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Abstract

Recently, quantitative researchers have shown increased interest in two-step factor
score regression (FSR) approaches to structural model estimation. A particularly pro-
mising approach proposed by Croon involves first extracting factor scores for each
latent factor in a larger model, then correcting the variance—covariance matrix of the
factor scores for bias before using this matrix as input data in a subsequent regression
analysis or path model. Although not immediately obvious, Croon’s bias correction
formulas are predicated upon the standard assumption of conditionally independent
uniquenesses (measurement residuals). To our knowledge, the method’s performance
has never been evaluated under conditions in which this assumption is violated. In the
present research, we rederive Croon’s formulas for the case of correlated uniqueness
and present the results of two Monte Carlo simulations comparing the method’s per-
formance with standard methods when the unique factors were correlated in the pop-
ulation model. In our simulations, our proposed Croon FSR approaches outperformed
methods that blindly assumed conditionally independent uniquenesses (e.g., uncor-
rected FSR, traditional Croon FSR, structural equation modeling [SEM] using standard
specification), performed comparably to a correctly specified SEM, and outperformed
SEMs that correctly specified the unique factor covariances but misspecified the struc-
tural model. We discuss the implications of our results for substantive researchers.
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Structural equation modeling (SEM) is a powerful, flexible modeling framework that
allows for the simultaneous estimation of (a) postulated latent constructs, via a mea-
surement model and (b) postulated causal relations among them, via a structural
regression model (cf. Bollen, 1989; Hayduk, 1987; Joreskog & Sorbom, 1993; Kline,
2016). The ability to estimate measurement and structural parameters simultaneously
is as much a weakness as a strength, however, as misspecification in any part of an
SEM may result in bias that proliferates throughout the system of equations, render-
ing all parameter estimates questionable. For example, misspecification in the struc-
tural portion of a model, such as omitting a nonzero path or incorrectly assuming
conditionally independent disturbances, can cause parameter estimates in the mea-
surement model to shift, obscuring the nature and meaning of the latent constructs
being estimated (Devlieger & Rosseel, 2017; Hoshino & Bentler, 2013).
Alternatively, misspecification in any part of the model (measurement or structural)
risks injecting bias into key structural regression coefficients capturing the relations
between latent constructs. This outcome is particularly harmful, because structural
relationships are often of greatest interest to empirical researchers (cf. Devlieger,
Mayer, & Rosseel, 2016; Devlieger & Rosseel, 2017; Hancock & Mueller, 2011;
Hoshino & Bentler, 2013; Lu, Kwan, Thomas, & Cedzynski, 2011). Perhaps more
troubling, such misspecifications are not always easily detected using traditional
methods (Hancock & Mueller, 2011).

As a potential solution to this problem, a small but growing group of quantitative
researchers have begun to recommend switching from simultaneous to multistage
estimation procedures such as factor score regression (FSR; Croon, 2002; Devlieger
et al., 2016; Hoshino & Bentler, 2013; Lu et al., 2011; Skrondal & Laake, 2001) and
factor score path analysis' (Devlieger & Rosseel, 2017). In brief, FSR involves two
steps: (a) first, estimate the measurement model for each latent factor in a structural
regression model separately, extracting factor scores for each; (b) use these factor
scores as input data in a subsequent ordinary least squares (OLS) regression or path
analysis.

Because factor scores are indeterminate and, therefore, not fully reliable (cf.
Grice, 2001; Steiger & Schonemann, 1978), extra care must be taken to avoid bias
when treating factor scores as data. Recently, quantitative researchers have suggested
two promising approaches to address possible bias when performing FSR. A first
approach is to strategically extract factor scores using estimation methods designed
to avoid injecting bias in the first place (e.g., using regression factor score estimation
for exogenous and Bartlett factor score estimation for endogenous latent variables in
the bias-avoiding approach of Skrondal & Laake, 2001). A second approach is to
first extract factor scores for all latent constructs using a single estimation method,
and then correct the variances and covariances of the factors for bias using analytic
formulas (Croon, 2002; cf. Hoshino & Bentler, 2013). Once these variances and cov-
ariance have been corrected, they may be used either as sufficient statistics for com-
puting regression coefficients (Croon, 2002; Devlieger et al., 2016; Lu et al., 2011)
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or as covariance-matrix input for a subsequent path analysis (Devlieger & Rosseel,
2017).

A series of recent simulation studies have shown that Croon’s (2002) bias-cor-
recting FSR approach outperforms the bias-avoiding approach of Skrondal and
Laake (2001) under a variety of circumstances (Devlieger et al., 2016; Lu et al.,
2011). For example, the bias-avoiding method suffers from attenuated standard errors
and its unbiasedness breaks down when coefficients are standardized (Devlieger et
al., 2016). Perhaps more crucially, because the bias-avoiding method hinges on using
different factor score extraction methods for predictors and outcomes in an analysis,
this method cannot easily be extended to the path analytic framework, in which a
construct’s role may shift from outcome to predictor in different parts of the model
(e.g., a mediating variable that is both predicted by X and predictive of Y; Devlieger
& Rosseel, 2017).

For these reasons, in the present article we focus our attention on Croon’s (2002)
FSR approach, using his analytic method to derive formulas that accommodate corre-
lated uniquenesses.” In the next section, we briefly review the standard Croon formu-
las, derived under the assumption of conditionally independent unique factors. Then,
we use Croon’s bias-correcting strategy to rederive these formulas under scenarios
where unique factors may be correlated. Finally, we briefly compare the rederived
Croon formulas with another cutting edge FSR approach proposed by Hoshino and
Bentler (2013).

Review of Croon’s FSR Formulas

As a basis for introducing Croon’s (2002) bias-correction formulas, assume a
researcher is interested in fitting a structural regression model in which an exogenous
latent factor, &, predicts an endogenous latent factor, n, with four indicators each.
Such a scenario is depicted in Figure 1A. Note that in this panel, all unique factors
are conditionally independent after the indicators’ prediction by the latent factor.
One strategy for fitting this structural regression model would be to use simultaneous
SEM estimation. FSR takes a different approach. At an initial step, each measure-
ment model is fit separately, as depicted in Figure 1B and factor scores are extracted
for each. That is, the measurement model for £ and the measurement model for 7 are
fit in separate runs, and factor scores are extracted for each individual factor model,
using either the regression (Thurstone, 1935) or Bartlett estimator (Bartlett, 1937).
The final goal is to conduct the structural regression using the factor scores, Fz and
Fy, as depicted in Figure 1C.

As stated above, due to factor indeterminacy, simply conducting an FSR using the
raw factor scores would result in a biased structural regression coefficient, y (Croon,
2002; Devlieger et al., 2016; Hoshino & Bentler, 2013; Lu et al., 2011). To mitigate
this bias, Croon (2002) derived bias-correction formulas for the factor scores’ var-
iances and covariance (for reviews and derivations, see Croon, 2002; Devlieger et al.,
2016; Luetal., 2011).
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Croon’s (2002) FSR
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Figure 1. (A)-(C) visually depict factor score regression (FSR) estimation under conditional
independence. (D)-(F) depict FSR under nonzero across-factor correlated uniquenesses. (G)-
(1) depict FSR under nonzero within-factor correlated uniquenesses.

Let p, and p, denote the number of indicators in the X and Y measurement mod-
els, respectively (such that in Figure 1A, p,=p,=4), and let n, and 7,, be unidi-
mensional, as in Figure 1A. By Croon’s formulas, a bias-corrected® estimate of the
latent factor variance is given by

var(Ff) — A§®5A,§

1
AcAALAL M

var(§) =

where A¢ is a 1 Xp, factor scoring matrix of regression coefficients used to predict
factor scores from the observed indicators, Ay is a p,X1 factor loading matrix
obtained from an individual factor model as in the left-hand side of Figure 1B, ®j is
a px Xp, variance—covariance matrix of the unique factor scores 8, and var(Fy) is the
observed variance of the extracted factor scores. By assumption in Croon’s original
formulas, the unique factors are uncorrelated and ®@s is a diagonal matrix with
unique factor variances on the diagonal and zeros elsewhere. We note that although
this formula is written in terms of the exogenous factor, &, the same formula applies
to the variance of the endogenous factor, 7, if £ and m are interchanged and if the
exogenous matrix @; is replaced by the endogenous matrix ®,, of the endogenous
uniqunesses, &.

Similarly, a bias-corrected estimate of the covariance between & and 7 is obtained
by the formula:
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cov(Fg,Fn)

cov(én) = =T (2)
A:AALA]

where A, A, and F are defined as above, with subscripts indicating which factor these
quantities refer to. Once these corrected estimates are obtained, they can either be
used to construct the structural regression coefficient using standard OLS formulas,
as

_ cov(én) _ cov(Fe, Fy) (M@ —Ag%Aé)_l, (3)

var(€)  AgAALA', AALALA;

Or they can be used to construct a variance—covariance matrix that may be used as
summary data input in a subsequent path analysis:

_ | var(§) cov(ém)
Ser= | oy e @

where var(¢), var(n), and cov(én), are defined using Equations (1) and (2).

The Issue of Correlated Uniquenesses

In simulation studies, Croon’s method outperformed its competitors under a variety
of conditions and sample sizes (Devlieger et al., 2016; Devlieger & Rosseel, 2017;
Lu et al., 2011). Importantly, FSR appears more robust than simultaneous SEM to
structural model misspecifications (Devlieger & Rosseel, 2017). However, the popu-
lation models in these studies have always assumed conditionally independent unique
factors. What if unique factors are not independent? In the following sections, we first
address the issue of diagnosing nonzero unique factor covariances before turning to
the issue of incorporating unique factor covariances into FSR models.

Diagnosing and Including Correlated Uniquenesses. Before unique factor covariances
can be addressed using SEM or FSR, they first have to be known and correctly speci-
fied in one’s model. For example, nonzero unique factor covariances might be speci-
fied a priori on the basis of theory, or suspected based on research design
considerations (as when residuals may be autocorrelated over time in longitudinal
studies, cf. Bollen, 1980; Rubio & Gillespie, 1995; Singer & Willett, 2003). Absent
an a priori theory dictating the structure of the unique factor covariance matrix, how-
ever, analysts must resort to exploratory searches to uncover possible nonzero unique
covariances.

