factors. What if unique factors are not independent? In the following sections, we first

address the issue of diagnosing nonzero unique factor covariances before turning to

the issue of incorporating unique factor covariances into FSR models.

Diagnosing and Including Correlated Uniquenesses. Before unique factor covariances

can be addressed using SEM or FSR, they first have to be known and correctly speci-

fied in one’s model. For example, nonzero unique factor covariances might be speci-

fied a priori on the basis of theory, or suspected based on research design

considerations (as when residuals may be autocorrelated over time in longitudinal

studies, cf. Bollen, 1980; Rubio & Gillespie, 1995; Singer & Willett, 2003). Absent

an a priori theory dictating the structure of the unique factor covariance matrix, how-

ever, analysts must resort to exploratory searches to uncover possible nonzero unique

covariances.

If the unique factors were observed variables in one’s data set, it would be a tri-

vial matter to simply compute the complete covariance matrix of the uniquenesses,

examining which seem to depart from zero. Because both the common and unique

factors are latent rather than observed, however, estimating the full unique factor
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covariance matrix is impossible in practice. This is because simultaneous SEM esti-

mation requires the specification of at least one across-factor item pair whose covar-

iation is caused entirely by the covariance between the common factors. That is, in a

simultaneous SEM model like the one depicted Figure 1D, the structural regression

coefficient, g, is not algebraically identified unless at least one across-factor corre-

lated uniqueness is fixed to zero. Analogous rules hold for within-factor correlated

uniquenesses (Kenny, Kashy, & Bolger, 1998).

For these reasons, nonzero correlated uniquenesses must typically be diagnosed

indirectly through the inspection of either standardized covariance residuals or modi-

fication indices when standard conditional independence models return substandard

model fit (Bollen, 1989; McDonald, 1999; McDonald & Ho, 2002; Saris, Satorra, &

Sörbom, 1987; Sörbom, 1989). Because it is well known that sequential specification

searches using modification indices generally do not recover the correct population

model (MacCallum, 1986; MacCallum, Roznowski, & Necowitz, 1992), we prefer

the inspection of standardized (or normalized) covariance residuals.

Although a detailed treatment of this topic is far beyond the scope of the present

article, we provide a brief summary here. For item pairs that load on the same factor,

larger4 positive standardized (or normalized) covariance residuals indicate item pairs

whose sample covariances far exceed the covariances implied by the conditional

independence model. For item pairs that load on different factors, standardized (or

normalized) covariance residuals with larger absolute values that track in the same

direction as the covariance between the latent factors indicate item pairs whose sam-

ple covariances exceed in absolute value the covariances implied by the conditional

independence model. In either case, when the absolute value of the sample covar-

iance between a pair of items far exceeds the absolute value of the model-implied

covariance under conditional independence, this suggests that the items in question

share additional covariation above and beyond that predicted by the common factor.

As such, nonzero unique factor covariances are particularly plausible for these item

pairs.

As the preceding discussion implies, unique factors may be correlated either with

(a) other unique factors loading on indicators of a different common factor in a larger

model (across-factor correlated uniquenesses) or (b) other unique factors loading on

indicators of the same common factor (within-factor correlated uniquenesses). The

next two sections use Croon’s analytic approach to derive formulas that apply to each

of these scenarios, in turn.

Across-Factor Correlated Uniquenesses. Correlated unique factors occur whenever non-

zero covariation between two or more indicators remains even after their prediction

by a common factor. Such residual covariation may result from a variety of causes,

such as the mutual influence of both unique factors by a second common factor in a

bifactor model (cf. Gerbing & Anderson, 1984). Perhaps more interestingly, it is pos-

sible that the specific factors that influence items tapping different constructs may

correlate. Though the decomposition of item variance into common factor variance,
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specific factor variance, and error variance is as old as factor analysis itself (Crocker

& Algina, 2008; Guttman, 1945; McDonald, 1999; Spearman, 1904; Thurstone,

1935, 1947), the implications of specific factors have largely been ignored, and have

only recently been the subject of renewed interest in the SEM literature (cf. Bentler,

2017, for a recent discussion of specific factors).

As an example, consider loneliness and depression, which have been well estab-

lished in the literature as correlated-yet-distinct constructs (Cacioppo, Hawkley, &

Berntson, 2003; Hawkley et al., 2008; Russell, Peplau, & Cutrona, 1980). Imagine,

further, three items: ‘‘I feel alone,’’ from a loneliness scale, as well as ‘‘I feel hope-

less,’’ and ‘‘sometimes it is hard to get out of bed in the morning,’’ both from a

depression scale. It seems reasonable to expect that hopelessness and lethargy (amo-

tivation) are both mutually caused by a latent depression factor. But what if there is

a stronger correlation between feelings of hopelessness and feelings of loneliness

than between feelings of loneliness and feelings of lethargy? If this stronger correla-

tion results from the specific aspects of these items, rather than the strength of the

relationship between these items and their respective common factors, a unique fac-

tor correlation may be at play.

Figure 1D depicts nonzero covariances between the first indicators and the third

indicators on each common factor in our two-factor structural regression model.

Assume that the structural regression coefficient, g, is the parameter of greatest inter-

est in the model. That is, our hypothetical researcher is not conducting a psycho-

metric analysis of the four-item X and Y scales but, rather, is primarily interested in

the unbiased, error-free structural regression between j and h. Additionally, assume

that the unique factor covariances are positive rather than negative, as in the loneli-

ness and depression example above.

What would happen to the estimate of g if the researcher ignored the across-factor

correlated uniquenesses and simply fit the conditional independence model of Figure

1A using simultaneous SEM estimation? In the conditional independence model of

Figure 1A, the model-implied covariance between two items loading on different

common factors is cov Xi, Yj

� �
= lXi

glYj
. Absent additional information, any of these

three parameters—lXi
, g, or lYj

—could be adjusted in order to fit a larger covariance

between items Xi and Yj.

However, in addition to fitting the covariances between items loading on separate

factors, the factor loadings must also minimize misfit in modeling the model-implied

covariances between items loading on the same factor. Assuming standardized fac-

tors, the model-implied covariance between any two items loading on the same fac-

tor is cov XiXj

� �
= lXi

lXj
for j and cov YiYj

� �
= lYi

lYj
for h, respectively. Thus, the

estimated factor loadings have two types of covariances to fit—those between items

loading on the same factor and those between items loading on separate factors—

whereas the structural regression coefficient needs only fit the covariances between

items loading on different factors. For this reason, the estimated factor loadings have

more limited latitude to shift if they are to minimize misfit across all observed covar-

iances in which they are expected to play a role.
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If Figure 1D is the true model, then, ignoring the nonzero across-factor correlated

uniquenesses may result in an inflated structural coefficient, g. If the estimated factor

loadings, lXi
and lYj

, are close to their true values, the structural regression coeffi-

cient, g, will necessarily need to be inflated in order to account for the positive unique

factor covariance that is left unmodeled. More precisely, the estimate of g will have

to split the difference between item pairs with larger observed covariances, such as

X1 and Y1 or X3 and Y3, and item pairs with smaller observed covariances, such as X2

and Y2, in order to minimize the overall model misfit. All else being equal, the larger

and more numerous the (positive) unique factor covariances, the more inflated the

estimate of g can be expected to become.

Alternatively, what would happen to the estimate of g if a researcher applied

Croon’s (2002) original formulas, assuming conditionally independent uniquenesses?

At first glance, the Croon method depicted in Figure 1A-C may appear robust to such

misspecification. After all, if the within-factor uniquenesses are, in fact, conditionally

independent and if each factor model is extracted separately, each factor model’s

parameters should be estimated accurately. As such, it stands to reason that FSR may

circumvent the usual issues that might result from misspecification of the across-

factor uniquenesses.

Unfortunately, this intuition turns out to be incorrect. As formally derived in

Appendix A, Croon’s original formulas were predicated upon an assumption of con-

ditionally independent uniquenesses, both within- and across-factors. In a model like

Figure 1D, the formula for bias-corrected factor variances in Equation (1) once again

remains accurate. In the presence of across-factor correlated uniquenesses, however,

Equation (2), for estimating cov j, hð Þ, is no longer accurate. As shown in Appendix

A, if assuming the standard models for the X and Y indicators, respectively:

x = Lxj + d

and

y = Lyh + e,

ð5Þ

where d contains the X model unique factors and e contains Y model unique factors,

the unbiased estimate of cov j, hð Þ becomes

cov jhð Þ=
cov Fj, Fh

� �
� Ajcov deð ÞA0h

AjLxL0yA0h
, ð6Þ

where cov deð Þ is a px3py covariance matrix of the X and Y uniquenesses (see

Appendix A for further details). Comparing Equation (6) with Equation (2), it is clear

that Equation (2) overestimates the true common factor covariance by a quantity

equal to
Ajcov deð ÞA0h
AjLxL0yA0h

(see Appendix A).

The necessity of accounting for the covariances in cov deð Þ suggests that an initial,

simultaneous model must be estimated, even if FSR is to be undertaken as a primary

method of analysis. With this result in mind, Croon’s formulas can be rederived to
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appropriately account for nonzero cov deð Þ using either of two strategies. A first strat-

egy retains Croon’s original approach of extracting factor scores from each individual

factor model, using an estimate of cov deð Þ from a simultaneous run in the adjustment

term in the formula above. We term this approach Factor Model Croon.

