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Abstract

A log-linear model (LLM) is a well-known statistical method to examine the relation-
ship among categorical variables. This study investigated the performance of LLM in
detecting differential item functioning (DIF) for polytomously scored items via simula-
tions where various sample sizes, ability mean differences (impact), and DIF types
were manipulated. Also, the performance of LLM was compared with that of other
observed score–based DIF methods, namely ordinal logistic regression, logistic discri-
minant function analysis, Mantel, and generalized Mantel-Haenszel, regarding their
Type I error (rejection rates) and power (DIF detection rates). For the observed
score matching stratification in LLM, 5 and 10 strata were used. Overall, generalized
Mantel-Haenszel and LLM with 10 strata showed better performance than other
methods, whereas ordinal logistic regression and Mantel showed poor performance
in detecting balanced DIF where the DIF direction is opposite in the two pairs of
categories and partial DIF where DIF exists only in some of the categories.
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Differential item functioning (DIF), which indicates differential performance on an

item across subgroups matching on a criterion such as test score or ability level

(Hanson, 1998), provides a piece of evidence for the fairness of a test. For this reason,

DIF investigations have been routinely conducted, specifically in large-scale assess-

ments. In large-scale assessments, polytomously scored items are not uncommon, and

the use of dichotomously scored items is still popular. This study revisits the DIF

investigation for polytomously scored items with a log-linear model (LLM) approach.

Our three major motivations to investigate LLM as a DIF method for polytomously

scored items are as follows. First, LLM has widespread availability as a popular sta-

tistical method to analyze categorical variables. The LLM analysis is typically

included in a statistical methods course on categorical data analysis, and learning of

LLM as a statistical method provides a sufficient knowledge base to understand and

use LLM as a DIF method. Also, most of the statistical packages are usually equipped

with the LLM module, which obviates the necessity of a stand-alone program for DIF

investigations. Second, LLM is flexible in that it can handle DIF for dichotomously

scored or polytomously scored items, better than the two-group comparisons, and uni-

form as well as nonuniform DIF detection. Third, since Mellenbergh’s (1982) intro-

duction of LLM as a DIF method only for dichotomously scored items, there has

been no systematic evaluative study of LLM for polytomously scored item DIF

investigations.

A small number of studies have evaluated LLM as a DIF method solely for

dichotomous item response data (Kelderman, 1989; Kelderman & Macready, 1990;

Welkenhuysen-Gybels, 2004; Welkenhuysen-Gybels & Billiet, 2002; Wiberg, 2009).

Among these cited studies, Wiberg (2009) and Kelderman (1989) investigated DIF in

real data sets. Wiberg (2009) compared LLM, logistic regression (LR), and Mantel-

Haenszel (MH) for both uniform DIF and nonuniform DIF. Based on the findings, he

concluded that LLM is more appropriate for mastery tests because this model uses

categorical variables. Welkenhuysen-Gybels and Billiet (2002) compared observed

conditional score methods (LLM and LR) and unobserved conditional score methods

by simulating dichotomous data under the 1-parametric logistic model (1PLM) and

the 2-parametric logistic model (2PLM). They considered three factors: item diffi-

culty differences between groups (0.4), item discrimination differences between

groups (0.7), and DIF conditions (uniform and nonuniform). They restricted sample

size to 1,000 examinees per group and test length to 20 items. The study indicated

that LLM and LR performed well across the conditions for uniform DIF and nonuni-

form DIF under 1PLM and 2PLM. Welkenhuysen-Gybels (2004) expanded the previ-

ous study with six factors in the data generation procedure: sample size (1,000/1,000

and 1,000/300), item difficulty differences between groups (0.2 and 0.6), item dis-

crimination differences between groups (0.4 and 0.8), percentage of DIF item (10%,

20%, and 50%), ability distribution (standard normal distribution and data skewed to

the left and to the right), and test length (20 and 30 items). They concluded that the

item response theory (IRT) method of signed area performed better than the other
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techniques for uniform DIF whereas observed score methods (LLM and LR) per-

formed better than IRT methods for nonuniform DIF.