If the unique factors were observed variables in one’s data set, it would be a tri-
vial matter to simply compute the complete covariance matrix of the uniquenesses,
examining which seem to depart from zero. Because both the common and unique
factors are latent rather than observed, however, estimating the full unique factor
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covariance matrix is impossible in practice. This is because simultaneous SEM esti-
mation requires the specification of at least one across-factor item pair whose covar-
iation is caused entirely by the covariance between the common factors. That is, in a
simultaneous SEM model like the one depicted Figure 1D, the structural regression
coefficient, vy, is not algebraically identified unless at least one across-factor corre-
lated uniqueness is fixed to zero. Analogous rules hold for within-factor correlated
uniquenesses (Kenny, Kashy, & Bolger, 1998).

For these reasons, nonzero correlated uniquenesses must typically be diagnosed
indirectly through the inspection of either standardized covariance residuals or modi-
fication indices when standard conditional independence models return substandard
model fit (Bollen, 1989; McDonald, 1999; McDonald & Ho, 2002; Saris, Satorra, &
Sorbom, 1987; Sorbom, 1989). Because it is well known that sequential specification
searches using modification indices generally do not recover the correct population
model (MacCallum, 1986; MacCallum, Roznowski, & Necowitz, 1992), we prefer
the inspection of standardized (or normalized) covariance residuals.

Although a detailed treatment of this topic is far beyond the scope of the present
article, we provide a brief summary here. For item pairs that load on the same factor,
larger® positive standardized (or normalized) covariance residuals indicate item pairs
whose sample covariances far exceed the covariances implied by the conditional
independence model. For item pairs that load on different factors, standardized (or
normalized) covariance residuals with larger absolute values that track in the same
direction as the covariance between the latent factors indicate item pairs whose sam-
ple covariances exceed in absolute value the covariances implied by the conditional
independence model. In either case, when the absolute value of the sample covar-
iance between a pair of items far exceeds the absolute value of the model-implied
covariance under conditional independence, this suggests that the items in question
share additional covariation above and beyond that predicted by the common factor.
As such, nonzero unique factor covariances are particularly plausible for these item
pairs.

As the preceding discussion implies, unique factors may be correlated either with
(a) other unique factors loading on indicators of a different common factor in a larger
model (across-factor correlated uniquenesses) or (b) other unique factors loading on
indicators of the same common factor (within-factor correlated uniquenesses). The
next two sections use Croon’s analytic approach to derive formulas that apply to each
of these scenarios, in turn.

Across-Factor Correlated Uniquenesses. Correlated unique factors occur whenever non-
zero covariation between two or more indicators remains even after their prediction
by a common factor. Such residual covariation may result from a variety of causes,
such as the mutual influence of both unique factors by a second common factor in a
bifactor model (cf. Gerbing & Anderson, 1984). Perhaps more interestingly, it is pos-
sible that the specific factors that influence items tapping different constructs may
correlate. Though the decomposition of item variance into common factor variance,
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specific factor variance, and error variance is as old as factor analysis itself (Crocker
& Algina, 2008; Guttman, 1945; McDonald, 1999; Spearman, 1904; Thurstone,
1935, 1947), the implications of specific factors have largely been ignored, and have
only recently been the subject of renewed interest in the SEM literature (cf. Bentler,
2017, for a recent discussion of specific factors).

As an example, consider loneliness and depression, which have been well estab-
lished in the literature as correlated-yet-distinct constructs (Cacioppo, Hawkley, &
Berntson, 2003; Hawkley et al., 2008; Russell, Peplau, & Cutrona, 1980). Imagine,
further, three items: ‘I feel alone,” from a loneliness scale, as well as ‘I feel hope-
less,” and ‘‘sometimes it is hard to get out of bed in the morning,” both from a
depression scale. It seems reasonable to expect that hopelessness and lethargy (amo-
tivation) are both mutually caused by a latent depression factor. But what if there is
a stronger correlation between feelings of hopelessness and feelings of loneliness
than between feelings of loneliness and feelings of lethargy? If this stronger correla-
tion results from the specific aspects of these items, rather than the strength of the
relationship between these items and their respective common factors, a unique fac-
tor correlation may be at play.

Figure 1D depicts nonzero covariances between the first indicators and the third
indicators on each common factor in our two-factor structural regression model.
Assume that the structural regression coefficient, vy, is the parameter of greatest inter-
est in the model. That is, our hypothetical researcher is not conducting a psycho-
metric analysis of the four-item X and Y scales but, rather, is primarily interested in
the unbiased, error-free structural regression between & and 7. Additionally, assume
that the unique factor covariances are positive rather than negative, as in the loneli-
ness and depression example above.

What would happen to the estimate of y if the researcher ignored the across-factor
correlated uniquenesses and simply fit the conditional independence model of Figure
1A using simultaneous SEM estimation? In the conditional independence model of
Figure 1A, the model-implied covariance between two items loading on different
common factors is cov(X;, ¥;) =Ax,yAy,. Absent additional information, any of these
three parameters—A;, , or Ay—could be adjusted in order to fit a larger covariance
between items X; and Y.

However, in addition to fitting the covariances between items loading on separate
factors, the factor loadings must also minimize misfit in modeling the model-implied
covariances between items loading on the same factor. Assuming standardized fac-
tors, the model-implied covariance between any two items loading on the same fac-
tor is cov(X,—X_',—) =AxAy, for & and cov(Y,—Y,—) =AyAy, for m, respectively. Thus, the
estimated factor loadings have two types of covariances to fit—those between items
loading on the same factor and those between items loading on separate factors—
whereas the structural regression coefficient needs only fit the covariances between
items loading on different factors. For this reason, the estimated factor loadings have
more limited latitude to shift if they are to minimize misfit across all observed covar-
iances in which they are expected to play a role.
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If Figure 1D is the true model, then, ignoring the nonzero across-factor correlated
uniquenesses may result in an inflated structural coefficient, vy. If the estimated factor
loadings, Ay, and Ay, are close to their true values, the structural regression coeffi-
cient, vy, will necessarily need to be inflated in order to account for the positive unique
factor covariance that is left unmodeled. More precisely, the estimate of y will have
to split the difference between item pairs with larger observed covariances, such as
X1 and Y; or X3 and Y3, and item pairs with smaller observed covariances, such as X,
and Y, in order to minimize the overall model misfit. All else being equal, the larger
and more numerous the (positive) unique factor covariances, the more inflated the
estimate of y can be expected to become.

Alternatively, what would happen to the estimate of vy if a researcher applied
Croon’s (2002) original formulas, assuming conditionally independent uniquenesses?
At first glance, the Croon method depicted in Figure 1A-C may appear robust to such
misspecification. After all, if the within-factor uniquenesses are, in fact, conditionally
independent and if each factor model is extracted separately, each factor model’s
parameters should be estimated accurately. As such, it stands to reason that FSR may
circumvent the usual issues that might result from misspecification of the across-
factor uniquenesses.

Unfortunately, this intuition turns out to be incorrect. As formally derived in
Appendix A, Croon’s original formulas were predicated upon an assumption of con-
ditionally independent uniquenesses, both within- and across-factors. In a model like
Figure 1D, the formula for bias-corrected factor variances in Equation (1) once again
remains accurate. In the presence of across-factor correlated uniquenesses, however,
Equation (2), for estimating cov(£, ), is no longer accurate. As shown in Appendix
A, if assuming the standard models for the X and Y indicators, respectively:

Xx=A+6
and (5)
y= Ay77+ 89

where 6 contains the X model unique factors and ¢ contains ¥ model unique factors,
the unbiased estimate of cov(¢&, 17) becomes

cov(Fe, Fy) — Agcov(Be)A

cov(én)= AAA A ) (6)
X0y

where cov(0g) is a p,Xp, covariance matrix of the X and Y uniquenesses (see
Appendix A for further details). Comparing Equation (6) with Equation (2), it is clear
that Equation (2) overestimates the true common factor covariance by a quantity
Agcov(Be)A
AgAxA’yA%

The necessity of accounting for the covariances in cov(8¢) suggests that an initial,
simultaneous model must be estimated, even if FSR is to be undertaken as a primary
method of analysis. With this result in mind, Croon’s formulas can be rederived to

equal to (see Appendix A).
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appropriately account for nonzero cov(d¢) using either of two strategies. A first strat-
egy retains Croon’s original approach of extracting factor scores from each individual
factor model, using an estimate of cov(d¢) from a simultaneous run in the adjustment
term in the formula above. We term this approach Factor Model Croon.

A second strategy applies Croon’s bias-correction method at the level of each con-
nected measurement model, rather than each individual factor model. In the present
context, a connected measurement model refers to a measurement model with >2
latent factors connected by across-factor correlated uniquenesses. In this approach,
factor scores are estimated and extracted for multiple factors at once in a simulta-
neous model such as the model of Figure 1E. Subsequently, the variance—covariance
matrix of the factor scores is corrected for bias resulting from nonzero cov(dg). We
term this approach Measurement Model Croon. The following sections describe each
of these approaches, in turn, and detailed derivations of both approaches are reported
in Appendices A and B, respectively.

Factor model Croon. Arguably the most direct application of Croon’s (2002)
method to structural regression models featuring across-factor correlated residuals
would be to retain the factor-model-by-factor-model nature of the original Croon
approach, incorporating an estimate of cov(ég) from a simultaneous model in
Equation (6). In line with this strategy, we propose the following variant of Croon’s
(2002) FSR method for the case of across-factor correlated uniquenesses:

1. First, estimate separate factor models as in Figure 1B. Extract factor scores
for each, as well as factor loading matrices Ay and Ay, and unique factor
variance—covariance matrices for each separate factor, @y and @y. In the
presence of nonzero within-factor correlated uniquenesses, the specification
of Figure 1H may be used instead.

2. Estimate the simultaneous model of Figure 1E, fixing the parameters of each
factor model to their estimates from Step 1.°> As such, the only estimated
parameters should be the covariance(s) between the latent factors, as well as
any nonzero unique factor covariances.® Extract the unique factor variance—
covariance matrix ®. Subset this matrix to obtain the submatrix of covar-
iances between & and &, cov(8¢).

3. Correct the factor score variances and covariances using the quantities
obtained in Steps 1 and 2, via Equations (1) and (6).

4. Run the FSR model, as depicted in Figure 11.

Based on the analytic derivations in Appendix A, this method should serve to cor-
rect Croon’s (2002) original formulas for bias in the presence of across-factor corre-
lated uniquenesses, yielding consistent estimates of the true factor covariances.