A second strategy applies Croon’s bias-correction method at the level of each con-

nected measurement model, rather than each individual factor model. In the present

context, a connected measurement model refers to a measurement model with � 2

latent factors connected by across-factor correlated uniquenesses. In this approach,

factor scores are estimated and extracted for multiple factors at once in a simulta-

neous model such as the model of Figure 1E. Subsequently, the variance–covariance

matrix of the factor scores is corrected for bias resulting from nonzero cov deð Þ. We

term this approach Measurement Model Croon. The following sections describe each

of these approaches, in turn, and detailed derivations of both approaches are reported

in Appendices A and B, respectively.

Factor model Croon. Arguably the most direct application of Croon’s (2002)

method to structural regression models featuring across-factor correlated residuals

would be to retain the factor-model-by-factor-model nature of the original Croon

approach, incorporating an estimate of cov deð Þ from a simultaneous model in

Equation (6). In line with this strategy, we propose the following variant of Croon’s

(2002) FSR method for the case of across-factor correlated uniquenesses:

1. First, estimate separate factor models as in Figure 1B. Extract factor scores

for each, as well as factor loading matrices LX and LY , and unique factor

variance–covariance matrices for each separate factor, ΘX and ΘY . In the

presence of nonzero within-factor correlated uniquenesses, the specification

of Figure 1H may be used instead.

2. Estimate the simultaneous model of Figure 1E, fixing the parameters of each

factor model to their estimates from Step 1.5 As such, the only estimated

parameters should be the covariance(s) between the latent factors, as well as

any nonzero unique factor covariances.6 Extract the unique factor variance–

covariance matrix Y. Subset this matrix to obtain the submatrix of covar-

iances between d and e, cov deð Þ.
3. Correct the factor score variances and covariances using the quantities

obtained in Steps 1 and 2, via Equations (1) and (6).

4. Run the FSR model, as depicted in Figure 1I.

Based on the analytic derivations in Appendix A, this method should serve to cor-

rect Croon’s (2002) original formulas for bias in the presence of across-factor corre-

lated uniquenesses, yielding consistent estimates of the true factor covariances.

Measurement model Croon. A second strategy applies Croon’s bias-correction

method at the level of the entire connected measurement model. Let M1 refer to a

connected measurement model, such as the model of Figure 1E. Although we focus

here on the case of a single measurement model, the subscript 1 implies that there
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may be more than one connected measurement model in a larger SEM. Let hM1
be a

vector of m1 latent variables in the measurement model and let FhM1
denote the fac-

tor scores extracted from measurement model M1. In the model of Figure 1E, m1 = 2,

hM1
would consist of latent factors j and h, and FhM1

would contain factor score

estimates corresponding to these latent variables, extracted simultaneously from the

connected measurement model. That is, hM1
=

j

h

� �
and FhM1

=
Fj

Fh

� �
. As derived in

Appendix B, the expected variance–covariance matrix of the factor scores, FhM1
,

may be written as

cov FhM1
, FhM1

� �
= AM1

LM1
cov hM1

, hM1

� �
L0M1

A0M1
+ AM1

ΘM1
A0M1

: ð7Þ

Solving algebraically for the variance–covariance matrix of the true latent factors,

cov hM1
, hM1

� �
, yields

cov hM1
, hM1

� �
= AM1

LM1
ð Þ�1

cov FhM1
, FhM1

� �
� AM1

ΘM1
A0M1

h i
L0M1

A0M1

� ��1

: ð8Þ

Although in principle this formula can be used regardless of which factor score

estimator is employed (e.g., regression vs. Bartlett) so long as the matrix product

AM1
LM1

and its transpose are nonsingular, the Bartlett factor score estimator

(Bartlett, 1937) features the desirable property that AM1
LM1

= I, circumventing any

potential issues with matrix inversion. For this reason, we recommend employing

Bartlett estimation when conducting Measurement Model Croon. As noted in

Appendix B, when Bartlett estimation is used, Equation (8) reduces to

cov hM1
, hM1

� �
= cov FhM1

, FhM1

� �
� AM1

ΘM1
A0M1

: ð9Þ

In scenarios involving only a single connected measurement model, such as the

example of Figure 1D and E and the template models featured in our simulations, this

formula is all that is required to obtain a corrected covariance matrix of all latent fac-

tors in the model. Although not our main focus, we note that Appendix B contains

additional formulas for computing the corrected covariance matrix between two con-

nected measurement models, M1 and M2. In this way, the formulas in Appendix B

allow researchers to use Croon’s method for models even more complex than those

featured here.

Within-Factor Correlated Uniquenesses. Nonzero covariances may also occur between

unique factors that load on items tapping the same construct. Once again, it is possi-

ble that such unique factor covariation is due to the unique factors’ mutual causation

by a second factor or to the existence of correlated specific factors that influence

both items. Whatever the case may be, suppose a researcher is interested in fitting

the same structural regression between exogenous j and endogenous h, but the true

14 Educational and Psychological Measurement 80(1)



unique factor structure is as depicted in Figure 1G. Assume, once again, that the

researcher’s primary goal is to accurately estimate the structural regression coeffi-

cient, g.

What would happen to the estimate of the key structural coefficient, g, if a unique

factor structure like the one depicted in Figure 1G was ignored? If a researcher used

simultaneous SEM estimation to fit the model in Figure 1A, assuming conditionally

independent uniquenesses, the factor loadings on X1 and X2 would be inflated to

account for the larger covariance between these two items, some of which is actually

due to unique factor covariance. The same would be true of the factor loadings on

items Y1 and Y2. As a result, the estimate of g that best fits covariances between

items with inflated loadings will be smaller than its true value in the population.

For example, let lX1
and lY1

represent the factor loadings for the first X and Y indi-

cators, respectively. The model-implied covariance between X1 and Y1 in the model

of Figure 1A is Cov X1, Y1ð Þ= lX1
glY1

. If lX1
and lY1

are inflated due to a failure to

correctly account for the unique factor covariation in the true population model of

Figure 1G, however, the estimate of g will necessarily have to be smaller in order to

fit the observed covariance. Similarly, an FSR analysis using Croon’s (2002) formu-

las from Equations (1) and (2) would result in factor loading matrices, LX and LY

with inflated entries, resulting in a similarly deflated estimate of g.

Luckily, using Croon’s original formulas in the case of within-factor correlated

uniquenesses involves only a simple respecification of the initial factor models from

which factor scores are extracted. Instead of fitting each measurement model in a

standard manner, assuming conditionally independent uniquenesses, one simply fits

each factor model including the correlated unique factors, as depicted in Figure 1H.

As a result, the LX and LY matrices from Equations (1) and (2) will be correctly esti-

mated. Furthermore, the unique factor covariance matrices, Y, from each factor

model will contain some number of nonzero off-diagonal elements (1 each, in the

models of Figure 1H). After applying formulas (1) and (2) using these correctly esti-

mated quantities, an FSR analysis may be run, as usual, as depicted in Figure 1I.

Alternatively, though not required to estimate within-factor correlated unique-

nesses, the Measurement Model Croon formulas described previously may just

as easily be applied. For example, the entire model of Figure 1H may be fit simulta-

neously (including the factor covariance, represented by a dotted line) and the

bias-corrected variance covariance matrix of j and h may be computed from the

Bartlett-extracted factor scores using Equation (9).

Hoshino and Bentler’s (2013) Alternative FSR Approach

Although Croon’s (2002) FSR method has attracted recent attention, it is important

to mention an alternative approach proposed by Hoshino and Bentler (2013). These

authors correctly noted that, under standard conditions, the Bartlett factor score esti-

mator (Bartlett, 1937) is a consistent estimator of the true population covariances

among the latent factors (cf. Hoshino & Bentler, 2013, section 4.7.2). For example,
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under conditional independence the true factor covariance is defined by Equation (2)

as cov jhð Þ= cov Fj , Fhð Þ
AjLxL0yA0h

. Because, for Bartlett factor scores extracted from separate

unidimensional factor models, AjLx = L0yA0h = 1, however, the denominator on the

right-hand side of Equation (2) vanishes, leaving cov jhð Þ = cov Fj, Fh

� �
Bartlett

.

Similarly, the denominator varnishes in Equation (1), leaving

var jð Þ= var Fjð Þ � AjΘdA0j or, equivalently, var Fjð ÞBartlett = var jð Þ+ AjΘdA0j.

Because the variances of Bartlett factor scores are inconsistent estimates of their true

population quantities, Hoshino and Bentler (2013) recommended substituting esti-

mates of the factor variances from the initial measurement model runs in place of the

factor score variance in the final covariance matrix of the latent factors.

Like Croon’s method, the Hoshino–Bentler approach can be applied at either the

level of the individual factor models or the level of each connected measurement

model (Hoshino & Bentler, 2013). We focus here on the connected measurement

model implementation, since we employed this version in our simulations below.

Recall that, at the level of a single connected measurement model, M1, the variance–

covariance matrix of the factor scores is approximated by Equation (7) under Bartlett

estimation as FhM1
, FhM1

� �
Bartlett

= cov hM1
, hM1

� �
+ AM1Bartlett

ΘM1
A0M1Bartlett

. In the

presence of across-factor correlated uniquenesses, some off-diagonal elements of the

matrix AM1Bartlett
ΘM1

A0M1Bartlett
will be nonzero and the corresponding covariances of

the Bartlett factor scores will remain biased even if the Hoshino–Bentler correction

is applied to the variances on the main diagonal of FhM1
, FhM1

� �
Bartlett

. This will be

true even when the measurement model from which the factor scores were extracted

is correctly specified, including the across-factor correlated uniquenesses.