In spite of the LLM studies for dichotomous item response data, the performance

of LLM has not been investigated for polytomous item response data, and there is a

lack of comparative evaluation of LLM with other methods, such as ordinal logistic

regression (OLR; French & Miller, 1996), logistic discriminant function analysis

(LDFA; Miller & Spray, 1993), Mantel (Mantel, 1963), and generalized Mantel-

Haenszel (GMH; Zwick, Donoghue, & Grima, 1993). We find two studies directly

related to LLM for polytomous item DIF investigations, which are Dancer,

Anderson, and Derlin (1994) and Hanson and Feinstein (1997). Dancer et al. (1994)

used LLM for their survey with a polytomously scored real item response data set

without considering any performance investigation of LLM with other DIF methods.

Hanson and Feinstein (1997) also used LLM with polynomial terms in their equating

study for a real data set. They proposed a polynomial log-linear model (PLLM) to

detect DIF for polytomous item responses. Since PLLM considers polynomial terms

in the LLM structure based on the number of score levels and the number of

response categories, it is more complex and harder to implement in general than the

LLM. In PLLM, when the number of categories for the variables increases, the

degree of the polynomial terms and the number of the nested models increase.

PLLM compares all the nested models in an application to DIF investigation until

the best model is obtained. As Hanson and Feinstein (1997) suggested, application of

PLLM for each item in the test is not realistic because the degree of polynomial

terms changes from item to item, and this adds more complexity in using PLLM.

LLM, on the contrary, does not require polynomial terms in its modeling and can be

extended straightforwardly to the detection of DIF for polytomous items and more

than two groups (Agresti, 2013). Because of the common use of polytomously scored

items in educational and psychological testing, studying LLM as a DIF method can

provide insights into the applicability and performance of LLM for researchers and

practitioners who conduct DIF investigations with polytomously scored items.

In general, LLM is used to examine the relationship between categorical variables,

so it can be applied to mastery tests or tests that classified normally or ordered the

test takers. Additionally, in terms of MH and LR, the modelings of these methods are

extended to the polytomous item response data (GMH and OLR). However, LLM

can be used for both dichotomous and polytomous item response data without chang-

ing the modeling framework. Thus, LLM can be applied to mixed-item format tests

(which have both dichotomous and polytomous response items) easily, which can

save time for researchers and practitioners. Because of the advantages of LLM we

have stated, this study conducted a systematic evaluation of LLM as a DIF method

and compared its performance with that of other existing DIF methods for polyto-

mously scored items. For the other compared DIF methods, we limited out attention

to the observed score–based DIF methods (LDFA, OLR, GMH, and Mantel), as is

LLM.
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DIF Detection Methods

LLM and other observed score–based DIF methods are described in this section.

LLM is covered in more detail than the other methods because the focus is on LLM

in this study. The other methods are briefly introduced because they have been more

widely known in the DIF literature, and readers interested in more details should refer

to the references cited for the methods. Across all the DIF methods, the matching

variable was the observed total test score, and the studied item for DIF was always

included in the matching variable.

Log-Linear Model

LLM is a generalized linear model that uses the logarithmic link function. It is used

to analyze a multidimensional contingency table when variables are categorical and

to investigate the relationship between the variables (Agresti, 2013). In the analysis,

all variables are considered as response variables that have Poisson distribution.

LLMs follow three steps (Green, 1988):

1. Models are proposed. LLMs can be built using any combination of factor

effects and interaction effects based on the research interest.

2. Expected cell frequencies, for instance, in a three-dimensional I3J3K con-

tingency table, and parameter estimates for the models are calculated as fol-

lows. For a main effect model,

m̂ijk = npi ++ p + j + p ++ k , ð1Þ

where m̂ijkis the expected cell frequency for cell ijk in the contingency table, n is the

total number of observations, pi ++ is the probability of falling into the ith category

for variable I, p + l + is the probability of falling into the jth category for variable J,

and p ++ k is the probability of falling into the kth category for variable K.

LLM is specified by taking the natural logarithm of both sides of Equation 1.

Then, for this example, the independence model is obtained as below:

log(m̂ijk) = log(n) + log(pi ++ ) + log(p + j + ) + log(p ++ k): ð2Þ

This model is generally represented by the following equation, which is similar to the

main effect analysis of variance (ANOVA):

log (m̂ijk) = u + u1(i) + u2(j) + u3(k), ð3Þ

where u is the overall effect and u1(i), u2(j), and u3(k) are the effects of variables I, J,

and K, respectively.