Measurement model Croon. A second strategy applies Croon’s bias-correction
method at the level of the entire connected measurement model. Let M; refer to a
connected measurement model, such as the model of Figure 1E. Although we focus
here on the case of a single measurement model, the subscript 1 implies that there
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may be more than one connected measurement model in a larger SEM. Let m,,, be a
vector of 7, latent variables in the measurement model and let F,,, - denote the fac-

tor scores extracted from measurement model M. In the model of Figure 1E, m; =2,
Ny, would consist of latent factors £ and 7, and Fu, would contain factor score

estimates corresponding to these latent variables, extracted simultaneously from the
Fe
F

n
Appendix B, the expected variance—covariance matrix of the factor scores, Fay, s

connected measurement model. That is, m,,, = [f]] and Fy, = [ ] . As derived in

may be written as
COV<F’0Ml > F"IMl ) :AMIAMlcOV(an >N, )A;l/llA;l/h +AM1 ®M1A;lfll ' (7)

Solving algebraically for the variance—covariance matrix of the true latent factors,
cov(Myyg,» My, ) yields

-1

cov(My, My, ) = (Apr, Apg,) ™! {cov(Fan,F,,Ml) — Ay, ®M1A§u]} (A;VIIAjM]) . (8)

Although in principle this formula can be used regardless of which factor score
estimator is employed (e.g., regression vs. Bartlett) so long as the matrix product
Ay, Ay, and its transpose are nonsingular, the Bartlett factor score estimator
(Bartlett, 1937) features the desirable property that Ay, Ay, =1, circumventing any
potential issues with matrix inversion. For this reason, we recommend employing
Bartlett estimation when conducting Measurement Model Croon. As noted in
Appendix B, when Bartlett estimation is used, Equation (8) reduces to

cov(nM] , an) =cov (le Fa, ) — Ay, ®M1A§m ) 9)

In scenarios involving only a single connected measurement model, such as the
example of Figure 1D and E and the template models featured in our simulations, this
formula is all that is required to obtain a corrected covariance matrix of all latent fac-
tors in the model. Although not our main focus, we note that Appendix B contains
additional formulas for computing the corrected covariance matrix between two con-
nected measurement models, M and M,. In this way, the formulas in Appendix B
allow researchers to use Croon’s method for models even more complex than those
featured here.

Within-Factor Correlated Uniquenesses. Nonzero covariances may also occur between
unique factors that load on items tapping the same construct. Once again, it is possi-
ble that such unique factor covariation is due to the unique factors’ mutual causation
by a second factor or to the existence of correlated specific factors that influence
both items. Whatever the case may be, suppose a researcher is interested in fitting
the same structural regression between exogenous ¢ and endogenous 7, but the true
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unique factor structure is as depicted in Figure 1G. Assume, once again, that the
researcher’s primary goal is to accurately estimate the structural regression coeffi-
cient, 7.

What would happen to the estimate of the key structural coefficient, -y, if a unique
factor structure like the one depicted in Figure 1G was ignored? If a researcher used
simultaneous SEM estimation to fit the model in Figure 1A, assuming conditionally
independent uniquenesses, the factor loadings on X; and X, would be inflated to
account for the larger covariance between these two items, some of which is actually
due to unique factor covariance. The same would be true of the factor loadings on
items Y7 and Y,. As a result, the estimate of -y that best fits covariances between
items with inflated loadings will be smaller than its true value in the population.

For example, let Ay, and Ay, represent the factor loadings for the first X and Y indi-
cators, respectively. The model-implied covariance between X; and Y; in the model
of Figure 1A is Cov(Xy, Y1) =Ax, YAy,. If Ay, and Ay, are inflated due to a failure to
correctly account for the unique factor covariation in the true population model of
Figure 1G, however, the estimate of y will necessarily have to be smaller in order to
fit the observed covariance. Similarly, an FSR analysis using Croon’s (2002) formu-
las from Equations (1) and (2) would result in factor loading matrices, Ay and Ay
with inflated entries, resulting in a similarly deflated estimate ofy.

Luckily, using Croon’s original formulas in the case of within-factor correlated
uniquenesses involves only a simple respecification of the initial factor models from
which factor scores are extracted. Instead of fitting each measurement model in a
standard manner, assuming conditionally independent uniquenesses, one simply fits
each factor model including the correlated unique factors, as depicted in Figure 1H.
As a result, the Ay and Ay matrices from Equations (1) and (2) will be correctly esti-
mated. Furthermore, the unique factor covariance matrices, ®, from each factor
model will contain some number of nonzero off-diagonal elements (1 each, in the
models of Figure 1H). After applying formulas (1) and (2) using these correctly esti-
mated quantities, an FSR analysis may be run, as usual, as depicted in Figure 11.

Alternatively, though not required to estimate within-factor correlated unique-
nesses, the Measurement Model Croon formulas described previously may just
as easily be applied. For example, the entire model of Figure 1H may be fit simulta-
neously (including the factor covariance, represented by a dotted line) and the
bias-corrected variance covariance matrix of & and 1 may be computed from the
Bartlett-extracted factor scores using Equation (9).

Hoshino and Bentler’s (2013) Alternative FSR Approach

Although Croon’s (2002) FSR method has attracted recent attention, it is important
to mention an alternative approach proposed by Hoshino and Bentler (2013). These
authors correctly noted that, under standard conditions, the Bartlett factor score esti-
mator (Bartlett, 1937) is a consistent estimator of the true population covariances
among the latent factors (cf. Hoshino & Bentler, 2013, section 4.7.2). For example,
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under conditional independence the true factor covariance is defined by Equation (2)
wv(F & F 7,)

as cov(én) = AAAAL Because, for Bartlett factor scores extracted from separate

unidimensional factor models, AgA, =A;A;q =1, however, the denominator on the

right-hand side of Equation (2) vanishes, leaving cov(én) =cov(Fg, Fp) 5 0.

Similarly, the denominator varnishes in Equation (1), leaving
var(§) =var(Fg) — Ag®sA; or, equivalently, var(Fg)g, ., =var(§)+As@sA;.
Because the variances of Bartlett factor scores are inconsistent estimates of their true
population quantities, Hoshino and Bentler (2013) recommended substituting esti-
mates of the factor variances from the initial measurement model runs in place of the
factor score variance in the final covariance matrix of the latent factors.

Like Croon’s method, the Hoshino—Bentler approach can be applied at either the
level of the individual factor models or the level of each connected measurement
model (Hoshino & Bentler, 2013). We focus here on the connected measurement
model implementation, since we employed this version in our simulations below.
Recall that, at the level of a single connected measurement model, M, the variance—
covariance matrix of the factor scores is approximated by Equation (7) under Bartlett

1 Bartlert

N _ /
estimation as (F,,M1 oy, )Bmlm =cov(My,, Mpy, ) + Am,,,,., OuAy . In the

presence of across-factor correlated uniquenesses, some off-diagonal elements of the
matrix Ay, @, Ay will be nonzero and the corresponding covariances of

1 Bardlert

the Bartlett factor scores will remain biased even if the Hoshino—Bentler correction

is applied to the variances on the main diagonal of (Fml Fa, )B o This will be
! ! artlett

true even when the measurement model from which the factor scores were extracted
is correctly specified, including the across-factor correlated uniquenesses.

When there are no across-factor correlated uniquenesses, however—even when
there are some nonzero within-factor covariances—all off-diagonal elements of

Am,, . Oy A will be zero” and the Hoshino—Bentler correction to the main

!/
M oriten

diagonal of (F,,,Ml , Fan )Bamm will result in a consistent estimator of the population

covariance matrix. For this reason, the covariance matrix of the latent factors computed
using the Hoshino—Bentler (2013) method can be expected to remain a consistent esti-
mator of the true population matrix when there are no nonzero across-factor covariances
among the uniquenesses and the model is correctly specified but will exhibit some
degree of bias when some covariances among the across-factor uniquenesses are non-
zero, even if the measurement model residual structure is correctly specified.

The Present Research

The formulas and rhetorical arguments presented thus far are based entirely on statis-
tical theory and the severity of possible degradations in performance of SEM estima-
tion, standard (uncorrected) Croon FSR, and (in the case of across-factor correlated
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uniquenesses) the Hoshino—Bentler method under a population model with nonzero
correlated uniquenesses remains unknown. Additionally, it is unclear whether the
Factor Model and Measurement Model variants of our Croon formulas will perform
identically or whether one method will outperform the other under particular circum-
stances. For example, at smaller sample sizes it is possible that one method might
outperform the other. It could be that the smaller, factor-by-factor models will be
easier to estimate accurately than a larger connected measurement model, leading to
less biased results in smaller samples. Alternatively, it is just as plausible that esti-
mates from larger, connected measurement models will be less biased in small sam-
ples, since these estimates are informed by a greater overall number of variables in a
richer model.

To provide an initial assessment of the performance of these methods, then, we
compare our proposed Factor Model and Measurement Model Croon formulas with
(a) simultaneous SEM estimation, (b) uncorrected Croon FSR, (c) FSR using the
Hoshino—Bentler (2013) method, and (d) uncorrected FSR using regression and
Bartlett factor scores in two Monte Carlo simulations. Below, we refer to Croon’s
(2002) original FSR method as either Croon FSR or FSR assuming conditional inde-
pendence. We refer to our proposed corrections for correlated uniquenesses at the
factor model level as either Croon FM or Factor Model Croon and to our proposed
corrections for correlated uniquenesses at the measurement model level as either
Croon MM or Measurement Model Croon. Finally, we refer to the Hoshino—Bentler
method as either the HB method or simply Hoshino—Bentler.

Simulation Studies

To evaluate the efficacy of our proposed FSR methods, and to assess the robustness
of simultaneous SEM estimation and standard Croon FSR to misspecification of the
measurement model unique factor structure, we conducted two Monte Carlo simula-
tion studies. Simulation 1 examined these methods using a population model with
nonzero across-factor correlated uniquenesses. Simulation 2 used a population model
with nonzero within-factor correlated uniquenesses. We coded both simulations in R
statistical software (R Core Team, 2013) and conducted all SEM analyses using the
lavaan package (Rosseel, 2012). Across both simulations, for each unique simula-
tion cell, we generated and analyzed 1,000 simulated data sets.