When there are no across-factor correlated uniquenesses, however—even when

there are some nonzero within-factor covariances—all off-diagonal elements of

AM1Bartlett
ΘM1

A0M1Bartlett
will be zero7 and the Hoshino–Bentler correction to the main

diagonal of FhM1
, FhM1

� �
Bartlett

will result in a consistent estimator of the population

covariance matrix. For this reason, the covariance matrix of the latent factors computed

using the Hoshino–Bentler (2013) method can be expected to remain a consistent esti-

mator of the true population matrix when there are no nonzero across-factor covariances

among the uniquenesses and the model is correctly specified but will exhibit some

degree of bias when some covariances among the across-factor uniquenesses are non-

zero, even if the measurement model residual structure is correctly specified.

The Present Research

The formulas and rhetorical arguments presented thus far are based entirely on statis-

tical theory and the severity of possible degradations in performance of SEM estima-

tion, standard (uncorrected) Croon FSR, and (in the case of across-factor correlated
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uniquenesses) the Hoshino–Bentler method under a population model with nonzero

correlated uniquenesses remains unknown. Additionally, it is unclear whether the

Factor Model and Measurement Model variants of our Croon formulas will perform

identically or whether one method will outperform the other under particular circum-

stances. For example, at smaller sample sizes it is possible that one method might

outperform the other. It could be that the smaller, factor-by-factor models will be

easier to estimate accurately than a larger connected measurement model, leading to

less biased results in smaller samples. Alternatively, it is just as plausible that esti-

mates from larger, connected measurement models will be less biased in small sam-

ples, since these estimates are informed by a greater overall number of variables in a

richer model.

To provide an initial assessment of the performance of these methods, then, we

compare our proposed Factor Model and Measurement Model Croon formulas with

(a) simultaneous SEM estimation, (b) uncorrected Croon FSR, (c) FSR using the

Hoshino–Bentler (2013) method, and (d) uncorrected FSR using regression and

Bartlett factor scores in two Monte Carlo simulations. Below, we refer to Croon’s

(2002) original FSR method as either Croon FSR or FSR assuming conditional inde-

pendence. We refer to our proposed corrections for correlated uniquenesses at the

factor model level as either Croon FM or Factor Model Croon and to our proposed

corrections for correlated uniquenesses at the measurement model level as either

Croon MM or Measurement Model Croon. Finally, we refer to the Hoshino–Bentler

method as either the HB method or simply Hoshino–Bentler.

Simulation Studies

To evaluate the efficacy of our proposed FSR methods, and to assess the robustness

of simultaneous SEM estimation and standard Croon FSR to misspecification of the

measurement model unique factor structure, we conducted two Monte Carlo simula-

tion studies. Simulation 1 examined these methods using a population model with

nonzero across-factor correlated uniquenesses. Simulation 2 used a population model

with nonzero within-factor correlated uniquenesses. We coded both simulations in R
statistical software (R Core Team, 2013) and conducted all SEM analyses using the

lavaan package (Rosseel, 2012). Across both simulations, for each unique simula-

tion cell, we generated and analyzed 1,000 simulated data sets.

Simulation 1: Across-Factor Correlated Uniquenesses
Population Model Used in the Simulation. As a population model for Simulation 1, we

used the latent variable mediation model displayed in Figure 2. We chose the media-

tional framework because of its widespread use in the educational and psychological

literature, because we wished to assess the potential proliferation of bias in models

with at least one indirect pathway, and because, following other authors in this area,

we wished to assess the effects of misspecifying the structural model by incorrectly

fixing a direct pathway to zero (Devlieger et al., 2016; Devlieger & Rosseel, 2017).
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The coefficients were taken from the moderate effect size conditions reported in

Ledgerwood and Shrout (2011), in which the indirect effect equals ab = .546 * 2.546

= .30. All variables in the model were standardized.

Factors Varied in the Simulation. We varied four primary factors in Simulation 1: the

sample size, the reliability of the four indicators used to measure each construct, the

strength of the unique factor correlations, and the number of unique factor

correlations.

The sample size, N. We simulated four sample sizes: N = {125, 250, 500, 1,000},

representing a range of small and large sample sizes.

Reliability of the indicators. For convenience, we held all population factor loadings

equal in all conditions and selected three levels of Cronbach’s alpha (Cronbach,

1951), a = {.7, .8, .9}, corresponding to values of alpha commonly viewed as accep-

table by substantive researchers. To keep all indicators on a standardized metric, we

used the formulas l =
ffiffiffiffiffiffiffiffiffi

a
4�3a

p
and s2

u =
4 1�að Þ
4�3a

for the factor loadings and unique factor

variances, respectively.

Because the unique factor variances are necessarily larger under lower reliability,

when less of the total variance of each item is explained by the common factor, we

expected the biasing effects of ignoring nonzero correlations among the unique fac-

tors to be most severe in the a = :7 condition and become progressively less severe

as reliability increased.

Strength of the unique factor correlations. We selected unique factor correlations of

three different strengths: |r| = {.1, .3, .5}, corresponding to Cohen’s (1988) conven-

tions for small, moderate, and large correlation effect sizes. All else being equal, we

expected greater bias to result from misspecifying the measurement model unique

factor structure when the strength of the unique factor correlations was higher.

Number of unique factor correlations. Finally, we generated either one or two non-

zero across-variable correlated uniquenesses per common factor. This is depicted

Figure 2. Population model for Simulation 1.
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visually in Figure 2 via the use of solid versus dashed lines in the measurement model

unique factor structure. The solid lines represent all unique factor correlations in cells

with one correlated uniqueness per common factor. The dashed lines represent addi-

tional unique factor correlations in the population model for cells with two correlated

uniquenesses per common factor. All else being equal, the more nonzero correlated

uniquenesses in a model, the more disruptive an influence these unique variable cor-

relations should have on the resulting parameter estimates.

Analyses Conducted on Each Simulated Data Set. We analyzed each data set using eight

different methods: SEM specified under conditional independence, Croon FSR

assuming conditional independence, uncorrected FSR using the regression estimator,

uncorrected FSR using the Bartlett estimator, Factor Model Croon, Measurement

Model Croon, simultaneous SEM with a correctly specified residual structure, and

Hoshino–Bentler FSR computed at the connected measurement model level under a

correctly specified residual structure.8 We note that the first four of these methods

assumed conditional independence and ignored possible correlated uniquenesses

whereas the latter four of these methods correctly specified the measurement model

residual structure, including all nonzero unique factor covariances. For reasons men-

tioned above, we used Bartlett-estimated factor scores for all variants of Croon’s

method.

Additionally, for each estimation method, we conducted two analyses: one with

the structural model correctly specified, freely estimating all mediation model path-

ways, and one with the structural model misspecified, incorrectly fixing the

hX ! hY pathway to 0 (i.e., imposing the constraint c0 = 0, assuming complete med-

iation). The rationale for including these analyses was based on prior research that

has shown repeatedly that FSR estimation is more robust to structural model misspe-

cification than simultaneous SEM estimation (Devlieger et al., 2016; Devlieger &

Rosseel, 2017; Lu et al., 2011). As a result, we expected both simultaneous SEM and

correctly specified FSR estimation to perform well when all parts of the model (mea-

surement and structural) were correctly specified, but expected FSR to outperform

Figure 3. Diagram of factor score regression (FSR) approach to fitting the model of Figure 2.
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simultaneous SEM in terms of bias when the structural model (but not the measure-

ment model) was misspecified.

Simulation Outcomes. We assessed the performance of each method using two pri-

mary outcome measures: percent bias and mean square error (MSE) of our key struc-

tural parameters.

Percent bias. For each population parameter of interest, u, we computed percent

bias as

Percent Bias =
�u� u

u
3100 ð10Þ

where �u denotes the average parameter estimate from a given estimation method in a

given simulation cell. Absolute values of percent bias of 10 or larger are convention-

ally considered problematic (Enders & Bandalos, 2001; Muthén, Kaplan, & Hollis,

1987).

Mean square error. Additionally, for each parameter of interest we computed MSE

in each unique simulation cell using the formula:

MSE =

P1000
Iter = 1 ûIter � u

� �2

NIterComplete

, ð11Þ

where ûIter is the parameter estimate returned by a given estimation method for the

current iteration in a given simulation cell, NIterComplete is the number of iterations with

no convergence errors or inadmissible solutions in a given simulation cell,9 and u is,

once again, the true population value. MSE is an overall measure of accuracy that

additively combines sampling variance and squared bias. For an unbiased estimator,

MSE reduces to an estimate of sampling variability. Lower values of MSE indicate a

more efficient and, potentially, less biased estimator.

MSE ratios. In the results below, instead of reporting raw MSE values, we report

MSE ratios, computed as

MSE Ratio =
MSEComparison Estimator

MSECroonMM

: ð12Þ

That is, for each analysis cell, we formed the ratio of a given estimator to the mea-

surement model version of Croon’s method. MSE ratios equal to 1 indicate estimators

that are equivalent in their overall accuracy. Ratios less than 1 indicate scenarios in

which a comparison estimator exhibits lower MSE than Croon MM. Ratios greater

than 1 indicate scenarios in which the comparison estimator exhibits higher MSE than

Croon MM. When both estimators are unbiased, the MSE ratio can be construed as a

measure of the relative efficiency of the two estimators.