When interaction effects on expected cell frequencies are of interest, interaction

terms are added to the independence model.
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3. The best-fit model is identified. For each proposed model, the goodness of

fit is measured using the Pearson or the likelihood ratio chi-square statistic.

Then, the difference between either Pearson or likelihood ratio chi-square

statistics for the two nested models is calculated to test the hypothesis that

the parsimonious model is as good a fit as the complex model.

Mellenbergh (1982) proposed LLM as a DIF detection method for dichotomously

scored items by analyzing a three-dimensional contingency table: Matching criterion

score (e.g., strata based on observed test score) 3 Group (reference or focal group) 3

Item responses (0 or 1).

The natural logarithm of the expected frequencies in each combination of the

three factors (matching strata, group, and item response) is modeled as a function of

the three categorical variables. Although internal or external observed/unobserved

matching variables can be used, Mellenbergh (1982) suggested the use of an internal

observed matching variable. Because LLM analysis requires categorical data, the

matching variable should be divided into categories. For contingency table methods,

Scheuneman (1979) and Welkenhuysen-Gybels and Billiet (2002) suggested dividing

a matching variable into three to five categories in their analysis. However, Clauser,

Mazor, and Hambleton (1994) remarked that the number of categories in the match-

ing variable may affect the Type I error rate along with the characteristics of the data

set, such as sample size and ability mean difference (impact). For this reason, the

number of categories (or strata) in the LLM were varied by two different numbers, 5

(LLM5) and 10 (LLM10), in this study. Generally, the maximum number of levels

of the matching variable is desired to differentiate the marginal ability difference or

impact from DIF. In this respect, LLM10 was expected to be a better performer than

LLM5 whenever impact exists.

With respect to detecting DIF, the saturated model (Equation 4) and the two mod-

els nested within the saturated model are taken into consideration (Equations 5 and

6). The saturated model includes all the variables and all possible interactions among

the variables:

Model 1 : log (m̂ijk) = u + u1(i) + u2(j) + u3(k) + u12(kj) + u13(ik) + u23(ij) + u123(ijk), ð4Þ

where m̂ijk is the expected frequency at the ith response level for the kth score level

and jth group, u is the overall effect, u1 is the effect of the score-level variable, u2 is

the effect of the group variable, u3 is the effect of the item response variable, u12 is

the interaction effect of score level and group level, u13 is the interaction effect of

score level and response level, u23 is the interaction effect of group and response lev-

els, and u123 is the interaction effect of score, group, and response levels.

Nonsaturated models are obtained by removing the three-way interaction and/or

two-way interactions from the saturated model. For the purpose of DIF detection, two

nonsaturated models nested in the saturated model are considered:

Model 2 : log (m̂ijk) = u + u1(i) + u2(j) + u3(k) + u12(jk) + u13(ik) + u23(ij) ð5Þ
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and

Model 3 : log (m̂ijk) = u + u1(i) + u2(j) + u3(k) + u13(ik) + u23(jk): ð6Þ

The DIF analysis starts with comparing Models 1 and 3 using the likelihood ratio

chi-square difference test under the hypothesis that Model 3 fits as well as Model 1.

When the difference test is not significant, it indicates that the studied item has no

DIF. If the test is significant, the studied item shows DIF. To find out what kind of

DIF it is, first, Model 2 and Model 1 are compared using the likelihood ratio chi-

square difference test, under the hypothesis that the Model 2 fits as well as Model 1.

The rejection of the hypothesis indicates that the studied item has nonuniform DIF.

If the test is not significant, the item does not show nonuniform DIF. Then, Model 2

and Model 3 are compared using the likelihood ratio chi-square difference test, under

the hypothesis that the Model 3 fits as well as Model 2. When the test is significant,

the studied item includes uniform DIF. In this study, DIF investigation for an item

was conducted by the general DIF test and the uniform DIF test. No DIF was

recorded if the general DIF test was not significant, whereas DIF was recorded when

the two tests were significant.