Simulation |: Across-Factor Correlated Uniquenesses

Population Model Used in the Simulation. As a population model for Simulation 1, we
used the latent variable mediation model displayed in Figure 2. We chose the media-
tional framework because of its widespread use in the educational and psychological
literature, because we wished to assess the potential proliferation of bias in models
with at least one indirect pathway, and because, following other authors in this area,
we wished to assess the effects of misspecifying the structural model by incorrectly
fixing a direct pathway to zero (Devlieger et al., 2016; Devlieger & Rosseel, 2017).
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Figure 2. Population model for Simulation 1.

The coefficients were taken from the moderate effect size conditions reported in
Ledgerwood and Shrout (2011), in which the indirect effect equals ab = .546 * —.546
=.30. All variables in the model were standardized.

Factors Varied in the Simulation. We varied four primary factors in Simulation 1: the
sample size, the reliability of the four indicators used to measure each construct, the
strength of the unique factor correlations, and the number of unique factor
correlations.

The sample size, N. We simulated four sample sizes: N = {125, 250, 500, 1,000},
representing a range of small and large sample sizes.

Reliability of the indicators. For convenience, we held all population factor loadings
equal in all conditions and selected three levels of Cronbach’s alpha (Cronbach,
1951), a = {.7, .8, .9}, corresponding to values of alpha commonly viewed as accep-
table by substantive researchers. To keep all indicators on a standardized metric, we

used the formulas A = | /7%~ and 2= 45‘1_732) for the factor loadings and unique factor

variances, respectively.

Because the unique factor variances are necessarily larger under lower reliability,
when less of the total variance of each item is explained by the common factor, we
expected the biasing effects of ignoring nonzero correlations among the unique fac-
tors to be most severe in the & =.7 condition and become progressively less severe
as reliability increased.

Strength of the unique factor correlations. We selected unique factor correlations of
three different strengths: |r| = {.1, .3, .5}, corresponding to Cohen’s (1988) conven-
tions for small, moderate, and large correlation effect sizes. All else being equal, we
expected greater bias to result from misspecifying the measurement model unique
factor structure when the strength of the unique factor correlations was higher.

Number of unique factor correlations. Finally, we generated either one or two non-
zero across-variable correlated uniquenesses per common factor. This is depicted
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Figure 3. Diagram of factor score regression (FSR) approach to fitting the model of Figure 2.

visually in Figure 2 via the use of solid versus dashed lines in the measurement model
unique factor structure. The solid lines represent all unique factor correlations in cells
with one correlated uniqueness per common factor. The dashed lines represent addi-
tional unique factor correlations in the population model for cells with two correlated
uniquenesses per common factor. All else being equal, the more nonzero correlated
uniquenesses in a model, the more disruptive an influence these unique variable cor-
relations should have on the resulting parameter estimates.

Analyses Conducted on Each Simulated Data Set. We analyzed each data set using eight
different methods: SEM specified under conditional independence, Croon FSR
assuming conditional independence, uncorrected FSR using the regression estimator,
uncorrected FSR using the Bartlett estimator, Factor Model Croon, Measurement
Model Croon, simultaneous SEM with a correctly specified residual structure, and
Hoshino—Bentler FSR computed at the connected measurement model level under a
correctly specified residual structure.® We note that the first four of these methods
assumed conditional independence and ignored possible correlated uniquenesses
whereas the latter four of these methods correctly specified the measurement model
residual structure, including all nonzero unique factor covariances. For reasons men-
tioned above, we used Bartlett-estimated factor scores for all variants of Croon’s
method.

Additionally, for each estimation method, we conducted two analyses: one with
the structural model correctly specified, freely estimating all mediation model path-
ways, and one with the structural model misspecified, incorrectly fixing the
ny — My pathway to 0 (i.e., imposing the constraint ¢’ = 0, assuming complete med-
iation). The rationale for including these analyses was based on prior research that
has shown repeatedly that FSR estimation is more robust to structural model misspe-
cification than simultaneous SEM estimation (Devlieger et al., 2016; Devlieger &
Rosseel, 2017; Lu et al., 2011). As a result, we expected both simultaneous SEM and
correctly specified FSR estimation to perform well when all parts of the model (mea-
surement and structural) were correctly specified, but expected FSR to outperform
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simultaneous SEM in terms of bias when the structural model (but not the measure-
ment model) was misspecified.

Simulation Outcomes. We assessed the performance of each method using two pri-
mary outcome measures: percent bias and mean square error (MSE) of our key struc-
tural parameters.

Percent bias. For each population parameter of interest, 8, we computed percent
bias as

. _60—10
Percent Bias = 0 X100 (10)

where 0 denotes the average parameter estimate from a given estimation method in a
given simulation cell. Absolute values of percent bias of 10 or larger are convention-
ally considered problematic (Enders & Bandalos, 2001; Muthén, Kaplan, & Hollis,
1987).

Mean square error. Additionally, for each parameter of interest we computed MSE
in each unique simulation cell using the formula:

1000 (4 2
- elter -0

MSE = Iter=1 ( )
N, IterComplete

, (11)

where 91,6, is the parameter estimate returned by a given estimation method for the
current iteration in a given simulation cell, Ny compiere 15 the number of iterations with
no convergence errors or inadmissible solutions in a given simulation cell,’ and 6 is,
once again, the true population value. MSE is an overall measure of accuracy that
additively combines sampling variance and squared bias. For an unbiased estimator,
MSE reduces to an estimate of sampling variability. Lower values of MSE indicate a
more efficient and, potentially, less biased estimator.

MSE ratios. In the results below, instead of reporting raw MSE values, we report
MSE ratios, computed as

MSE omparison Estimator
MSE Ratio= ———Combarison Estimator. (12)
MSECroanMM

That is, for each analysis cell, we formed the ratio of a given estimator to the mea-
surement model version of Croon’s method. MSE ratios equal to 1 indicate estimators
that are equivalent in their overall accuracy. Ratios less than 1 indicate scenarios in
which a comparison estimator exhibits lower MSE than Croon MM. Ratios greater
than 1 indicate scenarios in which the comparison estimator exhibits higher MSE than
Croon MM. When both estimators are unbiased, the MSE ratio can be construed as a
measure of the relative efficiency of the two estimators.

Simulation |: Results. The results of Simulation 1 generally fell in line with our pre-
dictions. Because the pattern of results was stable across sample sizes, we present
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results for the N = 125 condition here. Additionally, to preserve space, we present
full tables of results from the two correlated uniqueness cells. The one correlated
uniqueness conditions followed similar trends, with less pronounced bias (but see the
Supplemental Material, available online, for comprehensive results from all other
conditions).

Percent bias. Tables 1 and 2 display percent bias of our key structural parameters,
a, b, and the ab indirect effect, by (a) estimation method, (b) unique factor structure
specification, (c) structural model specification, (d) reliability (alpha level), and (e)
strength of the unique variable correlation in the N = 125, two correlated uniqueness
cells. Table 1 presents results for the four methods that assume conditional indepen-
dences, whereas Table 2 presents results for the four methods that correctly specified
the measurement model residual structure.

Several trends are worth highlighting. First, examining Table 1, it is clear that
standard, uncorrected FSR using the regression or Bartlett estimators exhibited sub-
stantial negative bias in all conditions, in line with previous simulation results
(Devlieger et al., 2016; Devlieger & Rosseel, 2017; Lu et al., 2011). Second, when
the structural model was correctly specified but the unique factor correlations were
moderate (.3) or large (.5), both standard simultaneous SEM and standard Croon
FSR, which assume conditional independence of all unique factors, showed proble-
matic levels of positive bias.

The bias resulting from ignoring unique factor correlations and assuming condi-
tional independence was worse when reliability was low (o = .7 and .8), and minimal
when reliability was high (o = .9). This is intuitive, since high reliability (communal-
ity) implies very little leftover unique item variation. Bias was also greatest in the
estimates of the indirect effect, a * b. Because the indirect effect is a product of coef-
ficients, the bias in this parameter grew more quickly than that of the direct path
coefficients. Since the indirect effect is often the quantity of greatest interest in a
mediation analysis, the susceptibility of this coefficient to larger levels of bias is
concerning.

Turning to Table 2, we see that the uncorrected Hoshino—Bentler method returned
problematically biased parameter estimates when the unique factor correlations were
moderate (.3) or high (.5) and when reliability was low (.7) or moderate (.8). In con-
trast, Croon FM, Croon MM, and simultaneous SEM exhibited little bias when the
structural model was correctly specified, even in the lowest sample size condition of
N = 125. At this sample size Croon FM did display slightly greater negative bias at
lower levels of reliability than Croon MM and correctly specified SEM. This trend
quickly dissipated as sample size increased, however.

So far, we have highlighted comparisons among analyses that correctly specified
the structural portion of the model, assessing the magnitude of bias resulting only
from misspecification of the unique factors in the measurement model. In these cells,
Croon FM, Croon MM, and simultaneous SEM all exhibited low levels of bias.
When the structural model was misspecified (rows labeled MS in Table 1) by erro-
neously fixing the direct my — my effect, ¢/, to zero and assuming complete
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Table I. Percent Bias in Models Omitting the Unique Factor Correlations by Parameter and
Simulation Condition, Simulation |: N = 125, 2 Unique Factor Correlations.