Simulation 1: Results. The results of Simulation 1 generally fell in line with our pre-

dictions. Because the pattern of results was stable across sample sizes, we present
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results for the N = 125 condition here. Additionally, to preserve space, we present

full tables of results from the two correlated uniqueness cells. The one correlated

uniqueness conditions followed similar trends, with less pronounced bias (but see the

Supplemental Material, available online, for comprehensive results from all other

conditions).

Percent bias. Tables 1 and 2 display percent bias of our key structural parameters,

a, b, and the ab indirect effect, by (a) estimation method, (b) unique factor structure

specification, (c) structural model specification, (d) reliability (alpha level), and (e)

strength of the unique variable correlation in the N = 125, two correlated uniqueness

cells. Table 1 presents results for the four methods that assume conditional indepen-

dences, whereas Table 2 presents results for the four methods that correctly specified

the measurement model residual structure.

Several trends are worth highlighting. First, examining Table 1, it is clear that

standard, uncorrected FSR using the regression or Bartlett estimators exhibited sub-

stantial negative bias in all conditions, in line with previous simulation results

(Devlieger et al., 2016; Devlieger & Rosseel, 2017; Lu et al., 2011). Second, when

the structural model was correctly specified but the unique factor correlations were

moderate (.3) or large (.5), both standard simultaneous SEM and standard Croon

FSR, which assume conditional independence of all unique factors, showed proble-

matic levels of positive bias.

The bias resulting from ignoring unique factor correlations and assuming condi-

tional independence was worse when reliability was low (a = .7 and .8), and minimal

when reliability was high (a = .9). This is intuitive, since high reliability (communal-

ity) implies very little leftover unique item variation. Bias was also greatest in the

estimates of the indirect effect, a * b. Because the indirect effect is a product of coef-

ficients, the bias in this parameter grew more quickly than that of the direct path

coefficients. Since the indirect effect is often the quantity of greatest interest in a

mediation analysis, the susceptibility of this coefficient to larger levels of bias is

concerning.

Turning to Table 2, we see that the uncorrected Hoshino–Bentler method returned

problematically biased parameter estimates when the unique factor correlations were

moderate (.3) or high (.5) and when reliability was low (.7) or moderate (.8). In con-

trast, Croon FM, Croon MM, and simultaneous SEM exhibited little bias when the

structural model was correctly specified, even in the lowest sample size condition of

N = 125. At this sample size Croon FM did display slightly greater negative bias at

lower levels of reliability than Croon MM and correctly specified SEM. This trend

quickly dissipated as sample size increased, however.

So far, we have highlighted comparisons among analyses that correctly specified

the structural portion of the model, assessing the magnitude of bias resulting only

from misspecification of the unique factors in the measurement model. In these cells,

Croon FM, Croon MM, and simultaneous SEM all exhibited low levels of bias.

When the structural model was misspecified (rows labeled MS in Table 1) by erro-

neously fixing the direct hX ! hY effect, c0, to zero and assuming complete
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mediation, however, both Croon FM and Croon MM resulted in noticeably lower

bias than simultaneous SEM across the majority of simulation cells.

MSE ratios. MSE ratios are presented in Table 3 for the N = 125, two correlated

uniquesses per factor conditions for the estimators that correctly specified the unique

actor covariance structure. Comparing Croon MM to simultaneous SEM, we see that

Table 1. Percent Bias in Models Omitting the Unique Factor Correlations by Parameter and
Simulation Condition, Simulation 1: N = 125, 2 Unique Factor Correlations.

Regression FS Bartlett FS Croon SEM

Path a b ab a b ab a b ab a b ab

Unique factor correlation = .1

a :7ð Þ
CS 228.85 227.77 248.53 228.92 227.77 248.66 0.39 20.81 20.32 3.80 2.99 7.10

MS 228.85 28.37 234.22 228.92 28.38 234.34 0.39 29.27 30.56 15.99 43.05 66.73

a :8ð Þ
CS 219.11 218.24 233.86 218.92 218.23 233.70 0.52 0.80 1.36 2.070 2.44 4.60

MS 219.11 4.78 214.72 218.92 4.79 214.50 0.52 30.29 31.58 11.04 38.57 54.57

a :9ð Þ
CS 29.26 29.12 217.52 29.30 29.21 217.67 0.53 0.32 0.83 1.14 0.86 1.99

MS 29.26 18.00 7.57 29.30 17.88 7.40 0.53 30.63 31.79 6.28 34.57 43.53

Unique factor correlation = .3

a :7ð Þ
CS 222.61 224.30 241.38 222.56 224.11 241.33 8.93 5.30 14.91 14.34 9.91 25.86

MS 222.61 22.34 223.87 222.56 22.11 223.73 8.93 37.84 50.88 26.15 52.79 93.34

a :8ð Þ
CS 215.91 216.85 230.03 216.06 216.76 230.11 4.38 2.36 6.87 6.59 4.60 11.56

MS 215.91 7.89 28.73 216.06 8.00 28.82 4.38 34.15 40.61 16.12 43.53 67.30

a :9ð Þ
CS 27.86 27.95 215.13 27.87 27.88 215.10 2.11 1.99 4.19 2.86 2.73 5.72

MS 27.86 19.37 10.46 27.87 19.44 10.50 2.11 32.39 35.64 8.07 36.55 48.08

Unique factor correlation = .5

a :7ð Þ
CS 217.38 220.77 234.49 217.29 220.85 234.49 16.20 11.66 30.30 25.87 19.49 51.06

MS 217.38 3.13 214.27 217.29 3.06 214.21 16.20 45.05 69.24 36.70 62.41 122.36

a :8ð Þ
CS 211.74 214.56 224.47 211.89 214.40 224.51 9.39 5.81 16.01 13.33 9.23 24.09

MS 211.74 11.70 20.85 211.89 11.89 20.87 9.39 38.75 52.39 22.96 49.86 84.80

a :9ð Þ
CS 25.88 27.14 212.59 25.92 27.14 212.68 4.34 2.91 7.36 5.40 3.92 9.51

MS 25.88 21.09 14.41 25.92 21.07 14.32 4.34 34.24 40.48 10.76 38.85 54.24

Note. Regression FS = Regression FSR method; Bartlett FS = Bartlett FSR method; Croon = Croon’s

method using the original formulas uncorrected for unique factor correlations; SEM = structural equation

modeling (simultaneous estimation) under the assumption of conditionally independent uniquenesses; CS

= correct structural model specification (c0 path freely estimated); MS = structural misspecification (c0

path constrained to 0). Boldfaces entries indicate absolute values of percent bias . 10.
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the methods exhibit equivalent performance when the entire model was correctly

specified, but that Croon MM outperforms SEM when the structural model was mis-

specified. This suggests that Croon MM is no less efficient than simultaneous SEM,

all else being equal. Comparing Croon MM with Croon FM, we see that Croon FM

Table 2. Percent Bias in Models Correctly Specifying the Unique Factor Structure by
Parameter and Simulation Condition, Simulation 1: N = 125, 2 Unique Factor Correlations.

Hoshino–Bentler Croon FM Croon MM SEM

Path a b ab a b ab a b ab a b ab

Unique factor correlation = .1

a :7ð Þ
CS 2.96 2.31 5.50 23.26 23.27 26.42 20.54 0.30 20.19 20.54 0.30 20.19

MS 2.96 32.87 37.61 23.26 25.62 22.32 20.53 29.68 29.81 11.58 38.82 55.82

a :8ð Þ
CS 1.71 2.16 3.94 21.70 20.71 22.36 20.43 0.89 0.47 20.43 0.89 0.47

MS 1.71 31.95 34.80 21.70 28.09 26.55 20.43 29.99 30.03 8.43 36.17 48.38

a :9ð Þ
CS 1.01 0.77 1.76 20.46 20.35 20.82 0.04 0.19 0.21 0.04 0.19 0.21

MS 1.01 31.25 33.04 20.46 29.63 29.52 0.04 30.32 30.86 5.02 33.44 40.67

Unique factor correlation = .3

a :7ð Þ
CS 10.23 6.71 17.88 21.85 23.31 25.13 0.38 20.07 0.42 0.38 20.07 0.42

MS 10.23 39.55 54.61 21.85 26.29 24.73 0.38 29.83 31.17 11.33 38.17 54.84

a :8ð Þ
CS 4.85 3.22 8.26 22.21 22.12 24.29 21.27 20.60 21.88 21.27 20.60 21.88

MS 4.85 34.99 42.15 22.21 27.50 25.31 21.27 29.13 28.13 6.83 34.69 44.66

a :9ð Þ
CS 2.35 2.25 4.71 20.84 20.10 20.88 20.40 0.46 0.11 20.40 0.46 0.11

MS 2.35 32.72 36.30 20.84 29.36 28.77 20.40 30.02 29.99 3.86 32.66 38.34

Unique factor correlation = .5

a :7ð Þ
CS 16.42 13.07 32.26 21.78 22.88 24.32 0.07 1.04 1.41 0.05 1.01 1.37

MS 16.42 46.06 70.82 21.78 26.10 24.71 0.07 29.94 30.86 9.34 36.69 50.45

a :8ð Þ
CS 9.48 5.84 16.09 21.36 21.96 23.15 20.33 20.62 20.80 20.33 20.62 20.80

MS 9.48 38.83 52.60 21.36 27.67 26.60 20.33 29.17 29.41 6.23 33.64 42.72

a :9ð Þ
CS 4.30 3.00 7.43 20.55 20.43 20.99 20.21 0.13 20.08 20.21 0.13 20.08

MS 4.30 34.28 40.50 20.55 29.28 29.04 20.21 29.88 30.09 3.17 31.93 36.66

Note. Hoshino–Bentler indicates Hoshino and Bentler’s (2013) FSR method; Croon FM = Croon’s

method corrected for correlated uniquenesses at the factor model level; Croon MM = Croon’s method

corrected for correlated uniquenesses at the measurement model level; SEM = structural equation

modeling (simultaneous estimation) correctly specifying the correlated residual structure; CS = correct

structural model specification (c0 path freely estimated); MS = structural misspecification (c0 path

constrained to 0). Boldfaced entries indicate absolute values of percent bias . 10.
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exhibited somewhat lower MSEs than Croon MM in a portion of simulation cells.