Generalized Mantel–Haenszel and Mantel Methods

The GMH method is an extension of the MH method for nominal variables with more

than two categories (Mantel & Haenszel, 1959). When there are j response categories,

the GMH test statistic follows the chi-squared distribution with (j2 1) degrees of

freedom. It considers the distribution of all the item categories to assess how differ-

ently the item functions among the groups. The matching variable is divided into k

strata. For each stratum, a 23J contingency table is created for the two groups of

examinees. Then, GMH tests the null hypothesis that there is no conditional associa-

tion between the item response categories and group membership. Rejection of the

null hypothesis indicates DIF.

On the other hand, Mantel (1963) presented an extension of the MH method to

test the null hypothesis of no association between an ordinal variable and a factor of

interest across all strata. In the application of the Mantel method to DIF investiga-

tions, the item scores are considered as ordinal, whereas the other variables are

treated as nominal.

As in GMH, a contingency table is arranged for item responses and a group vari-

able at each score level. The null hypothesis of no DIF is tested by the chi-square sta-

tistic with 1 degree of freedom.

Ordinal Logistic Regression

French and Miller (1996) argued that using cumulative logit in the LR model is

applicable for polytomously scored items with I number of categories. Because LR

requires a binary dependent variable, the polytomous responses for an item are
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recoded as a series of dichotomously scored subitems, and then LR is applied for

each of the dichotomously scored subitems. For an item having I categories

(i = 1, 2, . . . , k, . . . , I), the OLR DIF modeling for the item response category i is

presented as

Model 1 : ln
P(Yis � k)

1� P(Yis � k)
= b0 + b1Xs + b2Gs + b3(XG)s, ð7Þ

Model 2 : ln
P(Yis � k)

1� P(Yis � k)
= b0 + b1Xs + b2Gs, ð8Þ

and

Model 3 : ln
P(Yis � k)

1� P(Yis � k)
= b0 + b1Xs, ð9Þ

where k is the item score, Xs is the matching criterion score for person s, Gs is the

group variable for person s, (XG)s is the interaction between the matching criterion

and the group variable for person s, b0 is the intercept of the model, and b1, b2, and

b3 are the slopes of the model related to the matching criterion, the group variable,

and the interaction between the matching criterion and the group variable, respec-

tively. The significant difference in the likelihood ratio test for Model 1 and Model 3

indicates general DIF (Zumbo, 1999). After general DIF is investigated, the differ-

ence in the likelihood ratio test for Model 3 and Model 2 is used to test for nonuni-

form DIF. If the difference is significant, the item is flagged as a nonuniform DIF

item. If the difference is not significant, Models 1 and 2 are compared by using the

likelihood ratio test to investigate uniform DIF. When the difference in the likelihood

ratio test for Models 1 and 2 is significant, the item is flagged as a uniform DIF item

(French & Miller, 1996). In this study, as in the French and Miller study, the general

DIF test and the uniform DIF test were used. No DIF was recorded if the general

DIF test was not significant, whereas DIF was recorded when the two tests were

significant.

Logistic Discriminant Function Analysis

Miller and Spray (1993) proposed LDFA as a DIF detection method for polytomous

cases. In terms of the DIF identification process, LDFA calculates the probability of

an examinee being in group g when the examinee has a total score of X and an item

score of U.

The LDFA models used in the DIF analysis for an item are written as follows:

Model 1 : P(GsjXs, Us) =
eb0 + b1Xs + b2Uis + b3(XU)s

1 + eb0 + b1Xs + b2Uis + b3(XU)s

, ð10Þ
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Model 2 : P(GsjXs, Us) =
eb0 + b1Xs + b2Uis

1 + eb0 + b1Xs + b2Uis
, ð11Þ

and

Model 3 : P(GsjXs, Us) =
eb0 + b1Xs

1 + eb0 + b1Xs
, ð12Þ

where Us is the item response (or score) for person s, Xs is the matching criterion for

person s,Gs is the group variable for person s, (XU)s is the interaction between the

matching criterion and the item response variable for person s, b0 is the intercept of

the model, and b1, b2, and b3 are the slopes of the model related to the matching cri-

terion, the item response variable, and the interaction between the matching criterion

and the item response variable, respectively. First, the difference in the likelihood

ratio tests for Model 1 and Model 2 is used to detect nonuniform DIF. If the differ-

ence test is significant, the item is flagged as nonuniform DIF. Otherwise, the differ-

ence in the likelihood ratio tests for Models 2 and 3 is used to detect uniform DIF.