Regression FS Bartlett FS Croon SEM

Path a b ab a b ab a b ab a b ab

Unique factor correlation = .|

al.7)

CS —28.85 —27.77 —-48.53 -28.92 -27.77 —48.66 039 -08l -032 3.80 2.99 7.10
MS —28.85 —837 —3422 -28.92 838 -34.34 039 29.27 30.56 15.99 43.05 66.73

a(.8)
CS —19.11 —18.24 —33.86 —18.92 —18.23 -33.70 0.52 0.80 1.36 2070 244 4.60
MS —19.11 478 —14.72 —18.92 479 —1450 052 30.29 31.58 11.04 38.57 54.57
a(.9)
cs -926 —-9.12 -—17.52 —-930 —921 -—17.67 0.53 0.32 0.83 1.14 0.86 1.99

MS —9.26 18.00 757  —9.30 17.88 7.40 053 30.63 31.79 628 34.57 43.53
Unique factor correlation = .3

al.7)
CS —22.61 —24.30 —41.38 —22.56 —24.11 —41.33 893 530 14.91 1434 991  25.86
MS —-22.61 —234 -23.87 —22.56 —2.11 -—23.73 893 37.84 50.88 26.15 52.79 93.34
«(.8)
CS —1591 —-16.85 —30.03 —16.06 —16.76 —30.11 438 2.36 687 6.59 460 11.56
MS —15.91 789 —873 -—16.06 800 —882 438 34.15 40.61 16.12 43.53 67.30
al.9)
cs -78 —795 -—15.13 787 —788 —15.10 21l 1.99 4.19 286 273 5.72

MS 786 19.37 10.46 —7.87 19.44 1050 211 3239 3564 807 36.55 48.08
Unique factor correlation = .5
a(.7)
CS —17.38 -20.77 -34.49 -17.29 -20.85 —34.49 16.20 11.66 30.30 25.87 19.49 51.06
MS —17.38 3.13 —14.27 —17.29 306 —14.21 16.20 45.05 69.24 36.70 62.41 122.36

a(.8)
CS —11.74 —14.56 —24.47 —11.89 —1440 -2451 939 581 16.01 13.33 923 24.09
MS —11.74 1.70 -085 -—11.89 11.89 —087 939 3875 5239 22.96 49.86 84.80
a(.9)
CSs -58 7.4 -—1259 592 714 -12.68 434 291 736 540 392 9.51
MS 588 21.09 14.41 —592 21.07 1432 434 3424 40.48 10.76 38.85 54.24

Note. Regression FS = Regression FSR method; Bartlett FS = Bartlett FSR method; Croon = Croon’s
method using the original formulas uncorrected for unique factor correlations; SEM = structural equation
modeling (simultaneous estimation) under the assumption of conditionally independent uniquenesses; CS
= correct structural model specification (¢’ path freely estimated); MS = structural misspecification (¢’
path constrained to 0). Boldfaces entries indicate absolute values of percent bias > 10.

mediation, however, both Croon FM and Croon MM resulted in noticeably lower
bias than simultaneous SEM across the majority of simulation cells.

MSE ratios. MSE ratios are presented in Table 3 for the N = 125, two correlated
uniquesses per factor conditions for the estimators that correctly specified the unique
actor covariance structure. Comparing Croon MM to simultaneous SEM, we see that
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Table 2. Percent Bias in Models Correctly Specifying the Unique Factor Structure by
Parameter and Simulation Condition, Simulation |: N = 125, 2 Unique Factor Correlations.

Hoshino—Bentler Croon FM Croon MM SEM
Path a b ab a b ab a b ab a b ab
Unique factor correlation = .1
a(.7)
CSs 296 231 550 —326 —327 —642 —-054 030 -0.19 —054 030 -—0.19
MS 296 32.87 37.61 —326 25.62 22.32 —0.53 29.68 29.81 11.58 38.82 55.82
a(.8)
cs 171 216 394 —1.70 —0.71 —-236 —043 089 047 —-043 089 047
MS 171 31.95 34.80 —1.70 28.09 26.55 —0.43 29.99 30.03 843 36.17 48.38
a(.9)
cs 10l 077 176 —046 —035 —-082 004 0.19 021l 004 0.19 021
MS 1.0l 31.25 33.04 —0.46 29.63 29.52 0.04 30.32 30.86 5.02 33.44 40.67
Unique factor correlation = .3
a(.7)
Cs 1023 671 17.88 —185 —331 —-513 038 —0.07 042 038 —-007 042
MS 10.23 39.55 54.61 —1.85 26.29 24.73 038 29.83 31.17 11.33 38.17 54.84
a(.8)
CS 485 322 826 —221 —212 —-429 —127 —060 —1.88 —127 —-060 —1.88
MS 485 34.99 42.15 —221 27.50 25.31 —1.27 29.13 28.13 6.83 34.69 44.66
a(.9)
CS 235 225 471 —-084 —0.10 —088 —040 046 0.1 —040 046 O.ll
MS 235 32.72 36.30 —0.84 29.36 28.77 —0.40 30.02 29.99 386 32.66 38.34
Unique factor correlation = .5
a(.7)
CS 16.42 13.07 32.26 —1.78 —2.88 —432 007 1.04 1.41 0.05 1.01 1.37
MS 16.42 46.06 70.82 —1.78 26.10 24.71 0.07 29.94 30.86 9.34 36.69 50.45
a(.8)
CS 948 584 16.09 —136 —196 —3.15 —033 —062 —-080 —033 -—-062 —0.80
MS 948 38.83 52.60 —1.36 27.67 26.60 —0.33 29.17 29.41 623 33.64 42.72
a(.9)
CS 430 3.00 743 —-055 —043 -099 -—0.21 0.13 —-008 -—0.21 0.13 —0.08
MS 430 34.28 40.50 —0.55 29.28 29.04 —0.21 29.88 30.09 3.17 31.93 36.66

Note. Hoshino—Bentler indicates Hoshino and Bentler’s (2013) FSR method; Croon FM = Croon’s

method corrected for correlated uniquenesses at the factor model level; Croon MM = Croon’s method

corrected for correlated uniquenesses at the measurement model level; SEM = structural equation

modeling (simultaneous estimation) correctly specifying the correlated residual structure; CS = correct
structural model specification (¢’ path freely estimated); MS = structural misspecification (¢’ path

constrained to 0). Boldfaced entries indicate absolute values of percent bias > 10.

the methods exhibit equivalent performance when the entire model was correctly
specified, but that Croon MM outperforms SEM when the structural model was mis-
specified. This suggests that Croon MM is no less efficient than simultaneous SEM,
all else being equal. Comparing Croon MM with Croon FM, we see that Croon FM
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Table 3. Mean Square Error Ratios in Models Correctly Specifying the Unique Factor
Structure by Parameter and Simulation Condition, Simulation |I: N = 125, 2 Unique Factor
Correlations.

Hoshino—Bentler Croon FM SEM
Path a b ab a B Ab a B ab
Unique factor correlation = .1
a(.7)
CS 0.99 1.06 I.15 0.96 0.89 0.87 1.00 1.00 1.00
MS 0.99 I.16 1.28 0.96 0.80 0.75 1.24 1.51 2.16
a(.8)
CS 0.99 1.03 1.07 0.99 0.96 0.95 1.00 1.00 1.00
MS 0.99 I.11 1.19 0.99 0.90 0.87 1.17 1.38 1.91
a(.9)
CS 0.99 1.02 1.02 0.99 0.97 0.97 1.00 1.00 1.00
MS 0.99 1.05 1.09 0.99 0.96 0.94 1.09 .19 1.49
Unique factor correlation = .3
a(.7)
CS 1.26 1.30 1.66 0.95 0.97 0.88 1.00 1.00 1.00
MS 1.26 1.58 2.05 0.95 0.83 0.77 1.31 1.48 2.08
a(.8)
CS 1.05 1.17 1.31 0.97 0.98 0.96 1.00 1.00 1.00
MS 1.05 1.37 1.68 0.97 0.91 0.88 1.12 1.35 1.85
a(.9)
CS 1.02 1.07 1.13 0.99 1.00 0.99 1.00 1.00 1.00
MS 1.02 1.17 1.30 0.99 0.96 0.94 1.06 1.16 1.43
Unique factor correlation = .5
a(.7)
CS 1.80 201 3.02 1.02 1.08 1.01 1.00 1.00 1.00
MS 1.80 2.11 325 1.02 0.83 0.82 1.20 1.40 1.89
a(.8)
Cs 1.35 1.36 1.79 1.03 1.08 1.03 1.00 1.00 1.00
MS 1.35 1.66 2.28 1.03 0.92 0.90 1.13 1.28 1.66
a(.9)
Cs 1.07 1.13 1.26 1.00 1.01 1.00 1.00 1.00 1.00
MS 1.07 1.28 1.53 1.00 0.96 0.95 1.05 1.13 1.33

Note. FSR = factor score regression; MSE = mean square error; Hoshino—Bentler indicates Hoshino and
Bentler’s (2013) FSR method; Croon FM = Croon’s method corrected for correlated uniquenesses at the
factor model level; SEM = structural equation modeling (simultaneous estimation), with correctly
specified unique factor structure; CS = correct structural model specification (¢’ path freely estimated);
MS = structural misspecification (¢’ path constrained to 0). All MSE ratios are divided by the MSE for
Croon’s method corrected for correlated uniquenesses at the measurement model level (Croon MM),
that is, MSEEs:imator/MSECroonfMM~

exhibited somewhat lower MSEs than Croon MM in a portion of simulation cells.
Although the ratios generally did not depart drastically from 1, this suggests that
Croon FM may be somewhat more efficient than Croon MM in some cases.
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Figure 4. Population model for Simulation 2.

Simulation |: Discussion. Simulation 1 provided empirical evidence for several impor-
tant phenomena. First, ignoring correlated uniquenesses can result in distorted esti-
mates of structural model parameters. These effects are especially pronounced when
the number of across-factor correlated uniquenesses is larger, the strength of the
unique factor correlations is greater, and the reliability of the indicators is lower.
Second, both correctly specified simultaneous SEM and our proposed Croon methods,
accounting for correlated uniquenesses, successfully eliminated this bias when the
structural model was correctly specified. Third, Croon FSR estimation outperformed
simultaneous SEM in terms of bias when the structural model was misspecified.
Finally, standard Hoshino—Bentler estimation exhibits bias in the presence of nonzero
across-factor correlated uniquenesses, even though the connected measurement model
used to compute the HB factor covariance matrix was correctly specified.

Simulation 1 specifically examined across-factor correlated uniquenesses but did
not assess within-factor correlated uniquenesses. Simulation 2 used a similar proce-
dure to compare these methods in the presence of nonzero within-factor correlated
uniquenesses.

Simulation 2: Within-Factor Correlated Uniquenesses

Simulation Design. Figure 4 displays the population model for Simulation 2. This
simulation closely mirrored that of Simulation 1 but with two key changes. First, we
generated data according to the model in Figure 4, featuring within-factor correlated
uniquenesses. Second, because preliminary simulations found noticeable negative
bias in key parameters even with only one within-factor correlated uniqueness per
common factor, for simplicity we did not include a set of conditions examining two
correlated uniquenesses per factor. Otherwise, all design factors were the same.'°

Simulation 2: Results and Discussion. Mirroring Simulation 1, Tables 4 and 5 display
the results for percent bias and Table 6 displays the results for MSE ratios in the N =
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Table 4. Percent Bias in Models Omitting the Unique Factor Correlations by Parameter and
Simulation Condition, Simulation 2: N = 125.