Although the ratios generally did not depart drastically from 1, this suggests that

Croon FM may be somewhat more efficient than Croon MM in some cases.

Table 3. Mean Square Error Ratios in Models Correctly Specifying the Unique Factor
Structure by Parameter and Simulation Condition, Simulation 1: N = 125, 2 Unique Factor
Correlations.

Hoshino–Bentler Croon FM SEM

Path a b ab a B Ab a B ab

Unique factor correlation = .1
a :7ð Þ

CS 0.99 1.06 1.15 0.96 0.89 0.87 1.00 1.00 1.00
MS 0.99 1.16 1.28 0.96 0.80 0.75 1.24 1.51 2.16

a :8ð Þ
CS 0.99 1.03 1.07 0.99 0.96 0.95 1.00 1.00 1.00
MS 0.99 1.11 1.19 0.99 0.90 0.87 1.17 1.38 1.91

a :9ð Þ
CS 0.99 1.02 1.02 0.99 0.97 0.97 1.00 1.00 1.00
MS 0.99 1.05 1.09 0.99 0.96 0.94 1.09 1.19 1.49

Unique factor correlation = .3
a :7ð Þ

CS 1.26 1.30 1.66 0.95 0.97 0.88 1.00 1.00 1.00
MS 1.26 1.58 2.05 0.95 0.83 0.77 1.31 1.48 2.08

a :8ð Þ
CS 1.05 1.17 1.31 0.97 0.98 0.96 1.00 1.00 1.00
MS 1.05 1.37 1.68 0.97 0.91 0.88 1.12 1.35 1.85

a :9ð Þ
CS 1.02 1.07 1.13 0.99 1.00 0.99 1.00 1.00 1.00
MS 1.02 1.17 1.30 0.99 0.96 0.94 1.06 1.16 1.43

Unique factor correlation = .5
a :7ð Þ

CS 1.80 2.01 3.02 1.02 1.08 1.01 1.00 1.00 1.00
MS 1.80 2.11 3.25 1.02 0.83 0.82 1.20 1.40 1.89

a :8ð Þ
CS 1.35 1.36 1.79 1.03 1.08 1.03 1.00 1.00 1.00
MS 1.35 1.66 2.28 1.03 0.92 0.90 1.13 1.28 1.66

a :9ð Þ
CS 1.07 1.13 1.26 1.00 1.01 1.00 1.00 1.00 1.00
MS 1.07 1.28 1.53 1.00 0.96 0.95 1.05 1.13 1.33

Note. FSR = factor score regression; MSE = mean square error; Hoshino–Bentler indicates Hoshino and

Bentler’s (2013) FSR method; Croon FM = Croon’s method corrected for correlated uniquenesses at the

factor model level; SEM = structural equation modeling (simultaneous estimation), with correctly

specified unique factor structure; CS = correct structural model specification (c0 path freely estimated);

MS = structural misspecification (c0 path constrained to 0). All MSE ratios are divided by the MSE for

Croon’s method corrected for correlated uniquenesses at the measurement model level (Croon MM),

that is, MSEEstimator/MSECroon_MM.
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Simulation 1: Discussion. Simulation 1 provided empirical evidence for several impor-

tant phenomena. First, ignoring correlated uniquenesses can result in distorted esti-

mates of structural model parameters. These effects are especially pronounced when

the number of across-factor correlated uniquenesses is larger, the strength of the

unique factor correlations is greater, and the reliability of the indicators is lower.

Second, both correctly specified simultaneous SEM and our proposed Croon methods,

accounting for correlated uniquenesses, successfully eliminated this bias when the

structural model was correctly specified. Third, Croon FSR estimation outperformed

simultaneous SEM in terms of bias when the structural model was misspecified.

Finally, standard Hoshino–Bentler estimation exhibits bias in the presence of nonzero

across-factor correlated uniquenesses, even though the connected measurement model

used to compute the HB factor covariance matrix was correctly specified.

Simulation 1 specifically examined across-factor correlated uniquenesses but did

not assess within-factor correlated uniquenesses. Simulation 2 used a similar proce-

dure to compare these methods in the presence of nonzero within-factor correlated

uniquenesses.

Simulation 2: Within-Factor Correlated Uniquenesses
Simulation Design. Figure 4 displays the population model for Simulation 2. This

simulation closely mirrored that of Simulation 1 but with two key changes. First, we

generated data according to the model in Figure 4, featuring within-factor correlated

uniquenesses. Second, because preliminary simulations found noticeable negative

bias in key parameters even with only one within-factor correlated uniqueness per

common factor, for simplicity we did not include a set of conditions examining two

correlated uniquenesses per factor. Otherwise, all design factors were the same.10

Simulation 2: Results and Discussion. Mirroring Simulation 1, Tables 4 and 5 display

the results for percent bias and Table 6 displays the results for MSE ratios in the N =

Figure 4. Population model for Simulation 2.
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125 conditions. As expected, the general trends from Simulation 1 are all apparent

here, but the direction of biased has reversed: In the presence of within-factor corre-

lated uniquenesses, biased structural parameters are nearly always attenuated rather

than magnified. Once again, simultaneous SEM estimation and standard Croon FSR

estimation exhibited bias when the unique factor structure was specified to be condi-

tionally independent. And, once again, this bias was most pronounced under

Table 4. Percent Bias in Models Omitting the Unique Factor Correlations by Parameter and
Simulation Condition, Simulation 2: N = 125.

Regression FS Bartlett FS Croon SEM

Path a b ab a b ab a b ab a b ab

Unique factor correlation = .1

a :7ð Þ
CS 232.91 230.82 253.57 232.73 230.87 253.56 27.55 27.46 214.54 23.31 23.09 26.44

MS 232.91 213.26 241.27 232.73 213.36 241.23 27.55 19.44 11.12 7.89 33.69 45.04

a :8ð Þ
CS 221.68 221.18 238.23 221.40 221.28 238.21 23.58 24.38 27.83 21.53 22.29 23.82

MS 221.68 1.02 220.30 221.40 0.85 220.22 23.58 24.15 20.38 6.91 32.89 42.85

a :9ð Þ
CS 211.74 210.59 221.09 211.78 210.56 221.13 22.49 21.55 24.03 21.79 20.77 22.57

MS 211.74 15.36 2.29 211.78 15.39 2.26 22.49 27.51 24.79 3.03 31.49 35.97

Unique factor correlation = .3

a :7ð Þ
CS 238.91 236.25 260.97 239.09 235.94 260.94 221.00 219.72 236.45 215.10 213.51 226.42

MS 238.91 221.08 251.16 239.09 220.72 251.11 221.00 2.55 217.97 25.86 17.95 12.46

a :8ð Þ
CS 225.63 224.06 243.46 225.64 224.02 243.45 211.24 210.79 220.76 28.29 27.34 214.97

MS 225.63 23.39 227.54 225.64 23.35 227.53 211.24 15.38 3.14 20.89 25.05 24.77

a :9ð Þ
CS 213.51 212.59 224.33 213.53 212.56 224.34 25.46 24.85 29.99 24.49 23.78 28.05

MS 213.51 12.82 21.87 213.53 12.84 21.88 25.46 23.38 17.21 20.19 27.49 27.83

Unique factor correlation = .5

a :7ð Þ
CS 247.33 243.28 270.13 247.13 243.25 269.96 237.20 233.77 258.45 233.08 229.29 252.63

MS 247.33 231.30 263.27 247.13 231.27 263.09 237.20 217.98 247.75 227.90 27.92 232.26

a :8ð Þ
CS 233.55 229.27 252.98 233.63 229.27 253.05 224.37 220.63 239.98 221.31 217.29 234.92

MS 233.55 212.11 241.09 233.63 212.11 241.17 224.37 0.06 223.74 216.33 8.16 28.66

a :9ð Þ
CS 217.27 216.25 230.58 217.31 216.26 230.65 211.20 210.63 220.52 29.90 29.10 217.97

MS 217.27 7.69 210.29 217.31 7.66 210.37 211.20 15.57 3.26 26.57 19.73 12.58

Note. Regression FS = regression FSR method; Bartlett FS = Bartlett FSR method; Croon = Croon’s

method using the original formulas uncorrected for unique factor correlations; SEM = structural equation

modeling (simultaneous estimation) under the assumption of conditionally independent uniquenesses; CS

= correct structural model specification (c0 path freely estimated); MS = structural misspecification (c0

path constrained to 0). Boldfaces entries indicate absolute values of percent bias . 10.
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moderate to strong unique factor correlations (.3 and .5) and lower levels of reliabil-

ity (.7 and .8).

Examining Table 5, all methods performed well when both the measurement and

structural models were correctly specified. We note, however, that there was a small

Table 5. Percent Bias in Models Correctly Specifying the Unique Factor Structure by
Parameter and Simulation Condition, Simulation 2: N = 125.