When the difference between the likelihood ratio tests for Model 2 and Model 3 is

significant, the item is flagged as uniform DIF (Miller & Spray, 1993). For detecting

DIF for a studied item in this study, the general DIF test and the uniform DIF test

were used. No DIF was recorded if the general DIF test was not significant, whereas

DIF was recorded when the two tests were significant.

Methods

Polytomous graded item responses (0, 1, 2, 3, and 4) for 10-item tests were generated

using Samejima’s (1969) graded response model (GRM). The number of options in

each item was five. The item discrimination parameter (ai) and threshold parameters

(b1, b2, b3, and b4) for each item were borrowed from Wang and Su’s study (2004).

Because almost all the items in Wang and Su’s study were difficult, they were

adjusted by subtracting the constant value of 0.5 from all the threshold parameters to

make the items have approximately medium difficulty. The average of the item dis-

crimination values for data generation was 1.63, with minimum (min) = 1.46 and

maximum (max) = 1.85. The averages of b1, b2, b3, and b4 were 20.84 (min =

21.11 and max = 20.59), 20.10 (min = 20.81 and max = 0.4), 0.61 (min = 0.3 and

max = 0.87), and 1.76 (min = 1.44 and max = 1.96), respectively.

The data sets were simulated under a combination of three factors:

1. Sample size: Studies in the past have examined DIF in polytomous cases with

a variety of sample sizes that have ranged from 750 to 4,000 (French &

Miller, 1996; Gomez-Benito, Hidalgo, & Zumbo, 2013; Kristjansson,

Aylesworth, McDowell, & Zumbo, 2005; Wang & Su, 2004; Woods, 2011).

In this study, LLM was compared with Mantel, GMH, OLR, and LDFA by

taking into account small, medium, and large sample size conditions,
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considering both equal and unequal sample sizes for the focal and reference

groups. Six levels were considered (200F/200R, 200F/400R, 300F/500R,

500F/500R, 300F/1,000R, and 1,000F/1,000R), where F and R represent the

focal and the reference group, respectively.

2. Mean ability difference (impact): Earlier studies found that when the ability

mean difference increased, the Type I error rates increased for GMH, Mantel,

and LDFA (Kristjansson, 2001; Wang & Su, 2004). Kristjansson (2001) indi-

cated that when the ability mean difference increased, OLR was less affected

by the difference compared with Mantel, GMH, and LDFA. In the present

study, three levels of mean ability difference were considered: uR = uF ~ N(0,

1); uF ~ N(20.25, 1) and uR ~ N(0.25, 1); and uF ~ N(20.5, 1) and uR ~

N(0.5, 1).

3. Types of DIF: There are many different ways to create DIF items. Our design

was based on Wang and Su’s (2004) framework for generating DIF items. As

in Wang and Su’s study, the parameter difference between the two groups

was set as 0.25 to represent moderate DIF, which was based on Raju’s (1988)

averaged sign area formula for GRM. Seven types of DIF were considered:

no DIF, constant DIF, balanced DIF, partial_1, partial_2, partial_3, and par-

tial_4 (Table 1). In this study, one item in a simulated test was designated as

a studied item, which has DIF as described or no DIF. The threshold para-

meters for the studied item when there is no DIF are b1 = � 0:85, b2 = 0:03,

b3 = 0:70, and b4 = 1:84.

Previous studies have used test lengths from 10 to 40 items (Gomez-Benito et al.,

2013; Kristjansson et al., 2005; Wang & Su, 2004; Woods, 2011) for Mantel, GMH,

OLR, and LDFA. Wang and Su (2004) reported that the Type I error rate and power

for the Mantel and GMH methods were slightly increased under the GRM when the

number of items was higher than 10. They concluded that 10 items with five cate-

gories /provided reliable results because the total test score ranged from 0 to 40. In

Table 1. Types of DIF for DIF Simulation.