Regression FS Bartlett FS Croon SEM

Path a b ab a b ab a b ab a b ab

Unique factor correlation = .|

al.7)
CS —32.91 —30.82 —53.57 —32.73 —30.87 —53.56 —7.55 —746 —14.54 -331 —3.09 —644
MS —32.91 —13.26 —41.27 —32.73 —13.36 —41.23 —755 19.44 11.12 789 33.69 45.04
a(.8)
CS —21.68 —21.18 —38.23 —21.40 —21.28 —38.21 —358 —438 -783 —153 -229 -382
MS —21.68 1.02 —20.30 —21.40 0.85 —20.22 -358 24.15 20.38 691 32.89 42.85
a(.9)
CS —11.74 —10.59 —21.09 —11.78 —10.56 —21.13 —-249 —I55 —-403 -179 -077 -—257
MS —11.74 15.36 229 —11.78 15.39 226 —249 2751 24.79 303 31.49 35.97
Unique factor correlation = .3
al.7)
CS —38.91 —36.25 —60.97 —39.09 —35.94 —60.94 —21.00 —19.72 —36.45 —15.10 —13.51 —26.42
MS —38.91 —21.08 —51.16 —39.09 —20.72 —5I.11 —21.00 255 —17.97 -586 17.95 12.46
a(.8)
CS —25.63 —24.06 —43.46 —25.64 —24.02 —43.45 —11.24 —10.79 —20.76 —829 —734 —14.97
MS —25.63 —3.39 —27.54 —25.64 —335 —27.53 —11.24 15.38 3.14 —089 25.05 24.77
al.9)

CS —13.51 —12.59 —24.33 —13.53 —12.56 —24.34 546 —485 —-999 —-449 378 -—805
MS —13.51 12.82 —-187 —13.53 1284 188 —546 2338 17.21 -019 27.49 27.83
Unique factor correlation = .5
a(.7)
CS —47.33 —43.28 —70.13 —47.13 —43.25 —69.96 —37.20 —33.77 —58.45 —33.08 —29.29 —52.63
MS —47.33 —31.30 —63.27 —47.13 —31.27 —63.09 —37.20 —17.98 —47.75 —-27.90 -792 —32.26

a(.8)
CS —33.55 —29.27 —52.98 —33.63 —29.27 —53.05 —24.37 —20.63 —39.98 —21.31 —17.29 —34.92
MS —33.55 —12.11 —41.09 —33.63 —12.11 —41.17 —24.37 006 —23.74 —16.33 8.16 —8.66
a(.9)
CS —17.27 —16.25 —30.58 —17.31 —16.26 —30.65 —11.20 —10.63 —20.52 -9.90 -—9.10 —17.97
MS —17.27 769 —10.29 —17.31 766 —10.37 —11.20 15.57 326 —6.57 19.73 12.58

Note. Regression FS = regression FSR method; Bartlett FS = Bartlett FSR method; Croon = Croon’s
method using the original formulas uncorrected for unique factor correlations; SEM = structural equation
modeling (simultaneous estimation) under the assumption of conditionally independent uniquenesses; CS
= correct structural model specification (¢’ path freely estimated); MS = structural misspecification (¢’
path constrained to 0). Boldfaces entries indicate absolute values of percent bias > 10.

125 conditions. As expected, the general trends from Simulation 1 are all apparent
here, but the direction of biased has reversed: In the presence of within-factor corre-
lated uniquenesses, biased structural parameters are nearly always attenuated rather
than magnified. Once again, simultaneous SEM estimation and standard Croon FSR
estimation exhibited bias when the unique factor structure was specified to be condi-
tionally independent. And, once again, this bias was most pronounced under
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Table 5. Percent Bias in Models Correctly Specifying the Unique Factor Structure by
Parameter and Simulation Condition, Simulation 2: N = 125.

Hoshino—Bentler Croon FM Croon MM SEM

Path a b ab a b ab a B ab a b ab

Unique factor correlation = .1

a(.7)
CS —-024 00l —034 -7.70 —744 —14.52 -024 00l —-034 —-024 00l —0.34
MS —-0.24 29.02 29.33 -7.70 19.64 11.34 —-024 29.02 29.33 12.42 39.08 57.13
a(.8)
CS 035 —-03lI 003 —349 391 721 035 —0.31 0.03 035 —0.3I 0.03
MS 035 29.33 30.44 —349 24.60 20.96 035 29.33 30.44 991 36.42 50.76
a(.9)

CS —-088 029 —-061 —219 —1.06 —325 —0.88 029 —061 —-088 029 —0.6I
MS —0.88 29.72 29.04 -2.19 27.98 25.65 —0.88 29.72 29.04 450 33.14 39.64
Unique factor correlation = .3

a(.7)
CS 0.07 0.67 106 —781 —683 —13.85 007 067 1.06 007 0.67 1.06
MS 0.07 29.23 30.24 —7.81 19.62 11.39 007 29.23 30.24 12.58 39.18 57.63
a(.8)
CS 003 1.03 1.17 —3.81 —3.01 —-668 0.03 1.03 1.17  0.03 1.03 1.17
MS 0.03 30.51 31.12 —3.81 25.56 21.38 0.03 30.51 31.12 10.12 37.83 52.45
a(.9)
CS —-0.68 —0.27 —088 —20l —153 —343 —-068 —027 —-0.88 —068 —027 —0.88

MS —068 29.52 29.16 —2.01 27.79 25.78 —0.68 29.52 29.16 499 33.13 40.35
Unique factor correlation = .5
a(.7)
CS 078 208 341 -—-747 —-6.16 —12.65 078 208 341 078 208 34l
MS 078 30.65 32.71 —747 20.15 12.44 078 30.65 32.71 13.76 40.93 61.29
a(.8)
CS —066 127 043 —470 —274 —741 —066 127 043 —066 127 043
MS —066 30.75 30.36 —4.70 25.58 20.27 —0.66 30.75 30.36 9.83 38.22 52.47
a(.9)
CS —067 —060 —I.1l —2.04 —195 —380 —067 —0.60 —I.11 —067 —0.60 —I.1l
MS —067 29.30 29.06 —2.04 27.54 25.57 —0.67 29.30 29.06 520 33.11 40.72

Note. FSR = factor score regression; Hoshino—Bentler indicates Hoshino and Bentler’s (2013) FSR
method; Croon FM = Croon’s method corrected for correlated uniquenesses at the factor model level;
Croon MM = Croon’s method corrected for correlated uniquenesses at the measurement model level;
SEM = structural equation modeling (simultaneous estimation) correctly specifying the correlated
residual structure; CS = correct structural model specification (¢’ path freely estimated); MS = structural
misspecification (¢’ path constrained to 0). Boldfaced entries indicate absolute values of percent bias
>10.

moderate to strong unique factor correlations (.3 and .5) and lower levels of reliabil-
ity (.7 and .8).

Examining Table 5, all methods performed well when both the measurement and
structural models were correctly specified. We note, however, that there was a small
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Table 6. Mean Square Error Ratios in Models Correctly Specifying the Unique Factor
Structure by Parameter and Simulation Condition, Simulation 2: N = |25.

Hoshino—Bentler Croon FM SEM
Path a b ab a b ab a b ab
Unique factor correlation = .1
a(.7)
(o 1.00 1.00 1.00 1.09 0.86 0.87 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.09 0.62 0.58 1.27 1.58 2.26
a(.8)
Cs 1.00 1.00 1.00 1.02 0.94 0.94 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.02 0.76 0.69 1.32 1.44 2.02
a(.9)
(& 1.00 1.00 1.00 1.02 0.97 0.98 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.02 0.90 0.86 1.05 1.22 1.55
Unique factor correlation = .3
a(.7)
Cs 1.00 1.00 1.00 1.15 0.85 0.83 1.00 1.00 1.00
MS 1.00 1.00 1.00 I.15 0.63 0.58 1.28 1.54 217
a(.8)
Cs 1.00 1.00 1.00 1.06 0.94 0.91 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.06 0.76 0.69 1.25 1.44 2.04
a(.9)
Cs 1.00 1.00 1.00 1.02 0.97 0.99 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.02 0.90 0.86 1.05 1.23 1.57
Unique factor correlation = .5
a(.7)
Cs 1.00 1.00 1.00 1.07 0.78 0.71 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.07 0.6l 0.55 1.26 1.54 2.09
a(.8)
Cs 1.00 1.00 1.00 1.06 0.94 0.95 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.06 0.75 0.68 1.22 1.45 2.12
a(.9)
Cs 1.00 1.00 1.00 1.00 0.98 0.97 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.00 0.90 0.86 1.10 1.24 1.59

Note. FSR = factor score regression; MSE = mean square error; Hoshino—Bentler indicates Hoshino and
Bentler’s (2013) FSR method; Croon FM = Croon’s method corrected for correlated uniquenesses at the
factor model level; SEM = structural equation modeling (simultaneous estimation), with correctly
specified unique factor structure; CS = correct structural model specification (¢’ path freely estimated);
MS = structural misspecification (¢’ path constrained to 0). All MSE ratios are divided by the MSE for
Croon’s method corrected for correlated uniquenesses at the measurement model level (Croon MM),
that is, MSEEscimator/MSECroonfMM~

but noteworthy effect of sample size in Simulation 2. Specifically, Croon FM was
somewhat more biased at lower Ns but this bias became negligible at higher Ns (500
and 1,000). For example, the indirect effects for this method fell above the 10% cut-
off when o was low (.7) across the N = 125 conditions. For all other sample sizes,
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this method produced acceptable levels of bias, however (though the degree of bias
was still noteworthy at N = 250; see supplemental results [available online]).

In contrast, both Hoshino—Bentler and Croon MM exhibited minimal bias when
the entire model was correctly specified. It is worth noting that because these meth-
ods both employed the Bartlett estimator to estimate the latent factor covariances and
both employed equivalent corrections to the factor variances, the results for these two
methods are identical. Simultaneous SEM performed comparably to these methods
when both the measurement model and the structural model were correctly specified,
but HB, Croon FM, and Croon MM all outperformed simultaneous SEM when the
structural model was misspecified. This was particularly true under low and moderate
levels of reliability (.7 and .8) and remained true across all sample size conditions
(see supplemental results for details [available online]).