Hoshino–Bentler Croon FM Croon MM SEM

Path a b ab a b ab a B ab a b ab

Unique factor correlation = .1

a :7ð Þ
CS 20.24 0.01 20.34 27.70 27.44 214.52 20.24 0.01 20.34 20.24 0.01 20.34

MS 20.24 29.02 29.33 27.70 19.64 11.34 20.24 29.02 29.33 12.42 39.08 57.13

a :8ð Þ
CS 0.35 20.31 0.03 23.49 23.91 27.21 0.35 20.31 0.03 0.35 20.31 0.03

MS 0.35 29.33 30.44 23.49 24.60 20.96 0.35 29.33 30.44 9.91 36.42 50.76

a :9ð Þ
CS 20.88 0.29 20.61 22.19 21.06 23.25 20.88 0.29 20.61 20.88 0.29 20.61

MS 20.88 29.72 29.04 22.19 27.98 25.65 20.88 29.72 29.04 4.50 33.14 39.64

Unique factor correlation = .3

a :7ð Þ
CS 0.07 0.67 1.06 27.81 26.83 213.85 0.07 0.67 1.06 0.07 0.67 1.06

MS 0.07 29.23 30.24 27.81 19.62 11.39 0.07 29.23 30.24 12.58 39.18 57.63

a :8ð Þ
CS 0.03 1.03 1.17 23.81 23.01 26.68 0.03 1.03 1.17 0.03 1.03 1.17

MS 0.03 30.51 31.12 23.81 25.56 21.38 0.03 30.51 31.12 10.12 37.83 52.45

a :9ð Þ
CS 20.68 20.27 20.88 22.01 21.53 23.43 20.68 20.27 20.88 20.68 20.27 20.88

MS 20.68 29.52 29.16 22.01 27.79 25.78 20.68 29.52 29.16 4.99 33.13 40.35

Unique factor correlation = .5

a :7ð Þ
CS 0.78 2.08 3.41 27.47 26.16 212.65 0.78 2.08 3.41 0.78 2.08 3.41

MS 0.78 30.65 32.71 27.47 20.15 12.44 0.78 30.65 32.71 13.76 40.93 61.29

a :8ð Þ
CS 20.66 1.27 0.43 24.70 22.74 27.41 20.66 1.27 0.43 20.66 1.27 0.43

MS 20.66 30.75 30.36 24.70 25.58 20.27 20.66 30.75 30.36 9.83 38.22 52.47

a :9ð Þ
CS 20.67 20.60 21.11 22.04 21.95 23.80 20.67 20.60 21.11 20.67 20.60 21.11

MS 20.67 29.30 29.06 22.04 27.54 25.57 20.67 29.30 29.06 5.20 33.11 40.72

Note. FSR = factor score regression; Hoshino–Bentler indicates Hoshino and Bentler’s (2013) FSR

method; Croon FM = Croon’s method corrected for correlated uniquenesses at the factor model level;

Croon MM = Croon’s method corrected for correlated uniquenesses at the measurement model level;

SEM = structural equation modeling (simultaneous estimation) correctly specifying the correlated

residual structure; CS = correct structural model specification (c0 path freely estimated); MS = structural

misspecification (c0 path constrained to 0). Boldfaced entries indicate absolute values of percent bias

. 10.
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but noteworthy effect of sample size in Simulation 2. Specifically, Croon FM was

somewhat more biased at lower Ns but this bias became negligible at higher Ns (500

and 1,000). For example, the indirect effects for this method fell above the 10% cut-

off when a was low (.7) across the N = 125 conditions. For all other sample sizes,

Table 6. Mean Square Error Ratios in Models Correctly Specifying the Unique Factor
Structure by Parameter and Simulation Condition, Simulation 2: N = 125.

Hoshino–Bentler Croon FM SEM

Path a b ab a b ab a b ab

Unique factor correlation = .1
a :7ð Þ

CS 1.00 1.00 1.00 1.09 0.86 0.87 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.09 0.62 0.58 1.27 1.58 2.26

a :8ð Þ
CS 1.00 1.00 1.00 1.02 0.94 0.94 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.02 0.76 0.69 1.32 1.44 2.02

a :9ð Þ
CS 1.00 1.00 1.00 1.02 0.97 0.98 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.02 0.90 0.86 1.05 1.22 1.55

Unique factor correlation = .3
a :7ð Þ

CS 1.00 1.00 1.00 1.15 0.85 0.83 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.15 0.63 0.58 1.28 1.54 2.17

a :8ð Þ
CS 1.00 1.00 1.00 1.06 0.94 0.91 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.06 0.76 0.69 1.25 1.44 2.04

a :9ð Þ
CS 1.00 1.00 1.00 1.02 0.97 0.99 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.02 0.90 0.86 1.05 1.23 1.57

Unique factor correlation = .5
a :7ð Þ

CS 1.00 1.00 1.00 1.07 0.78 0.71 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.07 0.61 0.55 1.26 1.54 2.09

a :8ð Þ
CS 1.00 1.00 1.00 1.06 0.94 0.95 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.06 0.75 0.68 1.22 1.45 2.12

a :9ð Þ
CS 1.00 1.00 1.00 1.00 0.98 0.97 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.00 0.90 0.86 1.10 1.24 1.59

Note. FSR = factor score regression; MSE = mean square error; Hoshino–Bentler indicates Hoshino and

Bentler’s (2013) FSR method; Croon FM = Croon’s method corrected for correlated uniquenesses at the

factor model level; SEM = structural equation modeling (simultaneous estimation), with correctly

specified unique factor structure; CS = correct structural model specification (c0 path freely estimated);

MS = structural misspecification (c0 path constrained to 0). All MSE ratios are divided by the MSE for

Croon’s method corrected for correlated uniquenesses at the measurement model level (Croon MM),

that is, MSEEstimator/MSECroon_MM.
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this method produced acceptable levels of bias, however (though the degree of bias

was still noteworthy at N = 250; see supplemental results [available online]).

In contrast, both Hoshino–Bentler and Croon MM exhibited minimal bias when

the entire model was correctly specified. It is worth noting that because these meth-

ods both employed the Bartlett estimator to estimate the latent factor covariances and

both employed equivalent corrections to the factor variances, the results for these two

methods are identical. Simultaneous SEM performed comparably to these methods

when both the measurement model and the structural model were correctly specified,

but HB, Croon FM, and Croon MM all outperformed simultaneous SEM when the

structural model was misspecified. This was particularly true under low and moderate

levels of reliability (.7 and .8) and remained true across all sample size conditions

(see supplemental results for details [available online]).

Finally, the vast majority of MSE ratios comparing Croon MM with HB and SEM

either approached or exceeded 1, indicating that FSR with correlated uniquenesses

performed either equivalently or superiorly in the majority of cases. Once again,

Croon MM exhibited lower MSEs in several cases, but this result should be qualified

by the higher levels of bias Croon FM displayed in the N = 125 and 250 conditions.

Although the lower MSE suggests that Croon FM may be more efficient, the higher

levels of bias observed in Table 5 suggest that this reduced sampling variability may

be centered on a biased estimate.

Simulation 2: Discussion. Like Simulation 1, Simulation 2 provided a clear pattern of

results. This simulation demonstrates that correct estimation of structural parameters

suffers when the measurement model unique factor structure is ignored. Furthermore,

simple steps can be taken to respecify the model in a manner that preserves the cor-

rect unique factor structure, using either simultaneous SEM or FSR. Finally, the

Croon FM, Croon MM, and Hoshino–Bentler methods outperformed standard simul-

taneous SEM methods when the structural model was misspecified (see also

Devlieger & Rosseel, 2017).

General Discussion

In the present research, we used Croon’s (2002) bias correction approach to derive

formulas for the case of across-factor correlated uniquenesses and explicated how

Croon’s original formulas may be employed in the case of within-factor correlated

uniquenesses. Additionally, we reported the results of two Monte Carlo simulations

comparing these methods’ performance with uncorrected regression and Bartlett

FSR, standard Croon FSR assuming conditional independence, and simultaneous

SEM estimation. Correctly specified simultaneous SEM estimation, Croon FM, and

Croon MM, incorporating correlated uniquenesses, exhibited strong performance in

our simulations. In line with previous studies (Devlieger et al., 2016; Devlieger &

Rosseel, 2017), Croon FSR outperformed simultaneous SEM estimation when the

structural model was misspecified.
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Although the estimation of correlated uniquenesses is often discouraged in psy-

chometric studies as a form of fishing for ways to improve fit (cf. Cole, Ciesla, &

Steiger, 2007), when the focus is on accurately estimating the structural parameters,

rather than the measurement model, our results suggest that the unique factor covar-

iance structure ought not be ignored. Our simulations clearly showed that ignoring

the measurement model covariance structure resulted in distorted estimates of key

structural parameters across a variety of conditions. This is especially true when the

primary goal is the assessment of indirect (mediational) effects, since these para-

meters quickly grew more biased than any other structural parameter in our

simulations.

Our simulations suggest several guidelines for researchers considering applying

these methods. If reliability is high (.9) or unique factor correlations low (.1), the

measurement model unique factor structure might be ignored with little consequence.

If reliability is lower (alpha or omega of .7-.8), the choice of how to model unique

factors becomes more urgent. Furthermore, ignoring within-factor correlated unique-

nesses risks attenuated structural regression coefficients, whereas ignoring across-

factor correlated uniquenesses risks inflated coefficients.