DIF Conditions b1 b2 b3 b4

NoDIF bF1 = bR1 bF2 = bR2 bF3 = bR3 bF4 = bR4

Constant bF1 + 0:25 = bR1 bF2 + 0:25 = bR2 bF3 + 0:25 = bR3 bF4 + 0:25 = bR4

Balanced bF1 + 0:25 = bR1 bF2 + 0:25 = bR2 bF3 � 0:25 =
bR3 � 0:25

bF4 = bR4 � 0:25

Partial_1 bF1 + 0:25 = bR1 bF2 = bR2 bF3 = bR3 bF4 = bR4

Partial_2 bF1 = bR1 bF2 + 0:25 = bR2 bF3 = bR3 bF4 = bR4

Partial_3 bF1 = bR1 bF2 = bR2 bF3 + 0:25 = bR3 bF4 = bR4

Partial_4 bF1 = bR1 bF2 = bR2 bF3 = bR3 bF4 + 0:25 = bR4

Note. bFi and bRi represent item threshold parameters for the focal and reference groups, respectively.

DIF = differential item functioning.
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this study, the test length was fixed at 10 items with five categories. The statistical

language R (R Core Team, 2013) was used to construct 6 3 3 3 7 = 126 (six levels

of sample size, three levels of ability mean difference, and seven levels of DIF types)

data simulation conditions. A total of 1,000 replications were created for each condi-

tion. For each data set, LLM and all the other DIF methods described previously were

applied for testing DIF. The R language and the SAS program (SAS Institute, Cary,

NC) were used to conduct LLM, Mantel, GMH, OLR, and LDFA.

We calculated the Type I error rate (rejection rate) and the power (DIF detection

rate) for each of the methods and the 126 data-simulating conditions (each of which

had 1,000 replications). Type I error rate is the proportion of significant results in the

DIF investigation of the studied item that has no DIF. On the other hand, power is

the proportion of significant results in testing DIF for the studied item that has DIF.

Precisely speaking, because an inflated Type I error affects power, the Type I error

rates of the methods should be comparable when comparing the powers of different

methods (Jodoin & Gierl, 2001). Thus, readers should be careful in interpreting the

detection rates as powers among the different methods when their Type I error rate

differences are not small. Readers should understand that our use of the term power

is very approximate rather than rigorous.

A repeated-measures ANOVA, where the DIF method was the within-subjects

factor and the other data simulation factors (sample size, mean ability difference,

and type of DIF) were between-subjects factors, was conducted to investigate statisti-

cally and practically the significant effects on the Type I error rate and power. In

addition to statistical significance (under a = :05), practical significance was evalu-

ated using an effect size ĥ2. When ĥ2 . .01, in other words explaining the variation

in the data at least 1%, the effect was considered practically significant. In this study,

an effect was selected as an important effect for discussion when it is both statisti-

cally and practically significant.

Results

Although all the simulation factors were used in ANOVA, note that the foci of the

analysis were the DIF method factor and its interactions with the other factors. The

interpretations of the effects centered on those effects that were both statistically and

practically important. Mauchly’s test for all the ANOVAs showed that the sphericity

assumption was not tenable, thus the results from the Greenhouse-Geisser approach

were reported for the ANOVA results. Power comparison is properly made when the

Type I error rate is controlled, that is, when the compared methods are showing the

same or very similar levels of Type I error rates. Our results below for Type I error

rates show that the DIF methods exhibited different Type I error rates, and the expres-

sion of power when DIF exists, though long, was preferred to power for this reason.
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Type I Error Rate (Rejection Rate)

Table 2 shows the ANOVA results for the Type I error rates. The DIF method

(Method) factor was both statistically and practically significant. Its interaction with

the mean difference (MD) was also statistically and practically significant. This

interaction means that the sizes of the Type I error rate differences among the DIF

methods depended on the level of MD. The Method 3 MD interaction plot is shown

in Figure 1. The six DIF methods’ marginal (or overall) Type I error rates across all

the simulation conditions were 0.057, 0.054, 0.063, 0.076, 0.082, and 0.068 for

GMH, Mantel, OLR, LDFA, LLM5, and LLM10, respectively. However, the Type I

error rate differences among these methods depended on MD. When MD = 0, all the

methods performed very similarly. As MD became larger, for example, MD = 1, the

differences in the Type I error rates increased. Particularly LDFA and LLM5 exhib-

ited noticeable inflation in the Type I error rates compared with other methods when

there were group mean differences. Both methods showed error rates about twice as

large as the nominal Type I error rate (0.095 and 0.111 for LDFA and LLM5, respec-

tively) when MD = 1.