Finally, the vast majority of MSE ratios comparing Croon MM with HB and SEM
either approached or exceeded 1, indicating that FSR with correlated uniquenesses
performed either equivalently or superiorly in the majority of cases. Once again,
Croon MM exhibited lower MSEs in several cases, but this result should be qualified
by the higher levels of bias Croon FM displayed in the N = 125 and 250 conditions.
Although the lower MSE suggests that Croon FM may be more efficient, the higher
levels of bias observed in Table 5 suggest that this reduced sampling variability may
be centered on a biased estimate.

Simulation 2: Discussion. Like Simulation 1, Simulation 2 provided a clear pattern of
results. This simulation demonstrates that correct estimation of structural parameters
suffers when the measurement model unique factor structure is ignored. Furthermore,
simple steps can be taken to respecify the model in a manner that preserves the cor-
rect unique factor structure, using either simultanecous SEM or FSR. Finally, the
Croon FM, Croon MM, and Hoshino—Bentler methods outperformed standard simul-
taneous SEM methods when the structural model was misspecified (see also
Devlieger & Rosseel, 2017).

General Discussion

In the present research, we used Croon’s (2002) bias correction approach to derive
formulas for the case of across-factor correlated uniquenesses and explicated how
Croon’s original formulas may be employed in the case of within-factor correlated
uniquenesses. Additionally, we reported the results of two Monte Carlo simulations
comparing these methods’ performance with uncorrected regression and Bartlett
FSR, standard Croon FSR assuming conditional independence, and simultaneous
SEM estimation. Correctly specified simultaneous SEM estimation, Croon FM, and
Croon MM, incorporating correlated uniquenesses, exhibited strong performance in
our simulations. In line with previous studies (Devlieger et al., 2016; Devlieger &
Rosseel, 2017), Croon FSR outperformed simultaneous SEM estimation when the
structural model was misspecified.
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Although the estimation of correlated uniquenesses is often discouraged in psy-
chometric studies as a form of fishing for ways to improve fit (cf. Cole, Ciesla, &
Steiger, 2007), when the focus is on accurately estimating the structural parameters,
rather than the measurement model, our results suggest that the unique factor covar-
iance structure ought not be ignored. Our simulations clearly showed that ignoring
the measurement model covariance structure resulted in distorted estimates of key
structural parameters across a variety of conditions. This is especially true when the
primary goal is the assessment of indirect (mediational) effects, since these para-
meters quickly grew more biased than any other structural parameter in our
simulations.

Our simulations suggest several guidelines for researchers considering applying
these methods. If reliability is high (.9) or unique factor correlations low (.1), the
measurement model unique factor structure might be ignored with little consequence.
If reliability is lower (alpha or omega of .7-.8), the choice of how to model unique
factors becomes more urgent. Furthermore, ignoring within-factor correlated unique-
nesses risks attenuated structural regression coefficients, whereas ignoring across-
factor correlated uniquenesses risks inflated coefficients.

Though both Croon FM and Croon MM performed well in the majority of condi-
tions, our results suggest that when sample sizes are smaller (e.g., N = 125 or 250)
Croon MM may be somewhat more accurate. This was especially true when the fac-
tor models featured within-factor correlated uniquenesses. For this reason, we recom-
mend Croon MM when attempting to use FSR in small samples with correlated
uniquenesses.

The results of our first simulation suggest that across-factor uniquenesses are
more harmful to the extent that they are more numerous. Although bias resulted from
ignoring even one correlated uniqueness per factor, the bias was more severe when
there were two correlated uniquenesses per factor. Our simulations assessed only a
simple case in which there were four indicators per factor, but it is possible to (cau-
tiously) extrapolate to other scenarios. All else being equal, it seems reasonable to
expect that even one or two correlated uniquenesses might be harmful in factor mod-
els with fewer indicators (e.g., two-indicator or three-indicator factors in the context
of a larger structural model). Conversely, one or two correlated uniquenesses may
not disrupt estimation as severely in factor models with more indicators (e.g., 10 or
20). This suggests that, all else being equal, applied researchers should pay greater
heed to the issue of correlated uniquenesses in scenarios with fewer indicators and
more numerous unique variable covariances.

Our simulation results mirror our analytic derivations in showing that Hoshino
and Bentler’s (2013) method remains unbiased in the presence of within-factor corre-
lated residuals but becomes biased in the presence of across-factor correlated resi-
duals. Of course, correcting the HB method for this bias would be relatively simple.
In the spirit of the original method, one manner of accomplishing this would be to
use the covariances of the Bartlett factor scores to estimate the covariances between
all factors whose measurement models do not feature across-factor correlated
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uniquenesses but substitute the estimated factor covariances from the initial simulta-
neous SEM runs in place of the Bartlett covariances between any factors whose mea-
surement models feature across-factor correlated uniquenesses.

Our simulation results also suggest several possible areas for future research. First,
if correlated unique factor structures are to be taken seriously by substantive research-
ers, it will be important to develop reliable and user-friendly methods for correctly
identifying nonzero unique factor covariances. Because a model freely estimating all
such correlated uniquenesses can never be identified (cf. Kenny, 1979; Kenny et al.,
1998), alternative approaches must be used to diagnose the correct covariance struc-
ture. If the goal is to extract factor scores and conduct FSR, an intriguing possibility
would be to utilize unique factor score estimates from each measurement model of
interest'' to diagnose possible nonzero unique factor covariances. Given the potential
bias in estimated uniquenesses based on factor scores, however, it will be important
to assess the analytic properties of these estimators as well as to empirically test their
performance.'?

Second, future research is needed to extend FSR methods to more complex factor
structures, such as hierarchical or bifactor models (Holzinger & Swineford, 1937;
McDonald, 1999; Schmid & Leiman, 1957), as well as more complex residual struc-
tures (cf. Singer & Willett, 2003, for a review of residual structures in longitudinal
models). Finally, as noted by others (Devlieger et al., 2016; Devlieger & Rosseel,
2017), before FSR can be widely implemented, a crucial area of future research will
necessarily involve the derivation of accurate standard errors for the path analytic
formulation (but see Devlieger et al., 2016, for a viable OLS regression-based stan-
dard error for FSR).

In sum, we believe that the present research makes an important contribution to
the literature on FSR methods by extending these methods to the case of correlated
uniquenesses. Since implementation of matrix-oriented bias correction formulas may
prove challenging for many applied researchers, it is our hope that software imple-
mentations of these methods (e.g., in lavaan; Rosseel, 2012) incorporate functionality
for implementing FSR with correlated unique factor structures in the future.

Appendix A

Deriving Croon’s Formulas With Correlated Across-Factor Uniquenesses at
the Individual Factor Model Level

In this appendix, we apply Croon’s (2002) method to derive FSR formulas for the
case of across-factor correlated uniquenesses at the level of each individual factor
model, following closely the derivation presented in Devlieger, Mayer, and Rosseel
(2016). Let ¢ and m be exogenous and latent variables in a structural regression
model, measured by py exogenous indicators x and py endogenous indicators y. In
the simulations reported in the main article, py =py =4. Let F¢ and F,, denote the
factor scores for £ and 7, respectively. Then, F¢ and F,, are defined by the following
equations:
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Fg =A§X,

(A1)
Fr=Ayy,

where A; and A, are factor scoring matrices—matrices of regression coefficients
predicting the latent factor scores from the observed items. The formulas for the cor-
rected variance of each factor score vector remain the same as in Equation (1) in the
main article. The task at hand is to solve for the covariance, cov(F e, F. ,]). By
Equation (A1), we may define

cov(Fe, Fp) =cov(Agx, Ayy) = Agcov(x, y)A’n, (A2)
where the final expression follows from basic covariance algebra applied to matrices

and vectors. Define vectors x and y in standard fashion as

X=A¢+6

yszn+3, (A3)

where & and & represent unique factors loading onto x and y, respectively.
Substituting Equation (A3) into Equation (A2) yields

Agcov(x,y)A] =Agcov(Aé+8, Ayn+e) AL (A4)

Repeatedly applying the sum rule for model-implied covariances (cf. Kenny, 1979,
for a review of covariance algebra rules), this expression becomes

=A¢ [Axcov(fn)Aly +cov(&g) +cov(nd) + cov(Ss)} Al (A5)

So far, our derivation parallels that reported by Devlieger et al. (2016). At this
point, standard model assumptions would set cov(&e)=cov(nb)=cov(de)=0. If
some covariances between the x and y uniquenesses are nonzero, however,
cov(8¢) # 0 and Equation (A5) becomes

=A¢ [Axcov(gn)/\'y + cov(&:)} Al (A6)

Distributing the A and Aln matrices in this expression yields a final expression for
the factor score covariance:

cov(Fg, Fp) = AgAxcov(én) AL AL + Agcov(Be)A . (A7)

The uncorrected latent factor covariance, cov(£m), can be obtained by algebrai-

cally rearranging Equation (A7). Subtracting the term Agcov(ﬁa)A'n from the right-
hand side of Equation (A7) yields

cov(Fe, Fy) — Agcov(Be)Al = Ag/\,(cov(ef*q)A;YA;7 = cov(gn)AgAxA'yA'n, (A8)
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where the final identity follows from the fact that cov(£m) is a scalar for unidimen-
sional ¢ and 7. Since Ag, Ay, A'y, and A’n, are matrices with dimensions 1 Xp,, p, X1,
1Xp,, and p, X1, respectively, the expression AgAxA/yqu is a 1X 1 scalar that can be
divided out of both sides of Equation (AS), yielding the corrected latent covariance

cov(Fe, Fry) — Agcov(8e)A!
cov(én) = , oF (A9)
AAAA

From Equation (A9) it becomes plain that the original Croon (2002) formula,
cov(Fe, Fy)/ (AgAxA'yA:q) , overestimates the true covariance cov(¢ém) by a quantity

equal to Agcov(8e)A] / (AgAxA/yA’n) when cov(6g) # 0. That is,

cov (Fg, F,,)
AgAxA;A;]

Agcov(Be)A)

= —+ AIO
conten) + 3% T (A10)

Thus, when the rightmost term in Equation (A10) goes to zero, Croon’s (2002)
original formula will be a consistent estimator of cov(én). But as elements of
cov(dg) depart from zero, Croon’s original formula will result in an estimate of
Agcov(Be)A]
AAAGAL
mula in Equation (A9) instead, however, will result in a consistent estimator of
cov(ém) (cf. Hoshino & Bentler, 2013, Section 4.7.2).