Though both Croon FM and Croon MM performed well in the majority of condi-

tions, our results suggest that when sample sizes are smaller (e.g., N = 125 or 250)

Croon MM may be somewhat more accurate. This was especially true when the fac-

tor models featured within-factor correlated uniquenesses. For this reason, we recom-

mend Croon MM when attempting to use FSR in small samples with correlated

uniquenesses.

The results of our first simulation suggest that across-factor uniquenesses are

more harmful to the extent that they are more numerous. Although bias resulted from

ignoring even one correlated uniqueness per factor, the bias was more severe when

there were two correlated uniquenesses per factor. Our simulations assessed only a

simple case in which there were four indicators per factor, but it is possible to (cau-

tiously) extrapolate to other scenarios. All else being equal, it seems reasonable to

expect that even one or two correlated uniquenesses might be harmful in factor mod-

els with fewer indicators (e.g., two-indicator or three-indicator factors in the context

of a larger structural model). Conversely, one or two correlated uniquenesses may

not disrupt estimation as severely in factor models with more indicators (e.g., 10 or

20). This suggests that, all else being equal, applied researchers should pay greater

heed to the issue of correlated uniquenesses in scenarios with fewer indicators and

more numerous unique variable covariances.

Our simulation results mirror our analytic derivations in showing that Hoshino

and Bentler’s (2013) method remains unbiased in the presence of within-factor corre-

lated residuals but becomes biased in the presence of across-factor correlated resi-

duals. Of course, correcting the HB method for this bias would be relatively simple.

In the spirit of the original method, one manner of accomplishing this would be to

use the covariances of the Bartlett factor scores to estimate the covariances between

all factors whose measurement models do not feature across-factor correlated
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uniquenesses but substitute the estimated factor covariances from the initial simulta-

neous SEM runs in place of the Bartlett covariances between any factors whose mea-

surement models feature across-factor correlated uniquenesses.

Our simulation results also suggest several possible areas for future research. First,

if correlated unique factor structures are to be taken seriously by substantive research-

ers, it will be important to develop reliable and user-friendly methods for correctly

identifying nonzero unique factor covariances. Because a model freely estimating all

such correlated uniquenesses can never be identified (cf. Kenny, 1979; Kenny et al.,

1998), alternative approaches must be used to diagnose the correct covariance struc-

ture. If the goal is to extract factor scores and conduct FSR, an intriguing possibility

would be to utilize unique factor score estimates from each measurement model of

interest11 to diagnose possible nonzero unique factor covariances. Given the potential

bias in estimated uniquenesses based on factor scores, however, it will be important

to assess the analytic properties of these estimators as well as to empirically test their

performance.12

Second, future research is needed to extend FSR methods to more complex factor

structures, such as hierarchical or bifactor models (Holzinger & Swineford, 1937;

McDonald, 1999; Schmid & Leiman, 1957), as well as more complex residual struc-

tures (cf. Singer & Willett, 2003, for a review of residual structures in longitudinal

models). Finally, as noted by others (Devlieger et al., 2016; Devlieger & Rosseel,

2017), before FSR can be widely implemented, a crucial area of future research will

necessarily involve the derivation of accurate standard errors for the path analytic

formulation (but see Devlieger et al., 2016, for a viable OLS regression-based stan-

dard error for FSR).

In sum, we believe that the present research makes an important contribution to

the literature on FSR methods by extending these methods to the case of correlated

uniquenesses. Since implementation of matrix-oriented bias correction formulas may

prove challenging for many applied researchers, it is our hope that software imple-

mentations of these methods (e.g., in lavaan; Rosseel, 2012) incorporate functionality

for implementing FSR with correlated unique factor structures in the future.

Appendix A

Deriving Croon’s Formulas With Correlated Across-Factor Uniquenesses at
the Individual Factor Model Level

In this appendix, we apply Croon’s (2002) method to derive FSR formulas for the

case of across-factor correlated uniquenesses at the level of each individual factor

model, following closely the derivation presented in Devlieger, Mayer, and Rosseel

(2016). Let j and h be exogenous and latent variables in a structural regression

model, measured by pX exogenous indicators x and pY endogenous indicators y. In

the simulations reported in the main article, pX = pY = 4. Let Fj and Fh denote the

factor scores for j and h, respectively. Then, Fj and Fh are defined by the following

equations:
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Fj = Ajx,

Fh = Ahy,
ðA1Þ

where Aj and Ah are factor scoring matrices—matrices of regression coefficients

predicting the latent factor scores from the observed items. The formulas for the cor-

rected variance of each factor score vector remain the same as in Equation (1) in the

main article. The task at hand is to solve for the covariance, cov Fj, Fh

� �
. By

Equation (A1), we may define

cov Fj, Fh

� �
= cov Ajx, Ahy

� �
= Ajcov x, yð ÞA0h, ðA2Þ

where the final expression follows from basic covariance algebra applied to matrices

and vectors. Define vectors x and y in standard fashion as

x = Lxj + d

y = Lyh + e,
ðA3Þ

where d and e represent unique factors loading onto x and y, respectively.

Substituting Equation (A3) into Equation (A2) yields

Ajcov x, yð ÞA0h = Ajcov Lxj + d, Lyh + e
� �

A0h: ðA4Þ

Repeatedly applying the sum rule for model-implied covariances (cf. Kenny, 1979,

for a review of covariance algebra rules), this expression becomes

= Aj Lxcov jhð ÞL0y + cov jeð Þ+ cov hdð Þ+ cov deð Þ
h i

A0h: ðA5Þ

So far, our derivation parallels that reported by Devlieger et al. (2016). At this

point, standard model assumptions would set cov jeð Þ = cov hdð Þ = cov deð Þ= 0. If

some covariances between the x and y uniquenesses are nonzero, however,

cov deð Þ 6¼ 0 and Equation (A5) becomes

= Aj Lxcov jhð ÞL0y + cov deð Þ
h i

A0h: ðA6Þ

Distributing the Aj and A0h matrices in this expression yields a final expression for

the factor score covariance:

cov Fj, Fh

� �
= AjLxcov jhð ÞL0yA0h + Ajcov deð ÞA0h: ðA7Þ

The uncorrected latent factor covariance, cov jhð Þ, can be obtained by algebrai-

cally rearranging Equation (A7). Subtracting the term Ajcov deð ÞA0h from the right-

hand side of Equation (A7) yields

cov Fj, Fh

� �
� Ajcov deð ÞA0h = AjLxcov jhð ÞL0yA0h = cov jhð ÞAjLxL0yA0h; ðA8Þ
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where the final identity follows from the fact that cov jhð Þ is a scalar for unidimen-

sional j and h. Since Aj, Lx, L0y, and A0h, are matrices with dimensions 13px, px31,

13py, and py31, respectively, the expression AjLxL0yA0h is a 13 1 scalar that can be

divided out of both sides of Equation (A8), yielding the corrected latent covariance

cov jhð Þ=
cov Fj, Fh

� �
� Ajcov deð ÞA0h

AjLxL0yA0h
: ðA9Þ

From Equation (A9) it becomes plain that the original Croon (2002) formula,

cov Fj, Fh

� �
= AjLxL0yA0h

� �
, overestimates the true covariance cov jhð Þ by a quantity

equal to Ajcov deð ÞA0h= AjLxL0yA0h

� �
when cov deð Þ 6¼ 0. That is,

cov Fj, Fh

� �
AjLxL0yA0h

= cov jhð Þ+
Ajcov deð ÞA0h
AjLxL0yA0h

: ðA10Þ

Thus, when the rightmost term in Equation (A10) goes to zero, Croon’s (2002)

original formula will be a consistent estimator of cov jhð Þ. But as elements of

cov deð Þ depart from zero, Croon’s original formula will result in an estimate of

cov jhð Þ that is biased by a quantity equal to
Ajcov deð ÞA0h
AjLxL0yA0h

. Applying the correction for-

mula in Equation (A9) instead, however, will result in a consistent estimator of

cov jhð Þ (cf. Hoshino & Bentler, 2013, Section 4.7.2).

Finally, it is important to note that cov deð Þ represents the px3 py matrix of covar-

iances between the x and y uniquenesses. For example, with four indicators, as in the

simulations reported in the main article, this covariance matrix would be

cov deð Þ=

sux1
uy1

sux1
uy2

sux1
uy3

sux1
uy4

sux2
uy1

sux2
uy2

sux2
uy3

sux2
uy4

sux3
uy1

sux3
uy2

sux3
uy3

sux3
uy4

sux4
uy1

sux4
uy2

sux4
uy3

sux4
uy4

2
664

3
775:

Appendix B

Deriving Croon’s Formulas With Correlated Across-Factor Uniquenesses at
the (Connected) Measurement Model Level

In this appendix, we apply Croon’s (2002) method to derive FSR formulas for the

case of across-factor correlated uniquenesses at the level of the connected measure-

ment model. Let hM1
be a vector of m1 latent variables in the first connected mea-

surement model under consideration. For example, in the model of Figure 1E

hM1
=

j

h

� �
and m1 = 2. Furthermore, let there be pM1

measured indicators in
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measurement model M1, contained in a pM1
3N vector yM1

. Let FhM1
denote the fac-

tor scores extracted from measurement model M1. Then, FhM1
may be defined by the

following equation:

FhM1
= AM1

yM1
, ðB1Þ

where AM1
is a m13pM1

factor scoring matrix. The vector yM1
may be written using

the usual definition as

yM1
= LM1

hM1
+ uM1

, ðB2Þ

where uM1
is a pM1

3N vector of unique factor scores with pM1
3pM1

covariance

matrix ΘM1
. In the presence of correlated unique factors, some off-diagonal elements

of ΘM1
will be nonzero. Substituting Equation (B2) for yM1

in Equation (B1) yields

FhM1
= AM1

LM1
hM1

+ uM1

� �
= AM1

LM1
hM1

+ AM1
uM1

:
ðB3Þ

Using Croon’s (2002) method, our first task is to derive the expected covariance

matrix of the factor scores from the m latent factors in measurement model M1and

then correct this expected covariance for bias. The expected covariance of FhM1
with

itself may be written:

cov FhM1
, FhM1

� �
= cov AM1

LM1
hM1

+ AM1
uM1

, AM1
LM1

hM1
+ AM1

uM1

� �
: ðB4Þ

Once again, repeatedly applying the sum rule for model-implied covariances (cf.