One between-subjects effect, sample size, was both statistically and practically

significant. When the sample sizes were equal, the Type I error rates were 0.059

(500F/500R) and 0.061 (1,000F/1,000R) for LDFA and LLM5, respectively. With

unequal sample sizes, the Type I error rates ranged from 0.053 to 0.081, showing that

a large sample size tended to yield slightly higher Type I error rates.

Power (DIF Detection Rates When DIF Exists)

Table 3 shows the ANOVA results for power when DIF exists. For the between-

subjects effects, DIF type (DT), N, and their interaction (DT 3N) were both

Table 2. Analysis of Variance for Type I Error Rates.

Source Sum of squares df Mean square F p h2

Between subjects 18345.49 17
MD 4074.57 2 2037.29 8.628 .007 0.090
N 11909.71 5 2381.94 10.088 .001 0.264
Sample size within groups 2361.20 10 236.12

Within subjects 26738.16 35
Method 10461.38 1.95 5379.50 26.18 \.001 0.232
Method3MD 8854.87 3.89 2276.70 11.08 \.001 0.196
Method 3N3 MD 3425.23 9.72 352.27 1.71 .149 0.076
Method 3 Sample
size within groups

3996.69 19.45 205.52

Total 45083.65

Note. N and MD indicate sample size and ability mean difference between reference group and focal

group, respectively. df = degrees of freedom; DIF = differential item functioning. The effects that are

statistically and practically significant are highlighted in boldface.
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statistically and practically significant. Among the within-subjects effects, the DIF

method as a main effect and its interactions with DT, N, and DT 3N were also both

statistically and practically significant. Because the three-way interaction of Method

3 DT 3N was statistically and practically significant, which subsumes the other sta-

tistically and practically significant effects, we focus on this three-way interaction.

This three-way interaction means that the sizes of the differential power among the

six DIF methods were dependent on not only DT but also N. Figure 2 shows the

three-way interaction through the mean interaction plots for Method 3N conditional

on DT. In general, all the methods tended to show better power as the total sample

size (which combines the reference and focal groups’ sample sizes) increased.

However, the power differences among the DIF methods were not similar when the

total sample size changed. In addition, the pattern of the Method 3N interaction

depended on DT. When DT was constant, the power differences among the methods

as N changes were not large. When DT = balanced, the differences in power among

the DIF methods were the smallest. When DT = Partial_1 through Partial_3, the

power differences among the DIF methods became larger as the total sample size

became larger. For DT = Partial_4, all the DIF methods’ power values were very

low, ranging from 0.049 to 0.131 only. In the DT = Partial_4 condition, DIF was

simulated for the highest-category boundary threshold parameter, b4 = 1:84, when

there was no DIF. Thus, this very high threshold parameter appears to be responsible

for this lower performance in detecting DIF for DT = Partial_4.

Another noticeable observation from the three-way interaction was that the power

values of Mantel and OLR were clearly inferior to the power of other methods except

when DT was constant. LDFA and LLM5 showed approximately comparable perfor-

mance with GMH and LLM10, but the Type I error rates (shown in Figure 1) of

LDFA and LLM5 were higher than for other methods when MD exists.

Figure 1. Interaction of differential item functioning method (Method) and mean difference
(MD) for Type I error rates.
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Conclusion and Discussion

Investigating DIF for polytomously scored items in educational and psychological

testing is very important to ensure fair and valid testing. This study examined the

performance of six observed score–based DIF methods applicable to polytomously

scored item tests through simulation. For the DIF methods’ performance, both Type

I error rate and power (or, more suitably, DIF detection rates) when DIF exists were

investigated. For practitioners, which method should be used is a major concern. The

Figure 2. Interaction of method by sample size (N) by differential item functioning type
(DT).
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best DIF method should have a well-controlled Type I error rate and as high a power

as possible when DIF exists.

For Type I error rates, the six DIF methods showed differential rates depending on

the existence of group mean ability differences. LDFA and LLM5 showed an increase

in Type I error rates as the mean ability increased, reaching nearly twice as large as

the nominal significance level. The comparison of power showed that Mantel and

OLR were not as sensitive as the other DIF methods in detecting DIF. Although when

DIF type was constant, these methods showed comparable performance with the

other DIF methods, it is not advisable to recommend the use of these two methods.