Finally, it is important to note that cov(8e) represents the p, X p, matrix of covar-
iances between the x and y uniquenesses. For example, with four indicators, as in the
simulations reported in the main article, this covariance matrix would be

cov(én) that is biased by a quantity equal to . Applying the correction for-

o [(oF (oF
Uy, Uy, Uy Uy,

iy, Uyy

Tuu Tu,u Ou,u Ou,u
— vy Uy xy Uy, o Uy ey Uy,
cov(dg) = 2 22 23 2
g Uy Uy, g Uy Uy, o Uiy Uy o Uy Uy,

Ougyuy, Ougyuy,  Ouguy,  Tuguy,

Appendix B

Deriving Croon’s Formulas With Correlated Across-Factor Uniquenesses at
the (Connected) Measurement Model Level

In this appendix, we apply Croon’s (2002) method to derive FSR formulas for the
case of across-factor correlated uniquenesses at the level of the connected measure-
ment model. Let n,,, be a vector of m; latent variables in the first connected mea-
surement model under consideration. For example, in the model of Figure 1E

Ny, = F} and m;=2. Furthermore, let there be pj, measured indicators in
mn
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measurement model M, contained in a py, XN vector Y- Let F,,M1 denote the fac-
tor scores extracted from measurement model M;. Then, F ny, May be defined by the
following equation:

FT’MI :AMI YMp (Bl)

where Ay, is a my Xpyy, factor scoring matrix. The vector Yy, may be written using
the usual definition as

yM] =AM1“M1 +uMl’ (Bz)

where uyy, is a py, XN vector of unique factor scores with pus, Xpy, covariance
matrix @y, . In the presence of correlated unique factors, some off-diagonal elements
of ©®,, will be nonzero. Substituting Equation (B2) for y,, in Equation (B1) yields

Fu, = A (A, + ) )
= AM] AM] an + AM1 Uy, -

Using Croon’s (2002) method, our first task is to derive the expected covariance
matrix of the factor scores from the m latent factors in measurement model M;and
then correct this expected covariance for bias. The expected covariance of F,,Ml with
itself may be written:

COV<F"IM1 ’F”’IM]) :COV(AMIAMlan +AM| uMI’AMIAMlan +AM1uMl)' (B4)

Once again, repeatedly applying the sum rule for model-implied covariances (cf.
Kenny, 1979), this expression becomes

cov(Ap Ay, Mg, s Ave, A, Mg, ) + cov(An, A My, Av U, )

(BS)
+ COV(AMI LYY AM] AMI T]M] ) + COV(AMI Uy, AM] Uy, )
Taking matrices of constants outside their respective covariances yields:
AM1 AM[ COV(“MI s an )A;Ml AEVII +AM1 AMI COV(T‘MI > uMl) (B6)

! / !
+ Ay cov(uy, My, )ALy Al + Ang cov(ay,, uy, A,

Recognizing  that, by definition  cov(my,,, s, ) =cov(wy, My, ) =0 and
cov(uyy,, uyy, ) = Oy, , we can rewrite the final identity as

cov (F,,M] Fu,, ) = Aur, Ang cov(Myy,, My, )AjuI Al +Ay Oy A, (B7)

To correct for bias, we simply solve algebraically for cov('q My, ):
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cov(nM] , "an) = (Ap, Auy )71 [COV(F,,,M1 , le) — Ay, Oy, A;Ml} (A;WIASMI>
(B8)

Equation (B8) clearly depends on the nonsingularity of the matrix product
Ay, Ay, and its transpose. Although this matrix product will often be nonsingular
using the regression factor score estimator, the Bartlett estimator exhibits the desir-
able property that Ay, Ay, =1. Therefore, to completely avoid any potential issues
with singularity of A, Ay, we recommend using the Bartlett factor score estimator,
in which case Equation (B8) simplifies to

COV(an , 1|M1) =cov (F,,M1 , F,,M1 ) — Ay, @)MIA;Ml . (B9)

Equations (B8) and (B9) represent the measurement model equations applied in
both simulations reported in the article. For the sake of completeness, we derive one
additional expectation: the expected covariance between one connected measurement
model, M}, and a second connected measurement model, M,. For example, imagine
that a researcher expects or diagnoses a connected measurement model, M|, with
across-factor correlated uniquenesses, such as the model depicted in Figure 1E and
wishes to correlate this measurement model with a second measurement model, M,,
that is only connected to M) via the latent factor covariances. That is, there may be
unique factor covariances within each measurement model, M| and M,, but there are
no unique factor covariances across measurement models.

Let m,,, be a vector of m, latent variables in the second measurement model under
consideration and let there be p);, measured indicators in measurement model M,
contained in a py;, XN vector y,,,. Let F M, denote the factor scores extracted from
measurement model M. Then the expected covariance between Fy, ~and Fy, —may
be defined:

cov (F,,,M1 , F,,Mz) =cov(Au, Ay My, + Au g, A Ay, Y Aspwng, ). (B10)

Applying the rules of covariance algebra for matrices, as before, and simplifying
yields the expression:

An A, cov('an , 'qu)Aﬁszjwz +An A, cov(an , uMZ)A§W2 (B11)
+ AM1 COV(llM] 5 TIMZ)A;V&A;\/IZ + AM] C‘OV(IIMl >, UWpg, )AMZ .

If Myjand M, are truly connected by only the latent factor covariances—that is,
if there are no across-measurement-model correlated uniquenesses—then
cov(uy,, wy,) =0. Furthermore, by definition cov(wyy,, s, ) =cov(uy,, My, ) =0.
Thus, Equation (B11) simplifies to

cov (F,,Ml Fa,, ) = Ay, Anr cov(Myy, My, ) A A (B12)
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Solving for cov (1] oM Mz) yields

cov(My,, Myr,) = (An, AA/,I)—lcov(F,,,Ml ,F,,Mz> (A;MZA;%) . (B13)

As before, however, if Bartlett estimation is used for both F,,,M1 and F,,Mz, then
Ay, Ay, = A, A}, =T and Equation (B13) reduces to

cov(F,,Ml,Fan) =c0v(*r|M1,'r|M2). (B14)

Thus, as observed by Hoshino and Bentler (2013), the covariances among factor
scores estimated using the Bartlett estimator are consistent estimates of the covar-
iances among the true latent variables.
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Notes

1. Although this article focuses primarily on the path analytic formulation, we use the acro-
nym FSR interchangeably when referring to either regression or path analysis
implementations.

2. Because the focus of this article is on instances of nonzero unique factor correlations, we
assume that residual variation in the indicators is not strictly random (stochastic) but,
rather, represents additional latent causes besides the common factor (such as the influ-
ence of one or more specific factors; cf. Bentler, 2017). Therefore, we prefer the terms
unique factors and uniquenesses to the terms measurement residuals and error through-
out the text.

3. We use the term bias-corrected to refer to the strategy of eliminating the systematic bias
that would result from using the observed, uncorrected variances and covariances of the
indeterminate factor scores to approximate the true population variances and covariances
of the latent variables. However, because quantities such as F¢, A¢, Ay, and @p are ulti-
mately estimated using data from one’s finite sample, Croon’s formulas (e.g., Equations
[1] and [2], under conditional independence) are not unbiased estimators in the technical
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sense, but rather consistent estimators that will more accurately approximate their respec-
tive population quantities as N — oo (cf. Hoshino & Bentler, 2013, Section 4.7.2 for a for-
mal treatment of this idea).

4. Standardized or normalized residuals that exceed absolute values of 1.96 are typically
considered to exhibit significant local misfit (Bollen, 1989; Muthén, 2007). However, our
recent theoretical simulation research and practical experience leads us to recommend
considering any such residual exceeding an absolute value of 1 to be potentially proble-
matic. This is particularly important when sample sizes are small (e.g., N = 100).

5. The suggestion to fix factor loadings and unique factor variances to their Step 1 estimates
serves to maximize the correspondence between the parameter estimates from the initial
separate factor models and the estimates of cov(8¢) obtained from the subsequent simul-
taneous model. However, under correct specification, freely estimating all parameters at
Step 2 should result in an estimate of cov(8¢) that is nearly identical to the estimates
obtained with Step 1 quantities fixed at their previous values.

6. This assumes that the correct unique factor correlation structure has been identified in
advance. As noted in the general discussion, however, the issue of how to reliably discern
the true unique factor correlation structure is an important issue for future research.

7. We can easily see that this is true in the model of Figure 1H. Let A¢ and A, represent
the row vectors of nonzero factor scoring coefficients and let ®@; and @, represent the
variance—covariance matrices of the residuals estimated from the & and 7 measurement
submodels in the larger connected model. Then, with no nonzero covariances among the

across-factor uniquenesses, Ay, Oy, Ajwls W €30 be represented by the partitioned
. |As O 0 0 Al‘é 01_ Ag@éAlg 0
matrix product[ 0 An] { 0 Gn} { 0 A/n = 0 A,©, Af"l

8. In line with Hoshino and Bentler (2013, section 4.4.2), because all variables in our simu-
lations were continuous and normal and because we were only assessing parameter bias
and efficiency, not standard error bias or statistical inference, we used the Hoshino—
Bentler estimator of the population covariance matrix as input for these path analyses,
but fit these models using standard ML estimation rather than generalized least squares,
since parameter estimation will be equivalent in this case.

9. The number of convergence errors and inadmissible solutions was extremely small (less
than 2%) across conditions, so in the majority of cells N compiere = 1000.

10. We note that although we used the same Cronbach’s alpha—based formulas as Simulation
1 to generate the standardized factor loadings and residual variance parameters and we,
additionally, retained the same labels in the tables of results for Simulation 2, in the pres-
ence of within-factor correlated uniquenesses, the observed estimates of alpha would
somewhat differ from .7, .8, or .9, assuming alpha was calculated in the usual way
(Bentler, 2017; Maxwell, 1968). We do not feel this minor detail alters our broad conclu-
sion that bias appears worse at lower level than at higher levels of reliability.

11. Computed, for example, as U, =x — AF; and @, =y — AF,, where 1, and 1, are unique
factor score estimates for the X and Y factors, respectively.

12. Indeed, this topic represents an active area of our own ongoing research.
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