Kenny, 1979), this expression becomes

cov AM1
LM1

hM1
, AM1

LM1
hM1

� �
+ cov AM1

LM1
hM1

, AM1
uM1

� �
+ cov AM1

uM1
, AM1

LM1
hM1

� �
+ cov AM1

uM1
, AM1

uM1
ð Þ:

ðB5Þ

Taking matrices of constants outside their respective covariances yields:

AM1
LM1

cov hM1
, hM1

� �
L0M1

A0M1
+ AM1

LM1
cov hM1

, uM1

� �
+ AM1

cov uM1
, hM1

� �
L0M1

A0M1
+ AM1

cov uM1
, uM1

ð ÞA0M1
:

ðB6Þ

Recognizing that, by definition cov hM1
, uM1

� �
= cov uM1

, hM1

� �
= 0 and

cov uM1
, uM1

ð Þ= ΘM1
, we can rewrite the final identity as

cov FhM1
, FhM1

� �
= AM1

LM1
cov hM1

, hM1

� �
L0M1

A0M1
+ AM1

ΘM1
A0M1

: ðB7Þ

To correct for bias, we simply solve algebraically for cov hM1
, hM1

� �
:
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cov hM1
, hM1

� �
= AM1

LM1
ð Þ�1

cov FhM1
, FhM1

� �
� AM1

ΘM1
A0M1

h i
L0M1

A0M1

� ��1

:

ðB8Þ

Equation (B8) clearly depends on the nonsingularity of the matrix product

AM1
LM1

and its transpose. Although this matrix product will often be nonsingular

using the regression factor score estimator, the Bartlett estimator exhibits the desir-

able property that AM1
LM1

= I. Therefore, to completely avoid any potential issues

with singularity of AM1
LM1

, we recommend using the Bartlett factor score estimator,

in which case Equation (B8) simplifies to

cov hM1
, hM1

� �
= cov FhM1

, FhM1

� �
� AM1

ΘM1
A0M1

: ðB9Þ

Equations (B8) and (B9) represent the measurement model equations applied in

both simulations reported in the article. For the sake of completeness, we derive one

additional expectation: the expected covariance between one connected measurement

model, M1, and a second connected measurement model, M2. For example, imagine

that a researcher expects or diagnoses a connected measurement model, M1, with

across-factor correlated uniquenesses, such as the model depicted in Figure 1E and

wishes to correlate this measurement model with a second measurement model, M2,

that is only connected to M1 via the latent factor covariances. That is, there may be

unique factor covariances within each measurement model, M1 and M2, but there are

no unique factor covariances across measurement models.

Let hM2
be a vector of m2 latent variables in the second measurement model under

consideration and let there be pM2
measured indicators in measurement model M2,

contained in a pM2
3N vector yM2

. Let FhM2
denote the factor scores extracted from

measurement model M2. Then the expected covariance between FhM1
and FhM2

may

be defined:

cov FhM1
, FhM2

� �
= cov AM1

LM1
hM1

+ AM1
uM1

, AM2
LM2

hM2
+ AM2

uM2

� �
: ðB10Þ

Applying the rules of covariance algebra for matrices, as before, and simplifying

yields the expression:

AM1
LM1

cov hM1
, hM2

� �
L0M2

A0M2
+ AM1

LM1
cov hM1

, uM2

� �
A0M2

+ AM1
cov uM1

, hM2

� �
L0M2

A0M2
+ AM1

cov uM1
, uM2

ð ÞAM2
:

ðB11Þ

If M1and M2 are truly connected by only the latent factor covariances—that is,

if there are no across-measurement-model correlated uniquenesses—then

cov uM1
, uM2

ð Þ= 0. Furthermore, by definition cov hM1
, uM2

� �
= cov uM1

, hM2

� �
= 0.

Thus, Equation (B11) simplifies to

cov FhM1
, FhM2

� �
= AM1

LM1
cov hM1

, hM2

� �
L0M2

A0M2
: ðB12Þ
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Solving for cov hM1
, hM2

� �
yields

cov hM1
, hM2

� �
= AM1

LM1
ð Þ�1

cov FhM1
, FhM2

� �
L0M2

A0M2

� ��1

: ðB13Þ

As before, however, if Bartlett estimation is used for both FhM1
and FhM2

, then

AM1
LM1

= L0M2
A0M2

= I and Equation (B13) reduces to

cov FhM1
, FhM2

� �
= cov hM1

, hM2

� �
: ðB14Þ

Thus, as observed by Hoshino and Bentler (2013), the covariances among factor

scores estimated using the Bartlett estimator are consistent estimates of the covar-

iances among the true latent variables.
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Notes

1. Although this article focuses primarily on the path analytic formulation, we use the acro-

nym FSR interchangeably when referring to either regression or path analysis

implementations.

2. Because the focus of this article is on instances of nonzero unique factor correlations, we

assume that residual variation in the indicators is not strictly random (stochastic) but,

rather, represents additional latent causes besides the common factor (such as the influ-

ence of one or more specific factors; cf. Bentler, 2017). Therefore, we prefer the terms

unique factors and uniquenesses to the terms measurement residuals and error through-

out the text.

3. We use the term bias-corrected to refer to the strategy of eliminating the systematic bias

that would result from using the observed, uncorrected variances and covariances of the

indeterminate factor scores to approximate the true population variances and covariances

of the latent variables. However, because quantities such as Fj, Aj, Lx, and Θd are ulti-

mately estimated using data from one’s finite sample, Croon’s formulas (e.g., Equations

[1] and [2], under conditional independence) are not unbiased estimators in the technical
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sense, but rather consistent estimators that will more accurately approximate their respec-

tive population quantities as N ! ‘ (cf. Hoshino & Bentler, 2013, Section 4.7.2 for a for-

mal treatment of this idea).

4. Standardized or normalized residuals that exceed absolute values of 1.96 are typically

considered to exhibit significant local misfit (Bollen, 1989; Muthén, 2007). However, our

recent theoretical simulation research and practical experience leads us to recommend

considering any such residual exceeding an absolute value of 1 to be potentially proble-

matic. This is particularly important when sample sizes are small (e.g., N = 100).

5. The suggestion to fix factor loadings and unique factor variances to their Step 1 estimates

serves to maximize the correspondence between the parameter estimates from the initial

separate factor models and the estimates of cov deð Þ obtained from the subsequent simul-

taneous model. However, under correct specification, freely estimating all parameters at

Step 2 should result in an estimate of cov deð Þ that is nearly identical to the estimates

obtained with Step 1 quantities fixed at their previous values.

6. This assumes that the correct unique factor correlation structure has been identified in

advance. As noted in the general discussion, however, the issue of how to reliably discern

the true unique factor correlation structure is an important issue for future research.

7. We can easily see that this is true in the model of Figure 1H. Let Aj and Ah represent

the row vectors of nonzero factor scoring coefficients and let Θj and Θh represent the

variance–covariance matrices of the residuals estimated from the j and h measurement

submodels in the larger connected model. Then, with no nonzero covariances among the

across-factor uniquenesses, AM1Bartlett
ΘM1

A0M1Bartlett
can be represented by the partitioned

matrix product:
Aj 0

0 Ah

� �
Θj 0

0 Θh

� �
A0j 0

0 A0h

� �
=

AjΘjA0j 0

0 AhΘhA0h

� �
.

8. In line with Hoshino and Bentler (2013, section 4.4.2), because all variables in our simu-

lations were continuous and normal and because we were only assessing parameter bias

and efficiency, not standard error bias or statistical inference, we used the Hoshino–

Bentler estimator of the population covariance matrix as input for these path analyses,

but fit these models using standard ML estimation rather than generalized least squares,

since parameter estimation will be equivalent in this case.

9. The number of convergence errors and inadmissible solutions was extremely small (less

than 2%) across conditions, so in the majority of cells NIterComplete = 1000.

10. We note that although we used the same Cronbach’s alpha–based formulas as Simulation

1 to generate the standardized factor loadings and residual variance parameters and we,

additionally, retained the same labels in the tables of results for Simulation 2, in the pres-

ence of within-factor correlated uniquenesses, the observed estimates of alpha would

somewhat differ from .7, .8, or .9, assuming alpha was calculated in the usual way

(Bentler, 2017; Maxwell, 1968). We do not feel this minor detail alters our broad conclu-

sion that bias appears worse at lower level than at higher levels of reliability.

11. Computed, for example, as ûx = x�LFj and ûy = y�LFh, where ûx and ûy are unique

factor score estimates for the X and Y factors, respectively.

12. Indeed, this topic represents an active area of our own ongoing research.
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