The reason is that the type of DIF is not known in real data analysis, and there is no

guarantee of a constant DIF type when DIF exists. Both Mantel and OLR suffer from

poor power for other types of DIF presence. LDFA and LLM5 showed comparable

power with GMH and LLM10, but because of their inflated Type I error rates in the

presence of group ability mean differences, LDFA and LLM5 cannot be recom-

mended either. The use of five strata in LLM seems to be too rough to define the

number of ability levels when the size group ability mean difference increases.

Considering the above observations, we are left with GMH or LLM10 for recom-

mendation. The overall Type I error rates for GMH and LLM10 were 0.057 and

0.068, respectively. The overall power values were 0.546 and 0.574, respectively.

The power of LLM10 was slightly higher than that of GMH in general. Higher Type

I error rate is typically associated with higher power, and the overall slightly higher

power of LLM10 reflects this. LLM10 showed better-controlled Type I error rate.

Assuming that the practitioner chooses a DIF method, a typical next question is

about the sample sizes. Table 4 summarizes the power values of GMH and LLM10

in addition to the Type I error rates according to the sample sizes used in this study.

To ensure at least a 50% chance of detecting DIF to decrease Type II errors, our

results indicate sample sizes of at least 300 for the smaller group and 500 for the

larger of the two comparing groups. For practitioners, LLM as a DIF method could

Table 4. Performance of GMH and LLM10 for Different Sample Sizes.

Sample size (N)a

Method 200_200 200_400 300_500 500_500 300_1,000 1,000_1,000

Power
GMH 0.34 0.41 0.51 0.61 0.60 0.80
LLM10 0.38 0.45 0.55 0.63 0.63 0.81

Type I error rate
GMH 0.05 0.06 0.07 0.05 0.07 0.05
LLM10 0.05 0.07 0.09 0.06 0.08 0.05

Note. GMH = generalized Mantel-Haenszel; LLM = log-linear model.
aThe first number in the sample size is for the focal group, and the second number is for the reference

group.
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be considered as an alternative for DIF investigations for polytomously scored items.

Especially when sample sizes are as small as 200 per group, then LLM with 10 strata

(LLM10 in this study) could provide comparable or better performance. Comparing

with GMH, both the slightly increased Type I error rate and the slightly better power

should be properly weighed in considering LLM10. Theoretically, the LLM approach

has an advantage over the other methods. LLM can be straightforwardly extended to

accommodate testing explicitly the nonuniform DIF null hypothesis, multiple groups

(more than two), and simultaneous DIF investigation of more than a single studied

item (Wiberg, 2007).

Though this study incorporates important aspects of DIF investigation in its simu-

lation, several limitations must be noted. First, the way DIF was generated is limited

to a constant shift in a category threshold parameter. DIF produced by different item

discrimination parameters in the GRM across the groups, for example, was not

included. Second, the scope of the DIF methods included in the study was restricted

to observed score–based DIF methods for polytomously scored items. Other para-

metric and nonparametric IRT DIF methods (e.g., SIBTEST in Shealy & Stout,

1993; parametric IRT likelihood ratio test in Thissen, Steinberg, & Wainer, 1993)

could be included for further comparisons. Third, the difference between the ability

distributions of the two groups was operationalized using the ability mean difference.

Standard deviations, however, for example, may vary from one group to another in

real data. Fourth, this study investigated the performance of LLM as a DIF detection

method by having a single studied item that may have DIF and the rest of the items

have no DIF. The simulation scenario mimicked a situation where an operational test

exists and each item in a new set of field test items is investigated for DIF with the

existing operational test. The effect of the existence of DIF items in nonstudied items

in a test on DIF detection has not yet been investigated for LLM. Jodoin and Gierl

(2001) as well as Narayanan and Swaminathan (1996) reported that the increase of

DIF items in nonstudied items in a test was associated with increased Type I error

rate and decreased power for the LR DIF method. We conjecture similar results for

LLM, but empirical evidence for this claim and the detailed behavior of LLM as a

DIF method under this DIF contamination scenario can be investigated in the future.
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